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ABSTRACT
Accreting stellar-mass black holes often show a ‘Type-C’ quasi-periodic oscillation (QPO) in
their X-ray flux and an iron emission line in their X-ray spectrum. The iron line is generated
through continuum photons reflecting off the accretion disc, and its shape is distorted by
relativistic motion of the orbiting plasma and the gravitational pull of the black hole. The
physical origin of the QPO has long been debated, but is often attributed to Lense–Thirring
precession, a General Relativistic effect causing the inner flow to precess as the spinning
black hole twists up the surrounding space–time. This predicts a characteristic rocking of the
iron line between red- and blueshift as the receding and approaching sides of the disc are
respectively illuminated. Here we report on XMM–Newton and NuSTAR observations of the
black hole binary H1743−322 in which the line energy varies systematically over the ∼4 s
QPO cycle (3.70σ significance), as predicted. This provides strong evidence that the QPO
is produced by Lense–Thirring precession, constituting the first detection of this effect in
the strong gravitation regime. There are however elements of our results harder to explain,
with one section of data behaving differently than all the others. Our result enables the future
application of tomographic techniques to map the inner regions of black hole accretion discs.

Key words: accretion, accretion discs – black hole physics – relativistic processes – X-rays:
individual: H1743−322.

1 IN T RO D U C T I O N

Accreting stellar-mass black holes routinely exhibit ‘Type-C’ low-
frequency quasi-periodic oscillations (QPOs) in their X-ray flux,
with a frequency that evolves from ∼0.1to30 Hz as the X-ray spec-
trum transitions from the power-law-dominated hard state to the
thermal disc-dominated soft state (e.g. Wijnands, Homan & van
der Klis 1999; van der Klis 2006). The thermal disc component is
well understood as originating from a geometrically thin, optically
thick accretion disc (Novikov & Thorne 1973; Shakura & Sunyaev
1973), and the power-law emission, which displays breaks at low
and high energy, is produced via Compton up-scattering of seed
photons by a cloud of hot electrons located close to the black hole
(Thorne & Price 1975; Sunyaev & Truemper 1979). The low- and
high-energy breaks are associated respectively with the seed photon
temperature and the electron temperature. The exact geometry of
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this electron cloud is uncertain, and is probably changing through
this transition. In the truncated disc model (Ichimaru 1977; Esin,
McClintock & Narayan 1997; Poutanen, Krolik & Ryde 1997), the
disc truncates in the hard state at some radius larger than the inner-
most stable circular orbit (ISCO), with the inner regions forming a
large scaleheight, hot accretion flow (hereafter the inner flow) which
emits the Comptonized spectrum. The Comptonized spectrum be-
comes softer and the disc component becomes more prominent in
the spectrum as the truncation radius moves inwards (e.g. Done,
Gierlinski & Kubota 2007). Alternatively, the hot electrons may be
located in a corona above the disc (e.g. Galeev et al. 1979; Haardt
& Maraschi 1991) or at the base of a jet (e.g. Markoff, Nowak &
Wilms 2005), or perhaps some combination of these alternatives.
The X-ray spectrum also displays reflection features, formed by
Comptonized photons being scattered back into the line of sight by
the disc. The most prominent features of the reflection spectrum
are the iron Kα line at ∼6.4 keV, formed via fluorescence, and the
reflection hump peaking at ∼30 keV, formed via inelastic scattering
from free electrons (e.g. Ross & Fabian 2005; Garcı́a et al. 2013).
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The shape of the reflection spectrum, and in particular the iron line
which is narrow in the rest frame, is distorted by orbital motion of
the disc material and gravitational redshift (Fabian et al. 1989).

The QPO arises from the immediate vicinity of the black hole,1

but its physical origin has long been debated. Suggested QPO mod-
els in the literature generally consider either some instability in the
accretion flow or a geometric oscillation. Instability models con-
sider, for example, oscillations in mass accretion rate or pressure
(e.g. Tagger & Pellat 1999; Cabanac et al. 2010) or standing shocks
in the disc (e.g. Chakrabarti & Molteni 1993). Geometric mod-
els mostly consider relativistic precession. Due to the frame drag-
ging effect, a spinning black hole drags the surrounding space–time
around with it, inducing Lense–Thirring precession in the orbits
of particles out of the equatorial plane (Lense & Thirring 1918).
Stella & Vietri (1998) and Stella, Vietri & Morsink (1999) were the
first to suggest that low-frequency QPOs could be driven by Lense–
Thirring precession, noting that the expected precession frequency
of a test mass at the truncation radius is commensurate with the
QPO frequency. Schnittman, Homan & Miller (2006) considered a
precessing ring in the disc, and corrugation modes in the disc caused
by the frame dragging effect have also been studied (e.g. Wagoner,
Silbergleit & Ortega-Rodrı́guez 2001). Ingram, Done & Fragile
(2009) suggested that the entire inner flow precesses whilst the disc
remains stationary, motivated by the simulations of Fragile et al.
(2007). This model explains why the QPO modulates the Comp-
tonized emission much more than the disc emission, and predicts
that the QPO should be stronger in more highly inclined sources as
observed (Schnittman et al. 2006; Heil, Uttley & Klein-Wolt 2015,
Motta et al. 2015). It also makes a distinctive prediction: as the inner
flow precesses, it will illuminate different azimuths of the disc such
that an inclined observer sees a blue/redshifted iron line when the
approaching/receding sides of the disc are illuminated (Ingram &
Done 2012). The precession model therefore predicts that the line
energy changes systematically with QPO phase. This is a difficult
effect to measure, since phase resolving the QPO poses a techni-
cal challenge. Miller & Homan (2005) used a simple flux selection
to obtain suggestive but inconclusive results for GRS 1915+105.
Ingram & van der Klis (2015, hereafter IK15) developed a more so-
phisticated technique to discover spectral pivoting and a modulation
in the iron line flux in the same source, but data quality prevented
unambiguous measurement of a line energy modulation. Recently,
Stevens & Uttley (2016) developed a similarly sophisticated QPO
phase-resolving technique, which involves cross-correlating each
energy channel with a reference band. Using this technique, they
found a modulation in the disc temperature of GX 339−4, inter-
preted as reprocessed radiation from a precessing inner flow or jet.
However, they too lacked the data quality to measure a line energy
modulation.

In this paper, we further develop the QPO phase-resolving method
of IK15, conducting fitting in the Fourier domain rather than the time
domain so that the error bars are independent. We use this method
to analyse a long-exposure observation of the black hole binary
H1743−322 in the hard state. We summarize the observations in
Section 2, describe our phase-resolving method in Section 3 and
present the results of fitting a phenomenological model to the phase-
resolved spectra in Section 4. We discuss our findings in Section 5
and outline our conclusions in Section 6.

1 The light crossing time-scale puts a hard upper limit of ∼300 Rg (where
Rg = GM/c2), but the true size scale is likely � 60 Rg (e.g. Axelsson,
Hjalmarsdotter & Done 2013).

Figure 1. Long-term light curve summarizing the XMM–Newton and NuS-
TAR observations analysed in this paper. Throughout, the data are referred
to as labelled in this plot. The rise in count rate from XMM–Newton orbit 2a
to 2b is due to a small change in the instrument setup (from pn thick to pn
thin) as a new PI took over the observation.

2 O BSERVATI ONS

The X-ray Multi-Mirror Mission (XMM–Newton; Jansen et al. 2001)
observed H1743−322 for two full orbits of the satellite around the
Earth in late September 2014. The first orbit (obs ID 0724400501)
lasted from ∼18:45 on September 21 until ∼08:45 on September 23.
The second orbit lasted from ∼20:10 on September 23 until ∼08:35
on September 25. The second orbit is split into two obs IDs, with the
first ∼70 ks classified as 0724401901 and the final ∼50 ks, which
had a different PI, as 0740980201. In this paper, we split up each
orbit into two separate observations to allow for potential evolution
of spectral and timing properties over such long exposures (and also
the small change in instrumental setup as the PI changed). Hereafter,
we refer to these four XMM–Newton observations as orbits 1a, 1b,
2a and 2b. The Nuclear SpecTroscopic ARray (NuSTAR; Harrison
et al. 2013) observed the source from ∼18:20 on September 23
until ∼08:50 on September 25 (obs ID 80001044004). Fig. 1 shows
long-term 4–10 keV light curves for all exposures and illustrates our
naming convention for the XMM–Newton data. Spectral and timing
analyses of the XMM–Newton data have been previously presented
by Stiele & Yu (2016) and De Marco & Ponti (2016), whereas the
NuSTAR data are reported on here for the first time.

2.1 Data reduction

2.1.1 XMM–Newton

We used the XMM–Newton Science Analysis Software (SAS) version
14.0 to reduce data from the EPIC-pn (European Photon Imaging
Camera) in timing mode. We generated calibrated and concatenated
event lists using EPPROC with the default settings for timing mode as
of SAS v14.0 (runepreject=yes withxrlcorrection=yes runepfast=no
withrdpha=yes). We extracted all products from a region 32 ≤
RAWX < 44, RAWY ≥23 and use only single and double events
(PATTERN ≤4), whilst ignoring bad pixels (FLAG==0). We gen-
erated response and ancillary files using RMFGEN and ARFGEN, and
rebinned all spectra to have at least 20 counts per channel using SPEC-
GROUP. We extracted background spectra from the region 3 ≤ RAWX
≤ 5, RAWY ≥23 and find that the source contributes 98.5 per cent
of the total counts (this number is likely even higher in reality, since
source counts can contaminate the background spectrum in timing
mode; Done & Diaz Trigo 2010). Since the source dominates, we
did not perform a background subtraction when extracting light
curves. Inspection of the long-term 10–12 keV light curve reveals
that none of the exposure is affected by proton flares.
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Figure 2. 4–10 keV power spectrum for XMM–Newton orbits 1a (black),
1b (red), 2a (green) and 2b (blue), and 4–10 keV co-spectrum between the
NuSTAR FPMA and FPMB (magenta). For all data sets, we see a strong
Type-C QPO with two clearly detected harmonics. The QPO frequency
increased from ∼0.2 to ∼0.25 Hz over the ∼300 ks elapsed from the start
of orbit 1a to the end of orbit 2b. Error bars are 1σ .

We extract light curves in 20 energy bands. We focus our phase-
resolved analysis on the 4–10 keV region, so extract one broad
light curve for energies <4 keV and one broad light curve for
energies >10 keV (both of which will be ignored for the analysis),
leaving 18 high signal-to-noise channels in the region of interest.
These channels are broad enough to achieve good statistics, and are
trivially broader than the full width at half-maximum (FWHM) of
the instrument response. We used the FTOOL RBNRMF in order to rebin
the spectral response file into these 20 energy bands.

2.1.2 NuSTAR

We used the NuSTAR analysis software, NUSTARDS v1.4.1. We ex-
tracted products from the cleaned event list with the FTOOL NUPROD-
UCTS, using a 120 arcsec circular source extraction region and a
90 arcsec circular background extraction region taken from an area
not contaminated by source counts. We find that the source con-
tributes 99.7 per cent of the total counts, and consequently we did
not perform a background subtraction when extracting light curves.
The background is negligible up to ∼50 keV, above which it dilutes
the rms and phase lags by a small amount. We extract light curves
in 19 energy bands. We concentrate on the energy range 4–60 keV,
and so bin into two broad channels for energies <4 keV and one
broad channel >60 keV (with these three channels to be ignored in
the analysis), leaving 16 high signal-to-noise channels in the range
of interest. As for XMM–Newton, we rebinned the spectral response
file using RBNRMF.

2.2 Power spectra

Fig. 2 shows 4–10 keV power spectra calculated for XMM–Newton
orbits 1a (black), 1b (red), 2a (green) and 2b (blue) and NuSTAR
(magenta). The XMM–Newton power spectra are calculated in the
standard way, with a constant Poisson noise level subtracted (van der
Klis 1989; Uttley et al. 2014). For NuSTAR we instead calculate the
co-spectrum between the two (independent) focal plane modules,

FPMA and FPMB (Bachetti et al. 2015), since the NuSTAR dead
time of τ d ≈ 2.5 ms imprints instrumental features on the Poisson
noise in a power spectrum calculated in the standard way. The
co-spectrum is the real part of the cross-spectrum and includes
no Poisson noise contribution. We also correct for the suppression
of variability caused by the NuSTAR dead time using the simple
formula (Bachetti et al. 2015)

rmsdet

rmsin
≈ 1

1 + τdrin
= rdet

rin
, (1)

where rdet and rin are respectively the detected and intrinsic count
rates. For this observation, the ratio of detected to intrinsic vari-
ability is rmsdet/rmsin = 0.8462 (recorded in the NuSTAR spectral
files as the keyword ‘DEADC’). The power spectra in Fig. 2 are
normalized such that the integral of the power spectrum over a given
frequency range gives the variance of the corresponding time series
over that range, and are plotted in units of frequency × power.

All power spectra display QPOs with a strong fundamental (first
harmonic) and overtone (second harmonic) evidenced by two large,
harmonically related peaks. We see that the QPO fundamental fre-
quency evolved from ∼0.205 to ∼0.25 Hz over the ∼300 ks dura-
tion of the two XMM–Newton orbits. We also see that the 4–10 keV
(dead time corrected) NuSTAR co-spectrum agrees very well with
the simultaneous XMM–Newton orbit 2 data for the same energy
band. For our analysis, we treat each of the five data sets shown in
Fig. 2 separately to allow for the evolution in source properties over
such a long exposure, and also to allow for the different responses
of the two instruments, and the small change in the XMM–Newton
instrumental setup during orbit 2.

2.3 Energy spectra

As a preliminary analysis, we jointly fit the spectra of both XMM–
Newton orbit 2a and the simultaneous (FPMA) NuSTAR observation
with a simple absorbed power-law plus Gaussian iron line model,
considering only 4–10 keV for both. Throughout this paper, we
account for interstellar absorption using the model TBABS, with hy-
drogen column density NH = 1.35 × 1022 cm−2 and the relative
abundances of Wilms et al. (2000). We use XSPEC v12.8.2 for all
spectral fitting (Arnaud 1996). We achieve a best fit with reduced
χ2 = 551.14/529 = 1.04, without applying any systematic error.
There is no evidence for direct disc emission in the >4 keV band-
pass, and the NuSTAR spectrum above 10 keV reveals a reflection
hump. In this paper, we focus on phenomenological modelling of
the 4–10 keV region for our QPO phase-resolved analysis, mod-
elling continuum and iron line with a power law and Gaussian, re-
spectively. We consider this bandpass because it is shared between
XMM–Newton and NuSTAR; it is above the energies for which direct
disc emission is relevant and below energies for which the reflection
hump is important. Clearly, a Gaussian function is not a physical
model for the iron line, but we wish to characterize the QPO phase
dependence of the iron line profile without making physical as-
sumptions. We will focus on physical spectral modelling in a future
paper.

We find a discrepancy in the power-law index measured for these
two spectra (1.286 ± 0.003 for XMM–Newton and 1.509 ± 0.004
for NuSTAR). The Gaussian representing the iron line has a larger
equivalent width in the NuSTAR spectral fit (∼65 eV) than in the
XMM–Newton data (∼47 eV), and lower centroid energy in the
NuSTAR data (∼6.41 keV) than in the XMM–Newton data
(∼6.61 keV), but the line width is consistent. This cross-calibration
discrepancy poses a problem for time-averaged spectral analysis.

MNRAS 461, 1967–1980 (2016)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/461/2/1967/2608396 by guest on 17 April 2024



1970 A. Ingram et al.

However, our analysis is differential: it focuses on the variation
of spectral parameters with QPO phase, and is therefore far more
robust to cross-calibration issues. We demonstrate in the following
two sections that the variability properties are consistent between
the two observatories, and that the differential variation in each of
the spectral parameters with QPO phase is consistent. For our phase-
resolved spectral analysis, we allow the time-averaged power-law
index and line energy to be different between the two observatories,
but tie their differential properties between the two observatories.

3 PH A S E - R E S O LV I N G M E T H O D

We use the phase-resolving method of IK15, with some small
changes designed to increase signal-to-noise and circumvent the
NuSTAR dead time, and also some more significant changes to
allow us to reliably calculate statistical significances for our fits.
The essence of the IK15 phase-resolving method is to measure the
Fourier transform (FT) of the QPO as a function of energy E, for
each harmonic for which this is possible. For the jth harmonic, this
can be written as

Wj (E) = μ(E)σj (E)ei�j (E), (2)

where μ(E) is the mean count rate, σ j(E) is the fractional rms in
the jth QPO harmonic and �j(E) is referred to in IK15 as the phase
offset of the jth harmonic, all as a function of energy. It is clear from
Fig. 2 that the QPO for the observations considered here has two
strong harmonics; therefore, we calculate the QPO FT for j = 1 and
2. We must also consider the case of j = 0; i.e. the DC component
(standing for direct current). This is simply the mean count rate,
such that W0(E) = μ(E).

As for the phase offsets, �j(E), we can calculate the cross-
spectrum between each energy channel and a reference band in
order to measure the phase lag for each harmonic, �j(E), as a func-
tion of energy. That is, we can measure by how many radians the
jth harmonic of each energy channel lags the jth harmonic of the
reference band. What we can not measure using the cross-spectrum
is the phase difference between the harmonics. By measuring this
phase difference, we can calculate the phase offsets of the first two
harmonics using the formulae

�1(E) = �1 + �1(E)

�2(E) = 2[�1 + ψ] + �2(E). (3)

Here, ψ is the phase difference between the two harmonics in the
reference band and �1 is the arbitrary reference phase of the first
harmonic, which we set to �1 = π/2 following IK15. Note that
there is a version of the above formula in IK15 (equation 8 in
that paper), which differs slightly from equation (3) presented here.
The version presented here is correct and the mistake is in IK15.
Note that we only need to measure the phase difference between
the harmonics in one band (it is obviously advantageous to measure
this for the reference band which has far more photons than the
individual channels). The phase difference between the harmonics
as a function of energy is given by ψ(E) = ψ − �1(E) + �2(E)/2.
We stress that the use of a broad reference band does not smear
out the data in some way, as is a common misconception. For unity
coherence, changing the reference band affects only the constant
offset of the lag spectrum and also the signal-to-noise (see e.g.
Uttley et al. 2014).

The method of IK15 involves taking the inverse FT of equation
(2) to give an estimate of the QPO waveform in each energy chan-
nel. This method is intuitive, since it gives a way of estimating the

Figure 3. Spectra from two selected QPO phases, plotted as a ratio to an
absorbed power-law continuum model. The blue circles correspond to a QPO
phase a quarter of a cycle later than the red triangles (11/16 cycles compared
with 7/16 cycles). We show XMM–Newton data averaged between orbits 2a
and 2b. We see shifts in the iron line energy between the two selected QPO
phases, and the hard X-ray coverage of NuSTAR (inset) additionally reveals
that the reflection hump is enhanced relative to the line when the line is
blueshifted. Error bars are 1σ .

spectrum as a function of QPO phase. The inverse FT, however,
introduces correlations in the errors between different QPO phases.
Here, we first summarize the time domain approach and then de-
scribe a new Fourier domain approach that circumvents the problem
of correlated error bars associated with the time domain method.

3.1 Phase-resolved spectra in the time domain

We can inverse FT equation (2) to estimate the QPO waveform for
each energy band

w(E, γ ) = μ(E)

⎧⎨
⎩1 +

√
2

2∑
j=1

σj (E) cos[jγ − �j (E)]

⎫⎬
⎭ , (4)

where γ is QPO phase. Plotting this instead as count rate versus
photon energy for a given QPO phase gives phase-resolved spectra.
We describe in the following subsections how we measure μ(E),
σ j(E) and �j(E), focusing mainly on the modifications we have
made to the IK15 method in order to maximize signal-to-noise
and correct for the NuSTAR dead time. We propagate the errors in
equation (4) using a Monte Carlo simulation.

We first reconstruct phase-resolved spectra in the time domain
using equation (4). We consider 16 QPO phases (i.e. 16 values of γ ),
and throughout we analyse each data set defined in Fig. 1 separately,
resulting in five independent data sets. Fig. 3 shows examples of the
phase-resolved spectra, plotted as a ratio to an absorbed power-law
continuum model (folded around the telescope response matrix).
The continuum model has been fitted ignoring 5.5–8 keV, where
the iron line is prominent and >10 keV, where the reflection hump
is prominent. For this plot, we only consider the NuSTAR data and
XMM–Newton orbits 2a and 2b, which were simultaneous with
the NuSTAR observation. For plotting purposes, we have averaged
together data from orbits 2a and 2b, even though we treat them as
two separate data sets in our analysis. Red triangles correspond to a
QPO phase of γ = 7/16 cycles and blue circles to a QPO phase of
γ = 11/16 cycles; i.e. the blue points are a quarter of a cycle after
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the red points. We see that the line energy changes over the course
of a QPO cycle, and the NuSTAR data reveal that the reflection
hump becomes more prominent when the line energy is higher
(blue triangles). In the following section, we model the iron line
with a Gaussian and the continuum with an absorbed power law in
order to characterize this QPO phase dependence of the line energy.
However, in order to robustly assess the statistical significance of
the line energy modulation, we fit the same model in the Fourier
domain, as described in the following subsection.

3.2 Phase-resolved spectra in the Fourier domain

It is straightforward to fit the 16 phase-resolved spectra, as expressed
in equation (4), with a phenomenological spectral model to deter-
mine if the best-fitting spectral parameters vary systematically with
QPO phase. However, assessing the statistical significance of the
spectral parameters is complicated by correlations between the er-
rors for different QPO phases. For this reason, this is not the method
we use to determine significances. Instead, we perform the fits in
the Fourier domain, which provides a different representation of the
same information. The QPO FT, Wj(E), from equation (2), is in units
of count rate and, as a complex quantity, can be expressed in terms
of amplitude, μ(E)σ j(E), and phase, �j(E), or in terms of real and
imaginary parts, �{Wj(E)} = μ(E)σ j(E)cos [�j(E)] and 	{Wj(E)}
= μ(E)σ j(E)sin [�j(E)], respectively. The real and imaginary parts
of Wj(E), and the different harmonics, are statistically independent
from one another. Thus, standard statistical methods can be applied
if we fit a model to Wj(E) rather than w(E, γ ). Here, we first fit
spectral models to the phase-resolved spectra in the time domain to
gain insight, before constructing a model for the QPO FT. We can
exploit the linearity of the FT to define a model, W̃j (E), and fold
around the telescope response to get the observed Wj(E), as for a
normal spectrum. Specifically, for the Ith energy channel

Wj (EI ) =
∫ ∞

0
W̃j (E)R(I , E)dE, (5)

where R(I, E) is the telescope response for the Ith energy channel.
We perform a joint fit to real and imaginary parts to preserve this
linearity (which would be lost if we were to instead fit for amplitude
and phase). This results in a joint fit of five spectra: the real and
imaginary parts of the first and second harmonics, and the real part
of the DC component (the imaginary part is trivially zero).

3.3 Phase difference between harmonics

We first measure the phase difference, ψ , between the two QPO
harmonics. This phase difference represents the number of QPO
cycles by which the second harmonic (first overtone) lags the first
harmonic (fundamental), converted to radians (i.e. multiplied by
2π). It is defined on the interval 0−π rad, since there are two
cycles of the second harmonic for each cycle of the fundamental.
We split the full band light curve into segments of duration 32 s.
Each segment contains 512 time bins of duration dt = 0.0625 s,
and roughly eight QPO cycles. XMM–Newton orbits 1a, 1b, 2a
and 2a contain respectively 2135, 2134, 2455 and 1535 segments
with good telemetry, and the NuSTAR observation contains 2217
segments. For each segment, we calculate the phase difference ψ

following IK15. In Fig. 4, we plot a histogram of these ψ values for
each data set (the colour scheme is the same as defined in Fig. 1),
revealing a strong peak for all data sets. These histograms have two
peaks purely because ψ is cyclical and we show two cycles. We
measure the peak of each histogram following IK15 to obtain the

Figure 4. Phase difference between the two QPO harmonics, with different
data sets represented using the same colour scheme as Fig. 1. For all data
sets, we measure the phase difference between harmonics ψ for many 32 s
segments (see the text for details). This plot is a histogram of those mea-
surements and shows that there is a well-defined average phase difference
between the harmonics, which we measure by determining the peak of the
plotted distribution.

average phase difference between harmonics. For XMM–Newton
orbits 1a, 1b, 2a, 2b, we measure ψ/π = 0.309 ± 0.005, 0.336 ±
0.005, 0.336 ± 0.005 and 0.347 ± 0.006. For NuSTAR, we take
the average of the independent measurements for the FPMA and
FPMB to get ψ/π = 0.332 ± 0.005. Note that, even though the
NuSTAR observation is simultaneous with orbit 2 of XMM–Newton,
the measured ψ are not required to agree because the full band
light curves of XMM–Newton and NuSTAR cover a different energy
range. The agreement we see between observatories tells us that the
phase difference has little energy dependence here.

3.4 Energy dependence of QPO amplitude

We measure the fractional rms amplitude of the two QPO harmonics
as a function of energy, σ j(E), for all five data sets. IK15 did this
by calculating the power spectrum for each energy channel. For the
XMM–Newton data here, we instead calculate the covariance spec-
trum to increase signal-to-noise (Wilkinson & Uttley 2009). We
follow the standard procedure for calculating the covariance and
its error (Uttley et al. 2014). Our reference band is the full XMM–
Newton band minus the channel of interest so as to avoid correlating
a time series with itself. For each energy channel, we calculate the
cross-spectrum between that channel and the reference band, and
also the power spectrum of the reference band. The covariance is
the modulus squared of the cross-spectrum divided through by the
power spectrum of the reference band. Since the light curves from
each energy channel are well correlated, the covariance gives a
good measure of the power spectrum with smaller statistical errors
(Wilkinson & Uttley 2009). For NuSTAR, we circumvent the dead
time by calculating the co-spectrum between the FPMA and FPMB
light curve for each energy channel instead of the power spectrum.
Following IK15, we fit our power spectral estimates (covariance
and co-spectrum for XMM–Newton and NuSTAR, respectively) in
each energy channel with a sum of Lorentzian functions. We cal-
culate the fractional rms of each QPO harmonic from the integral
of the corresponding Lorentzian function. A dead time correction
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Figure 5. Fractional rms as a function of energy for three selected data
sets, represented using the same colour scheme as Fig. 1. The points above
the grey dashed line correspond to the fundamental (first harmonic) and the
points below the dashed line are for the second harmonic. The other data
sets are omitted for clarity. We see tentative features around the iron line.
Error bars are 1σ .

of rmsdet/rmsin = 0.8462 also must be applied to the NuSTAR data.
Fig. 5 shows the resulting calculation of rms as a function of energy
for three of the five data sets, following the colour scheme of Fig. 1.
We show only three data sets to avoid overcrowding the plot. The
points above the dashed line are for the first harmonic, and below
the dashed line are for the second harmonic.

For our Lorentzian fits, we use four Lorentzian functions, one for
each QPO harmonic and two to fit the broad-band noise. We tie the
centroid of the second harmonic component to be double that of the
first harmonic and force the two QPO Lorentzians to have the same
quality factor (Q = centroid frequency/FWHM). The centroid and
quality factor of the QPO fundamental component are free to vary
with energy, but we measure no significant energy dependence for
either of these quantities. We tried many variations on the model
to test for the robustness of the fit. We tried using more and less
broad-band noise Lorentzians, allowing the QPO components to
have different quality factors, relaxing the centroid frequency ratio
of 2, fixing the widths and/or centroid frequencies of the QPO
Lorentzians to equal those measured for the full band and so on.
We even tried simply integrating the power spectral estimates over
the widths of the QPO components instead of fitting a model. In
all cases, we obtained consistent results, indicating that our fits are
robust.

3.5 Phase lags between energy bands

We calculate the phase lag between each energy channel and a broad
reference band for both QPO harmonics, �j(E). For XMM–Newton,
we use the same reference band as described above for the covari-
ance spectrum. We calculate the cross-spectrum for each channel
and average this over the width of each QPO harmonic, as defined
by the Lorentzian fitting described in the previous section. The
phase lag for each QPO harmonic is the argument of this averaged
cross-spectrum. For NuSTAR, we again utilize the two independent
focal plane modules. We use the full FPMB band as the reference
band and calculate the cross-spectrum between this and each chan-
nel of interest in FPMA. We also calculate an independent set of

Figure 6. Phase lag of each energy channel relative to a reference band
for three selected data sets, represented using the same colour scheme as
Fig. 1. The reference band is the full band of the respective instrument,
and therefore is slightly different between XMM–Newton and NuSTAR. This
creates the small offset seen in the second harmonic. As with Fig. 5, the
other data sets are omitted for clarity. Error bars are 1σ .

cross-spectra using FPMA as the reference band and FPMB for the
subject bands. For each energy channel, we average together these
two independent measurements of the cross-spectrum to increase
signal-to-noise. Fig. 6 shows the lag spectra for the same three data
sets as the previous plot. We see a small offset in the second har-
monic between XMM–Newton and NuSTAR. This is simply because
the lag spectra are calculated for NuSTAR using a different reference
band, and the lag of the second harmonic depends on energy. This
will introduce a small offset between XMM–Newton and NuSTAR
when it comes to plotting best-fitting spectral parameters against
QPO phase. As it turns out, this offset is small enough to ignore
completely, but even if it were large, it would be fairly simple to
correct for since it is just a constant offset. We calculate the phase
offsets �1(E) and �2(E) using equation (3).

3.6 Step-by-step summary

The steps of the IK15 method can be summarized as follows:

(i) measure the phase difference between the QPO harmonics in
a broad reference band (see Section 3.3);

(ii) for both QPO harmonics, measure the rms variability as a
function of energy (see Section 3.4);

(iii) for both QPO harmonics, measure the phase lag between
each energy channel and the reference band (see Section 3.5);

(iv) combine these measurements in order to calculate the QPO
FT (equation 2);

(v) inverse FT to obtain a waveform for each energy channel
(equation 4).

For the Fourier domain method, we stop at step 4 and fit a model
directly to the QPO FT, whereas the time domain method also
includes step 5.
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4 R ESULTS

Fig. 3 shows the spectrum for two selected QPO phases plotted as
a ratio to an absorbed power-law continuum model, with the blue
circles representing the spectrum a quarter of a cycle later than the
red triangles. We see a shift in line energy between the two QPO
phases. In this section, we fit the iron line with a Gaussian function
to characterize the phase dependence of the centroid energy and
assess its statistical significance.

4.1 Time domain fits

We first fit the phase-resolved spectra in the time domain with
an absorbed power-law plus Gaussian model, in the energy range
4–10 keV. We consider the five data sets separately, which allows
us to compare results for independent analyses. We initially tie all
spectral parameters to remain constant during the QPO cycle and test
if the fit is improved when we allow each parameter to vary freely
with QPO phase. For all three data sets, we achieve the minimum
reduced χ2 value by allowing the Gaussian centroid energy (Eline),
Gaussian flux (NG) and the power-law index (�) and normalization
(Ncont) to vary with QPO phase. The fit is not improved by allowing
the Gaussian width to vary with QPO phase. We plot the best-
fitting line centroid energy against QPO phase (light blue circles) in
Fig. 7. We do not plot error bars here, since the errors are correlated
between QPO phases in the time domain fits. All data sets show a
modulation in the line energy. For all but orbit 1b of XMM–Newton,
the line energy modulation has the same distinctive shape, with
maxima at ∼0.2 and ∼0.7 cycles. The modulations in �, NG and
Ncont (not pictured) are also consistent between these four data sets.

It is puzzling that orbit 1b disagrees with the other data sets. This
data set also exhibits different modulations in NG and � from the
others (this can be seen in Fig. 10, which is explained in detail in
the following sections). To investigate this further, we split up orbit
1 into four quarters such that the first two quarters together make
up orbit 1a and the final two quarters together make up orbit 1b.
We find, as expected, that the first two quarters both show the same
modulation in line shape seen for orbit 1a. The fourth quarter (i.e.
the second half of orbit 1b) shows a peak in line energy at 0.7
cycles but not at 0.2 cycles, so is different from orbit 1a but only
slightly. This fourth quarter also shows a modulation in � consistent
with orbit 1a. It is the third quarter that differs so radically from
all of the other data sets. This shows a peak in line energy at ∼0.4
cycles, and also exhibits a different (but very weak) modulation in
� from orbit 1a. The fact that the two halves of orbit 1a display the
same modulations as each other, and as orbit 1a treat as a whole,
gives us confidence in the robustness of the method, and implies
that something different really is happening in this third quarter of
orbit 1.

4.2 Fourier domain fits

We now fit the same phenomenological spectral model directly to
the QPO FT derived from the data. This will allow us to assess the
statistical significance of the line energy modulation. We construct
a model for the QPO FT by representing the spectral parameters as
periodic functions of QPO phase, γ . For example, the line energy
is

Eline(γ ) = E0 + A1E sin[γ − φ1E] + A2E sin[2(γ − φ2E)], (6)

where E0, A1E, A2E, φ1E and φ2E are model parameters. We see that
E0 is the mean line energy, and all variability in the line energy
as a function of QPO phase is captured by the amplitudes and

Figure 7. Iron line centroid energy as a function of QPO phase for each of
the five data sets (as labelled). Light blue circles are the results of our time
domain fits and the probability maps are the results of our Fourier domain
fits. For the time domain fits, we fit an absorbed power-law plus Gaussian
model to spectra corresponding to 16 QPO phases. For the Fourier domain
fits, we consider the same model, with parameters varying periodically with
QPO phase, and FT the model to fit to the data in Fourier space. We determine
the significance of the modulations (as labelled) from the Fourier domain
fits, and create the probability maps using a Monte Carlo Markov chain (see
the text for details). The maps are normalized such that they peak at unity,
and the colours are defined in the key. Note that P/Pmax = 0.1, below which
the colour scale looks rather white, corresponds to the ∼2.15σ confidence
contour.

phases of the sine waves. The other potentially varying spectral
parameters (Gaussian width and normalization, power-law index
and normalization) are also modelled in the same manner with five
parameters each. Our model calculates the resulting spectrum for
16 QPO phases and then calculates the FT for a grid of energy bins.
We then fold, for each harmonic, the real and imaginary parts of
this FT around the telescope response matrix (equation 5) and fit to
the observed QPO FT (equation 2).

4.2.1 Separate fits

As with the time domain fits, we fit the five data sets separately,
expecting to see exactly the same results as before (since the FT of a
function is simply a different representation of the same function),
but with more manageable statistics. We again find a best fit with
modulations in the line energy (i.e. A1E > 0 and A2E > 0) and flux
and the continuum normalization and power-law index, and again
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Figure 8. Left: QPO FT as a function of energy for XMM–Newton orbit 1a. Real and imaginary parts of the first and second harmonics are as labelled. Here,
we plot the data (black points) unfolded around the instrument response matrix, assuming the best-fitting model (red lines for the first harmonic and blue lines
for second harmonic), in units of energy squared × specific photon flux (i.e. the eeuf option in XSPEC). Right: QPO FT for the anomalous XMM–Newton orbit 1b
(grey triangles and blue lines) compared with XMM–Newton orbit 1a (black circles and red lines), only considering the second harmonic (real and imaginary
parts as labelled). We see clear differences in the shape for both real and imaginary parts. To demonstrate that XMM–Newton orbit 1a is representative of all
the other data sets, we also plot the best-fitting model for orbit 2b. Error bars are 1σ .

the fits are not improved by allowing the Gaussian width to vary
with QPO phase. As an example of our fits, we plot in Fig. 8 (left)
the QPO FT for orbit 1a (black points) along with the best-fitting
model (lines). Here, the data are unfolded around the instrument
response assuming the best-fitting model and are in units of energy
squared × specific photon flux (i.e. the eeuf option in XSPEC). The
best-fitting model for the first harmonic is plotted in red and the
second harmonic in blue. We see features in the data and model
around the iron line, which result in the model from modulations of
the line energy and equivalent width. The second harmonic shows
the clearest features, with an excess at ∼6.2 keV in the real part and
a dip at the same energy in the imaginary part, surrounded by two
peaks either side. We fit jointly for the real and imaginary parts of
both harmonics, and also for the mean spectrum (the real part of the
DC component) which is not pictured here.

We plot the Eline(γ ) function derived from our Fourier domain fits,
visualized as a probability map, in Fig. 7. The best-fitting function
Eline(γ ) can be plotted by substituting the best-fitting values for E0,
A1E, A2E, φ1E and φ2E into equation (6). Here, we also take into
account the probability distributions of these five parameters by
running a Monte Carlo Markov chain (MCMC) in XSPEC and then,
for each step in the chain, calculating the Eline(γ ) function. We then
create a histogram to plot the posterior distribution for the function.
Details of the chain and of the calculation of these histograms are
presented in Appendix A. As expected, the frequency domain results
plotted in Fig. 7 agree with the time domain fits (light blue circles),
but we are now able to visualize the uncertainty on the best-fitting
line energy modulation (see the key).

We calculate the significances quoted in Fig. 7 by comparing the
χ2 from the best-fitting model for each data set with the minimum
χ2 achieved for the same data set when the line energy amplitudes
are fixed to A1E = A2E = 0. This null hypothesis model has 4
more degrees of freedom than the best-fitting model, because it is
insensitive to the phase parameters, φ1E and φ2E. We compare the
best fit to the null hypothesis using an f-test, converting p-values to
sigmas in the standard way (e.g. 1σ corresponds to p = 0.317).

4.2.2 The case of orbit 1b

As with the time domain fits, it is striking that all data sets except
for orbit 1b show the same characteristic trend, with peaks in line
energy at ∼0.2 and ∼0.7 cycles. Looking at the QPO FT reveals
that the difference between orbit 1b and all the other data sets is
in the second harmonic. Fig. 8 (right) shows the FT of the second
harmonic (real and imaginary parts as labelled) for orbit 1a (black
circles) and orbit 1b (grey triangles). The best-fitting models for
orbits 1a and 1b are plotted in red and blue, respectively. We see
very different behaviour between the two data sets. Where orbit
1a shows a dip (real part at ∼7 keV), orbit 1b shows an excess.
Where orbit 1a shows an excess (imaginary part at ∼7 keV), orbit
1b shows a dip. All other data sets display similar behaviour to orbit
1a. To illustrate this, we plot the best-fitting model for orbit 2b in
magenta. This has a slightly different normalization, but the same
characteristic shape as orbit 1a.

We check if these differences can result from our assumptions
when measuring the fractional rms as a function of energy. For
the many different methods of measuring this described in Section
3.4, we measure QPO FTs consistent with before and therefore
obtain results consistent with Fig. 7. We therefore conclude that the
method produces robust results and that orbit 1b really does seem
to be doing something different from the other data sets.

4.2.3 Joint fits

Since all data sets show a modulation in line energy, we combine
them into a joint fit to compare with the null hypothesis: A1E = A2E

= 0. We first leave out the anomalous data set, orbit 1b. We see in
Fig. 7 that the two maxima in line energy measured for NuSTAR
slightly lead those measured for the simultaneous XMM–Newton
orbit 2. This is because we used a different reference band for
NuSTAR. Since this constant offset turns out to be very small in this
case, we are able to ignore it. We therefore tie the modulations in
line energy, line flux and power-law index to be the same for all
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four considered data sets, but allow the power-law normalization to
differ for different data sets. We note that the modulation in power-
law normalization is very similar for each data set (even including
orbit 1b), but is well constrained enough for small differences in
data sets to be highly statistically significant. We tie the power-
law index between XMM–Newton and NuSTAR using the formula
�NuSTAR(γ ) = �XMM(γ ) + ��, in order to account for the cross-
calibration discrepancy. Similarly, we tie the line energy between
observatories using the formula Eline, NuSTAR(γ ) = CEline, XMM(γ ). We
use �� = 0.236 and C = 0.970. We obtain a good fit (reduced χ2 =
287.13/279 = 1.029) with the differential properties of the spectral
parameters consistent with before.

When we also include the orbit 1b data in our fit, tying all param-
eter modulations except for the power-law normalization across all
data sets, we obtain a fit with reduced χ2 = 370.32/364 = 1.017.
When we allow φ1E and φ2E to be different for orbit 1b compared
with all the other data sets (as seems to be the case from Fig. 7),
the fit improves with reduced χ2 = 361.82/362 = 1.000. An f-test
determines that this is a 2.43σ improvement, indicating that the
line energy modulation in orbit 1b is likely different from the other
data sets. Also freeing A1E and A2E for orbit 1b does not further
improve the fit, so we keep these amplitudes tied across all data
sets. When we also allow the second harmonic amplitudes of the
NG and � modulations to be different for orbit 1b, the fit again
improves, with reduced χ2 = 354.24/360 = 0.984. An f-test in-
dicates that this is a 2.29σ improvement. This is our best-fitting
model.

Our best-fitting parameters for the line energy modulation are
presented in Table 1. Fig. 9 (left) is a contour plot resulting from
varying A1E and A2E (using the steppar command in XSPEC). The
contours represent �χ2 = 2.3 (black), 6.18 (red), 11.83 (green)
and 19.33 (blue). These χ2 levels correspond to 1σ , 2σ , 3σ and
4σ confidence for 2 degrees of freedom. We see that a fairly large
part of parameter space can be ruled out with 4σ confidence. The
null hypothesis model (A1E = A2E = 0) now has 6 more degrees
of freedom than the best-fitting model, because the null hypothesis
model is insensitive to φ1E and φ2E for orbit 1b, plus the same two
parameters for the other data sets. We compare the best fit achieved
by fixing A1E = A2E = 0 (χ2 = 380.68/366) with our global best

Table 1. Best-fitting line energy parameters
for our joint fit. Errors are 1σ .

Parameter Best fit

A1E (keV) 0.0446+0.023
−0.020

φ1E (cycles) 0.373+0.076
−0.13

A2E (keV) 0.119+0.026
−0.026

φ2E (cycles) 0.0497+0.019
−0.018

E0 (keV) 6.60+0.019
−0.018

fit (χ2 = 354.24/360) using an f-test, which rules out the null
hypothesis with 3.70σ confidence.

Fig. 9 (right) shows χ2 plotted against A1E (black) and A2E (red).
The dashed line depicts �χ2 = 9, which corresponds to 3σ for
1 degree of freedom. We see that A2E in particular is fairly well
constrained, with 3σ confidence limits of approximately 0.04 <

A2E < 0.21. The best fit achieved when fixing A1E = 0 has reduced
χ2 = 359.58/363 and the best fit achieved with A2E = 0 is χ2 =
375.63/363. Comparing these to the global best fit yields signif-
icances of 1.46σ for the first harmonic and 3.89σ for the second
harmonic.

Fig. 10 (left) shows the probability map for all four variable
spectral parameters for our final joint fit. Here, for parameters which
are not tied across all data sets (such as φ1E and φ2E), we plot the
values corresponding to orbit 1a. Note that the functions Eline(γ ),
NG(γ ) and �(γ ) are tied across all data sets except for orbit 1b. We
see no statistically significant modulation in the iron line flux, but
we do see a modulation in the power-law index which lags the line
energy modulation by ∼0.1 cycles. In Fig. 10 (right), we make the
same plot for the case of orbit 1b. Even though the statistics are of
course worse, the parameter modulations are strikingly different.
The line energy and power-law index are both consistent with being
constant, but the iron line flux varies with a large amplitude and high
statistical significance. Clearly, there is something very different
about orbit 1b. We have checked for proton flares, absorption events
and various instrumental issues, but find no contribution from these
effects, so are forced to conclude that this anomalous behaviour

Figure 9. χ2 contour plots from our Fourier domain fits considering all data sets. We show the amplitude of the first and second harmonic of the line energy
modulation A1E and A2E. Left: two-dimensional contour plot. The cross denotes the best fit, and the black, red, green and blue lines correspond to 1σ , 2σ ,
3σ and 4σ confidence contours respectively for 2 degrees of freedom. Right: one-dimensional plot for A1E (black) and A2E (red). The grey dashed line is
�χ2 = 9 (3σ for 1 degree of freedom).
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Figure 10. Probability maps from our Fourier domain fits for line energy (Eline), line flux (NG), power-law index (�) and power-law normalization (Ncont).
Significances for each parameter are as labelled and colours are as defined in Fig. 7. Left: the results of our joint fits, considering all data sets. For parameters
which are not tied across all data sets (see the text for details), we plot the values corresponding to orbit 1a. Right: the results for only the anomalous orbit 1b.
We see clear differences from the other data sets, with perhaps the most striking being the large modulation in iron line flux.

during orbit 1b is intrinsic to the source. We note that the iron
line width is larger during orbit 1b (0.51 ± 0.05 keV) than for
the other data sets combined (0.43 ± 0.02 keV). We can also see
in the 4–10 keV power spectrum (Fig. 2) a slight increase in the
amplitude of the fundamental from orbit 1a (black) to 1b (red), but a
very slight decrease in the amplitude of the second harmonic. Also,
the broad-band noise above ∼2 Hz changes a little between orbit 1a
and 1b. These differences may be indicative of there being a slightly
different geometry during orbit 1b.

5 D ISCUSSION

We have further developed the QPO phase-resolving method of
IK15 and applied it to, in total, ∼260 ks of XMM–Newton data and
∼70 ks of NuSTAR data from the 2014 outburst of H1743−322. We
measure a statistically significant (3.7σ ) modulation of the iron line
centroid energy with QPO phase by combining five independent
data sets. We see in Fig. 7 that, for four of the five data sets, the
line energy modulation has the same distinctive shape, with maxima
at ∼0.2 and ∼0.7 QPO cycles. Surprisingly, one data set (XMM–
Newton orbit 1b) does not show the same trend. Here we discuss the
implications of the measured modulation and speculate as to why
orbit 1b differs from the other data sets.

5.1 Interpretation: precession

Our result provides strong evidence that the Type-C QPO observed
here is driven by systematic changes in the accretion geometry over
the course of a QPO cycle. The only mechanism by which the line
energy can vary without a geometric change is through shifts in
the rest-frame line energy driven by changes in the disc ionization

state. An increase in disc ionization increases the iron line energy
and suppresses the flux in the reflection hump relative to the line
(e.g. Ross & Fabian 2005; Garcı́a et al. 2013), in conflict with what
we observe (Fig. 3). Also, the observed ∼6.4 to ∼6.8 keV change in
line energy would require a factor of ∼200 change in illuminating
flux over a QPO cycle to originate purely from variations of disc
ionization (see e.g. fig. 1 in Matt, Fabian & Ross 1993), which is
implausible for all data sets except for orbit 1b, which show a change
in line flux smaller than a factor of 2 (see Fig. 10, left). This indicates
that the line energy variation is driven, at least in part, by changes
in the relativistic distortions to the iron line profile, and therefore
by a geometric variation over a QPO cycle. This ties in with recent
population studies (Heil, Uttley & Klein-Wolt 2015; Motta et al.
2015) which show that systems observed with a more edge-on disc
display systematically higher amplitude Type-C QPOs.

Shifts in the line energy are predicted to arise if the QPO origi-
nates from Lense–Thirring precession of the hot inner flow (Ingram
et al. 2009; Ingram & Done 2012). As the inner flow precesses, it
preferentially illuminates different disc azimuths, giving rise to a
blue/redshifted iron line when the approaching/receding disc ma-
terial is irradiated. For a geometry in which a single bright patch
rotates about the disc surface, completing one cycle per QPO cycle,
we would observe one maximum and one minimum in line energy
per QPO cycle. Instead, we observe two maxima, neither of which
coincides with a peak in continuum flux. This can be explained if
we consider two bright patches rotating about the disc surface, as
illustrated in Fig. 11. In this picture, the inner flow (orange) pre-
cesses, but the disc (grey) is held stationary by viscosity (Bardeen
& Petterson 1975). The disc transitions into the hot inner flow at the
truncation radius. In this schematic, the disc is irradiated by both
the front and back of the flow (see the multi-coloured patches), as
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Figure 11. Schematic representation of the precessing inner flow model.
The inner flow (orange) extends out to ∼20–30 Rg and is misaligned with
both the disc (grey) and black hole equatorial plane (horizontal). The flow
precesses around the (vertical) black hole spin axis such that the front
of the flow faces us in (a), to our left in (b) and so on. The front and
back of the flow irradiate the disc, illustrated here by the multi-coloured
patches. As the flow precesses, these irradiated patches rotate over the disc
surface, prograde with disc orbital motion (white arrows). The colours of
the irradiated patches encode energy shifts due to disc orbital motion and
gravitational redshift.

we may expect to happen if the inner flow is sufficiently thin for
its underside to be above the disc mid-plane (or for a very large
misalignment between the disc and inner flow). The calculations of
Ingram & Done (2012) considered an inner flow with very large
vertical extent, and therefore only predicted one bright patch on the
disc, as the underside of the flow was never above the disc mid-
plane. The Doppler shifts experienced by photons reflected from
respectively approaching and receding disc material are illustrated
in Fig. 11 by the colour scheme of the irradiated patches. Precession
of the flow as illustrated in Fig. 11 predicts a rocking of the iron
line shape twice per precession cycle as different disc azimuths are
illuminated first by the front of the flow, then half a cycle later by the
back. The maximum line energy will occur when the approaching
and receding sides of the disc are illuminated (Figs 11 b and c),
since Doppler boosting means that the blueshifted part of the line
(the so-called ‘blue horn’) will dominate over the redshifted part
(the so-called ‘red wing’).

Non-relativistic precession mechanisms are unlikely. Classical
precession is expected around an oblate spinning star but not for a
black hole (Stella & Vietri 1998). Magnetic precession can result
when the magnetic field of a spinning star intersects the accretion
flow (Shirakawa & Lai 2002), but not for astrophysical black holes

which, without electric charge, have no way to generate their own
magnetic field. Radiation pressure can cause variable warping in
the outer disc through non-linear growth of perturbations, but only
at disc radii � 160 Rg (Pringle 1996; Frank, King & Raine 2002),
where orbital motion is too slow to explain the large observed energy
shifts in the line. It is therefore likely that we are specifically wit-
nessing Lense–Thirring precession. We note that Lense–Thirring
precession of the reflector (the disc) rather than the illuminator (the
inner flow) could potentially reproduce the observed line energy
modulation (Schnittman et al. 2006; Tsang & Butsky 2013), al-
though we note that the QPO modulates the power-law spectrum
emergent from the inner flow much more strongly than the thermal
disc emission visible at low energies. We also note that the observed
line energy modulation could potentially result from a precessing
jet (Kalamkar et al. 2016).

For Lense–Thirring precession of the entire inner flow, the pre-
cession period depends on the inner and outer radii of the inner
flow, the radial surface density profile of the inner flow (Fragile
et al. 2007; Ingram et al. 2009), as well as the mass and dimen-
sionless spin parameter, a = cJ/GM2, of the black hole. Assuming
a constant surface density, a canonical black hole mass of 10 M�
and a spin of a = 0.2 (Steiner et al. 2012; Ingram & Motta 2014),
the ∼4 s period implies a truncation radius of ∼20–30 Rg.

5.2 Implications

Lense–Thirring precession arises (due to the General Relativistic
frame dragging effect) only in orbits with their rotational axis mis-
aligned with the black hole spin axis. This may occur for accreting
material in binary systems in which the black hole spin axis is mis-
aligned with the axis of binary orbital motion (as the result of an
asymmetric natal supernova kick; Fragos et al. 2010). Quite how the
accretion flow reacts to this misalignment is a challenging theoret-
ical question, which will be informed by our result. For a classical
thin disc, the inner regions have long been thought to align with the
black hole and the outer regions with the binary (Bardeen & Petter-
son 1975), but the location of the transition between orientations has
remained uncertain. Recent simulations (Krolik & Hawley 2015)
find this radius to be ∼8–9 Rg, which is small enough to be within
the disc truncation radius of ∼20–30 Rg indicated here by setting
the precession period equal to the QPO period. This implies that the
inner flow is being fed by material from the truncated disc out of
the black hole equatorial plane (as in Fig. 11). Grid-based General
Relativistic magnetohydrodynamic simulations of accretion flows
in which the vertical extent is large compared with viscosity indi-
cate that the entire hot inner flow can precess in this situation due
to strong coupling through pressure waves (Fragile et al. 2007),
in line with what is illustrated in Fig. 11. Alternatively, calcula-
tions using an α-prescription viscosity with a large misalignment
angle and/or low viscosity show evidence for the disc breaking into
discrete, independently precessing rings (Nixon & King 2012). This
phenomenon has been seen in smoothed particle hydrodynamics
simulations (Nixon et al. 2012; Nealon, Price & Nixon 2015), but
not as yet in the grid-based simulations (Morales Teixeira et al.
2014; Zhuravlev et al. 2014). Such differential precession could
also potentially give rise to the line energy shifts observed here,
via the same mechanism of illumination of different disc azimuths.
More sophisticated phase-resolved spectral modelling and addi-
tional high-quality data in future will allow tomographic mapping
of the inner flow geometry, further informing numerical simulations.

Recently, van den Eijnden, Ingram & Uttley (2016) found ev-
idence in observations of GRS 1915+105 that some form of
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differential precession could indeed be at play (although likely not as
extreme as that suggested by Nixon & King 2012). They show that,
in observations displaying an energy-dependent QPO frequency
(Qu et al. 2010; Yan et al. 2012), the phase of the band with the
higher QPO frequency increases faster than that of the band with
the lower QPO frequency. This confirms that the frequency differ-
ence is intrinsic to the source, and can be explained if, for example,
the inner regions of the flow are precessing slightly faster than the
outer regions. Although there is no energy dependence of the QPO
frequency in the observations we analyse here, H1743−322 does
show an energy dependence of the QPO frequency for observations
with much higher (� 3 Hz) QPO frequencies (Li et al. 2013).

Our result has implications for black hole spin measurements.
Spin estimates obtained through disc spectral fitting often as-
sume that the black hole spin aligns with the binary orbit (e.g.
Kolehmainen & Done 2010; Steiner et al. 2012), which is incompat-
ible with the precession model. Indeed, recent spectral modelling of
Cygnus X-1 in the soft state implies a � 13◦ misalignment (Tom-
sick et al. 2014). The iron line method provides an independent
measure of inclination, but assumes that the disc extends down to
the ISCO, whereas the precession model assumes an evolving trun-
cation radius. If the truncation radius really is moving, the shape
of the line energy modulation should change with QPO frequency
(Ingram & Done 2012), which can be tested in future. We also note
that the spectral pivoting and line energy modulation detected here
are non-linear changes in spectral shape, which could bias studies of
the time-averaged spectrum. The biases are likely small, but should
be quantified in future with tomographic modelling, since iron line
fitting is sensitive to fairly small spectral distortions. For the case
of active galactic nuclei (AGN), it is unclear if a misaligned accre-
tion flow is expected in the absence of a binary partner.2 If there
is precession in AGN, it will not create a bias through non-linear
variability, since the precession time-scale would be longer than a
typical integration time.

5.3 Alternative interpretations

As an alternative to precession, axisymmetric variations in the ac-
cretion geometry can cause changes in the iron line shape. Since the
disc rotational velocity and gravitational redshift both depend on ra-
dius, variation of the disc inner radius throughout a QPO cycle can
cause shifts in the line energy. For the same reasons, changes in the
radial dependence of disc irradiation, perhaps caused by changes in
the vertical extent of the illuminating source, can also drive changes
in the line shape. However, it is very difficult to explain how such
mechanisms could give rise to two maxima in line energy per QPO
cycle. None the less, in future we will explicitly test the precession
model described above against the data presented here, and compare
it to simple axisymmetric alternatives.

De Marco & Ponti (2016) recently suggested that the soft lag
measured in the 0.1–1 Hz frequency range for the XMM–Newton
data is a reverberation lag corresponding to a ∼100 Rg path length.
However, this frequency range is dominated by the QPO. Both soft
and hard lags are routinely observed for QPOs (e.g. Qu et al. 2010),
and the QPO lag is often very different from that measured for the
broad-band noise (e.g. Wijnands et al. 1999), and not compatible
with a reverberation lag (Stevens & Uttley 2016). Moreover, in
our Fig. 6 we show that the two QPO harmonics have different

2 Also, it is notoriously difficult to detect a Type-C QPO analogue due to the
very long period expected through mass scaling (Vaughan & Uttley 2005).

lags, and so averaging them together has little physical meaning.
Reverberation lags are still expected to be present of course, but
will yield much smaller soft lags than the QPO.

5.4 Anomalous data set: orbit 1b

As for the anomalous data set, orbit 1b, this is puzzling in the context
of any QPO model. The modulations in line energy and flux and also
power-law index are consistent between all the other data sets. Orbit
1b shows different modulations in all three of these parameters,3

as can be seen in Fig. 10. The most striking is perhaps the large-
amplitude, and highly statistically significant (4σ ), modulation in
the line flux in orbit 1b. This may be indicative of a different ge-
ometry during orbit 1b. Such a geometrical change needs to explain
the increased iron line flux, the increased variability in line flux and
also the increased width of the iron line (0.51 keV for orbit 1b and
∼0.43 keV for the other observations). It also needs to be consistent
with the only subtle differences in other diagnostics (such as the
full band power spectrum and the time-averaged power-law pho-
ton index) and the change needs to plausibly happen over a � 60
ks time-scale. The increased line flux implies a greater fraction of
continuum photons intercept the disc, which will broaden the line
somewhat by increasing the disc ionization. The increased variabil-
ity in line flux suggests that this fraction varies more than for the
other data sets. This could occur if the misalignment angle between
the disc and the black hole spin axes, β, is somehow larger, since the
misalignment between the disc and inner flow varies between 0 and
2β in the precession model (Veledina, Poutanen & Ingram 2013;
Ingram et al. 2015). This extra variability in illuminating photons
could make line energy variations due to ionization changes signifi-
cantly more important than for the other data sets. We see in Fig. 10
(right, second panel) that the line flux, and therefore the flux irradi-
ating the disc, varies by a factor of ∼8 over a QPO cycle for orbit
1b. This means that the ionization parameter (ξ∝ illuminating flux)
should also vary by a factor of 8. In fig. 1 of Matt, Fabian & Ross
(1993), we see that varying the ionization parameter from ξ ∼ 100 to
ξ ∼ 800 changes the line rest-frame energy from ∼6.4 to ∼6.7 keV.
This modulation in the rest-frame line energy should be in phase
with the line flux, and therefore in anti-phase with the line energy
modulation seen in the other data sets. It is unfortunate that NuSTAR
was not observing during orbit 1b, otherwise this hypothesis could
have been tested by tracking the reflection hump. Alternatively (or
perhaps additionally), our view may be obstructed by some mate-
rial in our line of sight during orbit 1b, which is plausible given the
likely high inclination of H1743−322. The variable illumination of
the line-of-sight material will give rise to variable ionization, which
will imprint itself on to the phase-resolved spectra.

6 C O N C L U S I O N S

We find that the iron line centroid energy in H1743−322 is mod-
ulated on the QPO period with a statistical significance of 3.7σ .
We also find that this modulation has a non-zero second harmonic
with a statistical significance of 3.94σ . Shifts of the line energy
over a QPO cycle are a distinctive prediction of the Lense–Thirring
precession model (Ingram et al. 2009), in which the inner accretion

3 The power-law normalization is trivially very similar across all data sets,
because QPO phase is defined from the reference band flux, which tracks the
power-law normalization to a good approximation, given that the power-law
index varies only with small amplitude.
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flow precesses due to the frame dragging effect. Our observation is a
typical example of a Type-C QPO, implying that this class of QPOs
in general are driven by Lense–Thirring precession, and therefore
supporting studies that measure black hole mass and spin using
the period of the Type-C QPO in combination with that of high-
frequency QPOs (Ingram & Motta 2014; Motta et al. 2014; Fragile,
Straub & Blaes 2016). There are still, however, unanswered ques-
tions. We have simply employed phenomenological modelling to
track the iron line here, but more physical modelling using a self-
consistent reflection model will provide further insight. We will
perform this modelling in a future paper, as well as testing alter-
native models to precession. The largest question mark concerns
the anomalous data set, orbit 1b, which exhibits different parameter
modulations to all other data sets (which all agree with one another).

In future, high-quality observations of the same source displaying
a QPO with a higher frequency will provide further insight. The pre-
cession model predicts the disc inner radius to be smaller for higher
QPO frequencies, and therefore we expect the line energy depen-
dence on QPO phase to have a different shape. Studies such as this
will be greatly enhanced by new instrumentation. Detectors with a
very large collecting area will allow us to perform similar studies
without needing to stack over very long exposures as is necessary
here. Also, X-ray polarimetry will provide an extra dimension, par-
ticularly when combined with phase-resolved spectroscopy (Ingram
et al. 2015). The precession model predicts that the polarization an-
gle changes with QPO phase, and that the extrema in polarization
angle coincide with maxima in the line energy.
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APPENDIX A : DATA V ISUA LIZATION

In order to create the probability maps shown in Figs 7 and 10,
we run an MCMC in XSPEC after finding a best-fitting model in the
Fourier domain. XSPEC uses the EMCEE algorithm (the MCMC ham-
mer; Foreman-Mackey et al. 2013). We use the Goodman–Weare
algorithm with a chain length of 3 × 105 steps and 103 walkers.
The starting point of the chain is a randomized realization of the
best-fitting parameters. Visual inspection of the χ2 implies that
the chain takes ∼2 × 104 steps to converge, so we burn 2.5 ×
104 steps. For the rest of the chain, the autocorrelation function of
the parameters of interest is centrally peaked, indicating reason-
able convergence. Even so, we note that none of our significances
or error estimates use these chains, we use them purely for data
visualization.

For the probability maps in Figs 7 and 10, we calculate the Eline(γ )
function for each step of the chain, for 400 values of γ . That is, for
each step of the chain, we read in the parameters A1E, A2E, φ1E, φ2E

and E0 for that step and calculate Eline(γ ) from equation (6). For
each γ value, we thus have 2.75 × 105 values of Eline, which we bin
into an 800-bin histogram. Fig. A1 shows these histograms for the
chain corresponding to our joint fit, for two selected QPO phases

Figure A1. Histograms for the line energy for two QPO phases (red:
phase=7/16 cycles, blue: phase=11/16 cycles) created using an MCMC.
The black lines are smoothed versions of these histograms (see the text for
details).

(red: phase=7/16 cycles, blue: phase=11/16 cycles). We normalize
each histogram to peak at unity. For plotting purposes, we smooth
these histograms by averaging each of the 800 bins with the ±10
bins either side. The black lines show the smoothed versions of the
histograms. We use the smoothed versions for our probability maps.
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