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ABSTRACT
Accurate standardization of Type Ia supernovae (SNIa) is instrumental to the usage of SNIa
as distance indicators. We analyse a homogeneous sample of 22 low-z SNIa, observed by the
Carnegie Supernova Project in the optical and near-infrared (NIR). We study the time of the
second peak in the J band, t2, as an alternative standardization parameter of SNIa peak optical
brightness, as measured by the standard SALT2 parameter mB. We use BAHAMAS, a Bayesian
hierarchical model for SNIa cosmology, to estimate the residual scatter in the Hubble diagram.
We find that in the absence of a colour correction, t2 is a better standardization parameter
compared to stretch: t2 has a 1σ posterior interval for the Hubble residual scatter of σ�μ =
{0.250, 0.257} mag, compared to σ�μ = {0.280, 0.287} mag when stretch (x1) alone is used.
We demonstrate that when employed together with a colour correction, t2 and stretch lead to
similar residual scatter. Using colour, stretch and t2 jointly as standardization parameters does
not result in any further reduction in scatter, suggesting that t2 carries redundant information
with respect to stretch and colour. With a much larger SNIa NIR sample at higher redshift in
the future, t2 could be a useful quantity to perform robustness checks of the standardization
procedure.

Key words: methods: data analysis – methods: statistical – supernovae: general – distance
scale.

1 IN T RO D U C T I O N

Type Ia supernovae (SNIa) are exceptionally useful distance indica-
tors in cosmology and have been instrumental in the discovery of the
accelerated expansion of the Universe (Riess et al. 1998; Perlmutter
et al. 1999). Their apparent magnitudes must be ‘standardized’ by
correcting for empirical correlations between observable properties
and intrinsic magnitude in order to reduce residual scatter suffi-
ciently to measure cosmological parameters (Phillips 1993; Riess,
Press & Kirshner 1996; Tripp 1998).

To date, cosmological parameter constraints from SNIa have
been derived from optical light-curve data. There are, however,
clear indications that near-infrared (NIR) data improve precision
and accuracy further (Mandel, Narayan & Kirshner 2011). At NIR
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wavelengths (900 nm < λ < 2400 nm), SNIa exhibit more uni-
form brightness, without the need for empirical standardization
(Krisciunas, Phillips & Suntzeff 2004; Wood-Vasey et al. 2008;
Mandel et al. 2009; Mandel, Narayan & Kirshner 2011). The scat-
ter in the peak luminosity in these studies can be as low as 0.1 mag.
Furthermore, NIR light is less affected by extinction due to dust,
which makes NIR data less prone to pernicious dust-related system-
atics. Distances in the NIR can be measured to better than 6 per cent
precision, making this wavelength region an exciting prospect for
SNIa cosmology (Kattner et al. 2012).

The light-curve morphology in the NIR is markedly different
from that in the optical, showing a pronounced second maximum
in IYJHK filters for ‘normal’ SNIa (Elias et al. 1981; Leibundgut
1988; Hamuy et al. 1996; Folatelli et al. 2010). This rebrightening
offers interesting clues into the physics of the explosion. The timing
of the second maximum (t2, measured as the time between B-band
maximum light and the second maximum in a given NIR filter) in
the YJHK filters is strongly correlated with the optical decline rate
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of SNIa (measured by the �m15 parameter) as shown in Biscardi
et al. (2012) and Dhawan et al. (2015). Kasen (2006), based on
radiative transfer calculations of synthetic light curves, predicted
that t2 is a function of the 56Ni mass produced by the SNIa. Indeed,
Dhawan et al. (2016) found a strong correlation between the peak
bolometric luminosity (and therefore, 56Ni mass; see Arnett 1982)
and t2 for a sample of SNIa with low extinction from host galaxy
dust. They demonstrate that this parameter can be used to infer the
56Ni mass for SNIa.

There are many reasons why t2 is a potentially useful quantity for
SNIa cosmology. First, since t2 is a timing (and not a flux) estimate,
it is unaffected by host galaxy reddening, which is not the case for
optical decline rate parameters, e.g. x1 and �m15 (see Amanullah &
Goobar 2011, for a discussion). Secondly, the rebrightening in the
NIR is due to an ionization transition of Fe-group elements from
doubly to singly ionized atoms at a transition temperature ∼7000 K
(see Kasen 2006; Blondin, Dessart & Hillier 2015). The time at
which this transition occurs is driven by the amount of heating from
56Ni produced by the explosion. Since 56Ni is the primary energy
source for the peak brightness of the SNIa (Arnett 1982), t2 would
be expected to correlate strongly with the peak magnitude of the
SNIa and hence be an effective parameter for standardization.

Thirdly, the rebrightening in the NIR is an exclusive feature of
SNIa, not observed in any other type of SN. This makes the sec-
ond maximum a useful indicator to distinguish SNIa from other
types of SNe in absence of spectroscopic confirmation. Therefore,
observing the NIR second maximum could become critical for pho-
tometric classification of SNIa in future SN surveys. Given that
such data should become available with future facilities – e.g. Eu-
clid (expected launch 2019), JWST (expected 2018), Wide-Field
Infrared Survey Telescope (WFIRST, expected launch ∼ 2020; see
Hook 2013, for a review) – studying the standardization proper-
ties of t2 can provide an alternative and more robust route to SNIa
cosmology at no additional observational cost. Furthermore, the
time-delay between the optical peak brightness and NIR rebright-
ening means that NIR observations can be scheduled without the
need for prompt alerts required to sample densely the optical light
curve near its peak, which is necessary for an accurate estimate of
�m15.

The aim of this work is to compare the residual scatter in mag-
nitudes after empirical standardization for a sample of nearby SNIa
using the traditional stretch parameter (x1) versus what can be ob-
tained when using t2 instead (or in addition). We address the ques-
tion of whether the NIR rebrightening time can be used to reduce
the residual scatter in the peak luminosity of SNIa. This paper is
structured as follows. In Section 2, we describe the data set we use
and present the Bayesian methodology for our analysis including a
description of the parameters of interest. We present the results of
applying our method to this low-z SNIa data set in Section 3 and
conclude in Section 4.

2 M E T H O D O L O G Y

2.1 Data

We have compiled a sample of 22 SNIa, in the redshift range 0.01 ≤
z ≤ 0.047, all with well-sampled optical and NIR photometry. In
this paper, we only make use of J-band NIR data. The source of NIR
SNIa photometry is the Carnegie Supernova Project (CSP; Contr-
eras et al. 2010; Stritzinger et al. 2011). The low-z CSP provides a
sample of SNIa with optical and NIR light curves in a homogeneous
and well-defined photometric system (the Vega magnitude system)

and thus forms an ideal base for the evaluation of light-curve prop-
erties.

The SALT2 fit parameters, i.e. peak B-band magnitude mB, light-
curve stretch correction x1, and colour correction c, (Guy et al.
2007) are taken from the analysis in Rest et al. (2014). The total
number of SNIa with J-band t2 estimates is larger than presented
here, however, we only use the subset analysed as part of the low-z
anchor in Rest et al. (2014). The NIR rebrightening time, t2, in
the J band, is evaluated as described in Dhawan et al. (2015) and
subsequently re-centred to the sample mean value, 〈t2〉 = 27.96 d.

2.2 Setup and method

In order to determine the standardization parameters and residual
dispersion in the SNIa magnitudes, we use the Bayesian hierarchi-
cal method BAHAMAS (Shariff et al. 2016). March et al. (2011)
introduced Bayesian hierarchical modelling to the problem of cos-
mological parameter extraction from SALT2 fits. The key feature is
the hierarchical treatment of sources of uncertainty, comprising of
both measurement errors and population variability. Each observed
covariate (for example, m̂Bi , the observed apparent magnitude of
the ith SNIa) is assumed to have an underlying true (latent) value
(for example, mBi, the real apparent magnitude of the ith SNIa) that
is unobserved. Linear regression is then applied to the true value of
the covariate, which itself is drawn probabilistically from a distri-
bution describing the population of SNIa. Finally, latent values are
marginalized from the posterior distribution. Shariff et al. (2016)
further developed this Bayesian approach to include additional (or
alternative) covariates for the standardization of SNIa, and to pro-
vide explicit sampling of the latent variables. We refer to Shariff
et al. (2016) for full details about the hierarchical model and the
sampling methods (see also Nielsen, Guffanti & Sarkar 2015 for a
similar model but applied under a frequentist framework; see Rubin
et al. 2015 for a different implementation of a similar hierarchical
Bayesian model, and Ma, Corasaniti & Bassett 2016 for an analysis
using Bayesian graphs).

Another feature that distinguishes this Bayesian procedure from
the standard χ2 approach is the treatment of the absolute magnitude
of SNIas. Rather than assuming that all SNIas have the same intrin-
sic magnitude (and then inflate the observational errors to obtain
χ2/dof = 1, as in the standard approach), each SNIa, after applying
empirical corrections, has its own residual absolute magnitude, Mε

i .
These are assumed to follow an underlying Gaussian distribution
(denoted by N ), Mε

i ∼ N (M0, σ
2
res), whose mean, M0, and residual

dispersion, σ res, are determined from the data. Similarly, the other
latent parameters are modelled hierarchically as x1i ∼ N (x1�, R

2
x1

),
t2i ∼ N (t2�, R

2
t2

) and ci ∼ N (c�, R
2
c ), i.e. the aforementioned dis-

tributions describing the population of SNIa, where the means and
standard deviations of the distributions are Bayesianly determined
from the data.

This hierarchical structure has an advantage of ‘borrowing
strength’, in particular, when estimating the scatter of the SNIa
absolute magnitudes that is not predicted by the covariates (σ res).
March et al. (2011) also showed that this method reduces the mean
squared error of the parameter estimators when compared to the
standard approach. In this work, we extend BAHAMAS to include
t2 as an additional linear covariate (or as an alternative to x1). A
full treatment of optical and infrared light-curve data in terms of
a Bayesian hierarchical methodology is presented in Mandel et al.
(2009). Also, Kim et al. (2013) use Gaussian Process regression to
perform a non-parametric fit to spectrophotometric time series from
the Nearby Supernova Factory.
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Table 1. Summary of the parameters, notations, and prior distributions used in our hierarchical
model. ‘SD’ stands for ‘standard deviation’. See Shariff et al. (2016) for more details.

Parameter Notation and prior distribution

Covariates
Negative of the coefficient of stretch covariate α ∼ UNIFORM(−1, 1)
Coefficient of colour covariate β ∼ UNIFORM(−4, 4)
Negative of the coefficient of NIR rebrightening time γ ∼ UNIFORM(−1, 1)

Population-level distributions
Mean of absolute magnitudes Mε

0 ∼ N (−19.3, 22)
Residual scatter after corrections σ 2

res ∼ INVGAMMA(0.003, 0.003)
Mean of stretch x1� ∼ N (0, 102)
SD of stretch Rx1 ∼ LOGUNIFORM(−5, 2)
Mean of t2 t2� ∼ N (0, 102)
SD of t2 Rt2 ∼ LOGUNIFORM(−5, 2)
Mean of colour c� ∼ N (0, 12)
SD of colour Rc ∼ LOGUNIFORM(−5, 2)

The generalized Phillips corrections, including any number of
(linear) covariates can be written as

m�
Bi = μi(ẑi , C) + XT

i B + Mε
i , (1)

where μi(ẑi , C) is the distance modulus at the observed redshift
ẑi for cosmological parameters C, Xi is a vector of covariates, and
B is the vector of regression coefficients. In the standard SALT2
analysis, Xi = {x1i, ci} and B = {−α, β}, where α is the slope of
the stretch correction parameter and β is the slope of the colour
correction parameter. In this analysis, we consider five cases.

(i) Xi = {x1i} and B = {−α}
(ii) Xi = {t2i} and B = {−γ }
(iii) Xi = {x1i, ci} and B = {−α, β}
(iv) Xi = {t2i, ci} and B = {−γ, β}
(v) Xi = {x1i, t2i, ci} and B = {−α, −γ, β},

where γ is the NIR rebrightening parameter, giving the (negative
of the) slope of the linear relationship between t2 and intrinsic
magnitude (so a larger value of t2 corresponds to brighter objects).

We adopt a flat �cold dark matter cosmology with fixed cosmo-
logical parameters, C = {�m = 0.3, w = −1, H0 = 70}, where �m

is the matter density parameter, w the dark energy equation of state
parameter, and H0 the Hubble parameter today (in km−1s−1Mpc−1).
We fix the cosmology since these parameters are unconstrained by
SNIa data alone: in the redshift range covered by our SNIa data,
the luminosity distance is essentially linear with redshift, with the
slope of the relationship given by c/H0, with c being the speed of
light. The adopted value of H0 is completely degenerate with the
average intrinsic magnitude of the SNIas, M0.

The priors for the other parameters in our model are given in
Table 1. A significant fraction of the residual dispersion in low-z
SNIa is due to peculiar velocities, since these objects are not fully
in the Hubble flow. To account for the variance due to peculiar
velocities, we follow a procedure similar to Mandel et al. (2009).
Specifically, we add a term, σ 2

μ, to the apparent magnitude error;
σ 2

μ depends on the peculiar velocities uncertainty, σ pec, and redshift
measurement error, σ z, as

σ 2
μ,i =

(
5

ẑi ln(10)

)2
[
σ 2

z,i + σ 2
pec

c2

]
. (2)

Following Mandel et al. (2009), we set σ pec = 150 km s−1, the value
Mandel et al. (2009) obtained from the local infall flow model of
Mould et al. (2000).

To ensure the robustness of the posterior distribution, we
vary the choice of prior distribution for the residual intrinsic
dispersion, σ res, using INVGAMMA(0.1,0.1), INVGAMMA(0.03,0.03),
INVGAMMA(0.003,0.003) and LOGUNIFORM(−5, 2); INVGAMMA(a, b)
denotes a random variable whose reciprocal follows a Gamma
distribution1 with mode equal to b

a+1 . While the posteriors for all
other parameters are fairly independent of the choice of prior distri-
bution for σ res, the posterior distribution of σ res is sensitive to this
choice. (This is not unexpected given the small number of SNIa in
our sample.) Thus, we do not use the posterior distribution of σ res

to quantify and compare the residual scatter for different models.
Instead, we quantify the residual scatter in the Hubble diagram with
the Hubble residual between the observed distance modulus,

μ̂i(M0, B) = m̂Bi − X̂i
T
B − M0, (3)

and the model distance modulus, μ(ẑ, C), for SNIa i, that is

�μi = μ̂i(M0,B) − μ(ẑi ,C). (4)

We emphasize that while μ̂i(M0,B) is a function of the observed
data, it also depends on the unknown parameters M0 and B, which
need to be estimated from the data. (In the usual χ2 approach,
such parameters are replaced by their estimated value.) Thus, in
a Bayesian analysis, μ̂i(M0, B) itself has a posterior distribution.
We then calculate the posterior distribution of the sample standard
deviation of the �μi, i.e.

σ�μ =
√√√√ 1

n − 1

n∑
i=1

(�μi − �μ)2, (5)

where �μ = 1
n

∑n
i=1 �μi . Because μ̂i(M0, B) is a function of the

unknown parameters M0 and B, σ�μ is also a function of M0 and
B and itself has a posterior distribution. Thus, we calculate the
posterior distribution of σ�μ. We find that σ�μ is independent of
the prior choice (of σ res) and quantifies the residual scatter in the
Hubble diagram well. We use σ�μ to compare the performance of
the five choices of covariates enumerated in the five cases mentioned
previously.

In order to cross-check our numerical results, we obtain samples
from the joint posterior distribution of the parameters of interest
using both a Gibbs sampler and a Metropolis–Hastings algorithm,

1 More specifically: if X ∼ INVGAMMA(a, b), its probability density is given
by p(x) = ba

(a) x
−a−1e−b/x .
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Table 2. Posterior means and 1σ marginal posterior intervals for the regression coefficients and population parameters for the five
models considered.

Parameter Covariates
x1 t2 x1 and c t2 and c x1, t2 and c

α (mag) 0.139 ± 0.060 – 0.168 ± 0.035 – 0.039 ± 0.069
γ (mag/d) – 0.037 ± 0.011 – 0.037 ± 0.007 0.029 ± 0.014
β (mag/mag) – – 3.238 ± 0.560 2.819 ± 0.493 2.948 ± 0.534

Mε
0 (mag) − 19.428 ± 0.070 − 19.345 ± 0.056 − 19.313 ± 0.045 − 19.231 ± 0.040 − 19.250 ± 0.053

Table 3. Posterior percentiles for the Hubble diagram residual scatter, σ�μ, for the five models
considered. Also included is the shortest 1σ interval, which extends from the maximum to the
68.3th percentile of the posterior distribution.

Covariates Percentile
5th 25th 50th 75th 95th 1σ interval

x1 0.281 0.281 0.284 0.290 0.309 0.280–0.287
t2 0.250 0.251 0.254 0.260 0.279 0.250–0.257
x1 and c 0.159 0.162 0.167 0.174 0.191 0.159–0.171
t2 and c 0.148 0.150 0.154 0.161 0.178 0.147–0.159
x1, t2 and c 0.145 0.150 0.155 0.164 0.184 0.144–0.161

obtaining identical results up to Monte Carlo noise. (Details on
the sampling algorithms can be found in Shariff et al. 2016.) We
marginalize out the latent variables (via Monte Carlo for the Gibbs
sampler and analytically for the Metropolis–Hastings algorithm)
and present marginal posterior distributions for the parameters of
interest, including σ�μ.

3 R ESULTS

Table 2 presents the posterior mean and standard deviation of the
regression coefficients, as well as of Mε

0 for each of the five cases.
When t2 is used as the sole covariate, the (negative of the) slope
of the linear relationship with intrinsic magnitude, γ , shows a 3.4σ

deviation from zero. When colour is added as an additional covari-
ate, the significance of the t2 coefficient increases to >5σ . When
all three covariates are used together, the (absolute) values of both
the rebrightening time and the stretch correction slopes reduce, sug-

gesting that (as expected) t2 and x1 encode similar standardization
information.

Since the posterior distributions of σ�μ are highly skewed,
Table 3 reports their 5th, 25th, 50th, 75th, and 95th percentiles,
rather than their means and the standard deviations. Also shown are
1σ posterior intervals for each distribution; we choose the shortest
1σ intervals which, in this case, extend from the minimum to the
68th percentile of each distribution. The marginal posterior distri-
butions of σ�μ are displayed in Fig. 1 for all five cases considered.
Based on the residual scatter in the Hubble diagram, σ�μ, in the
absence of colour correction, t2 alone is a better standardization
quantity than stretch: the (shortest) 1σ posterior interval is σ�μ

= {0.250, 0.257} mag for the former, while it is σ�μ = {0.280,
0.287} mag for the latter. This can further be seen in the left-hand
panel of Fig. 2. On average, t2 (red) leads to smaller Hubble residu-
als than x1 (blue). However, when the colour correction is added to
the regression, NIR rebrightening time and stretch lead to similar

Figure 1. Marginal posterior distributions of the Hubble diagram residual scatter, σ�μ, for all the five cases considered. Blue colour is for the case using only
the stretch correction, x1, as standardization covariate, while red is for using only the NIR rebrightening time, t2. Cyan is for including both stretch and colour,
while orange is for using both rebrightening time and colour. Black is for the case when all three covariates are used. Posteriors are normalized.
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Figure 2. Hubble residuals as a function of redshift. Blue colour is for the cases using the stretch parameter, x1, as a standardization covariate, while red is
for using NIR rebrightening time, t2, as a covariate. The left-hand (right-hand) panel excludes (includes) colour correction as a covariate. Error bars are the
posterior standard deviation of �μ. The dashed red/blue lines indicate the posterior mean of σ�μ.

residual scatter, with rebrightening time and colour (1σ posterior
interval is σ�μ = {0.149, 0.159} mag) performing slightly better
than stretch and colour (1σ posterior interval is σ�μ = {0.159,
0.171} mag), which is also shown in the right-hand panel of Fig. 2.
When using all three covariates together, we observe no further re-
duction in the residual scatter. We conclude that t2 can be effectively
used as an alternative covariate to x1 for the standardization of SNIa,
but does not lead to further reduction in the residuals scatter in the
Hubble diagram once both stretch and colour corrections have been
included as covariates. We also consider the case when colour is
the only covariate, and find that the posterior distribution of σ�μ is
comparable to the case when t2 is the only covariate.

As shown in Fig. 1, the posterior distributions of σ�μ in all five
cases are skewed with long tails for larger values and sharp lower
bounds. The sharp lower bound is a feature of the likelihood func-
tion, rather than an artefact of the analysis, or a prior-dependent
feature. In order to show this, for each of the five cases considered,
we compute the maximum likelihood value of σ�μ by optimizing
{M0,B}. We find that in all five cases, the maximum likelihood
value of σ�μ coincides with the lower bound of its posterior distri-
bution. With a Gaussian likelihood, the maximum likelihood value
of the residual variance is formed by minimizing the sum of squared
residuals over the possible values of the regression coefficients. This
means that there are no values of {M0, B} that produce values of
σ�μ less than the lower bounds in each of the five posterior distri-
butions. As defined in equation (5), σ�μ is a function of M0 and B
and its posterior distribution is determined by theirs.

4 C O N C L U S I O N S

We demonstrated on a low-z SNIa sample that the waiting time for
NIR rebrightening, t2, is significantly better at calibrating the peak
magnitude of SNIa when compared with stretch alone. Dhawan
et al. (2015) found a correlation between t2, �m15, and the time
of maximum (B − V) colour (denoted by tL). They inferred that
the diversity in t2 values of SNIa is driven by different masses
of 56Ni produced in the explosion. As a follow-up, Dhawan et al.
(2016) identified a strong correlation between the peak bolometric
luminosity (Lmax) and t2 for a sample of SNIa with well-measured
NIR data. Since the luminosity at peak corresponds to the instanta-
neous energy deposition rate from 56Ni decay (known as ‘Arnett’s

Rule’; Arnett 1982), the authors used the correlation between Lmax

and t2 and Arnett’s rule to infer a 56Ni mass distribution. The cor-
relation between 56Ni mass and t2 is stronger than that between
56Ni mass and optical decline rate parameters noted in the literature
(e.g. Mazzali et al. 2007; Wang et al. 2008; Scalzo et al. 2014).
Therefore, adopting t2 as a standardization parameter can lead to a
smaller residual dispersion because t2 is more strongly correlated to
the physical driver of the luminosity, thus explaining our findings.

Future SN surveys are designed to provide multiband data for a
large sample of SNIa. Space-based observatories like Euclid and
WFIRST will be equipped with NIR filters, which will allow us to
observe SNIa in the IYJH bands out to high-z. With such a configu-
ration, we can expect measurements of t2 for SNIa at z > 0.5, with
the view of using this quantity as an alternative standardization pa-
rameter to the optical decline rate. Astier et al. (2014) proposed a SN
survey with LSST and the Euclid satellite out to z ∼ 1.5. With their
survey parameters, they expect a total of ∼700 SNe in the redshift
range of 0.75 < z < 1.5, a sizeable sample to test our standardization
procedure at high-z. This would lead to a better understanding of
the physical parameters underlying the standardization procedure
(e.g. 56Ni mass), to tests of the validity of the empirical stretch cor-
rection and to a reduction of the systematic error budget in SNIa
cosmology.
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