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ABSTRACT
Motivated by lopsided structures observed in some massive transition discs, we have carried
out 2D numerical simulations to study vortex structure in massive discs, including the effects
of disc self-gravity and the indirect force which is due to the displacement of the central star
from the barycentre of the system by the lopsided structure. When only the indirect force is
included, we confirm the finding by Mittal & Chiang that the vortex becomes stronger and
can be more than two pressure scale heights wide, as long as the disc-to-star mass ratio is
�1 per cent. Such wide vortices can excite strong density waves in the disc and therefore
migrate inwards rapidly. However, when disc self-gravity is also considered in simulations,
self-gravity plays a more prominent role on the vortex structure. We confirm that when the
disc Toomre Q parameter is smaller than π/(2h), where h is the disc’s aspect ratio, the
vortices are significantly weakened and their inward migration slows down dramatically. Most
importantly, when the disc is massive enough (e.g. Q ∼ 3), we find that the lopsided gas
structure orbits around the star at a speed significantly slower than the local Keplerian speed.
This sub-Keplerian pattern speed can lead to the concentration of dust particles at a radius
beyond the lopsided gas structure (as shown in Paper II). Overall, disc self-gravity regulates
the vortex structure in massive discs and the radial shift between the gas and dust distributions
in vortices within massive discs may be probed by future observations.
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1 IN T RO D U C T I O N

Transition discs are protoplanetary discs whose inner regions have
undergone substantial clearing (see the review by Espaillat et al.
2014). Recent submm interferometric observations have suggested
significant non-axisymmetric features in these discs (HD 142527
from Casassus et al. 2013; Oph IRS 48 from van der Marel et al.
2013; LkHα 330 from Isella et al. 2013). In the extreme case of
Oph IRS 48, there is a highly asymmetric crescent-shaped dust
structure between 45 and 80 au from the star. The peak emission
from this dust structure is at least 130 times stronger than the up-
per limit of the opposite side of the disc. Observations at longer
wavelengths (e.g. 8.8 mm with Australia Telescope Compact Array
for HD 142527; Casassus et al. 2015) reveal an even more com-
pact structure. These observations suggest that some dust trapping
mechanism is operating in the azimuthal direction of the disc.

Theoretically, it has been known that anticyclonic vortices can
be long lived (Godon & Livio 2000) and can efficiently trap
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dust particles (Adams & Watkins 1995; Barge & Sommeria 1995;
Tanga et al. 1996; Chavanis 2000; Johansen, Andersen & Bran-
denburg 2004; Lyra et al. 2009a; Meheut et al. 2012; Zhu et al.
2014). Using the vortex gas structure derived by Kida (1981) and
Goodman, Narayan & Goldreich (1987), particle distribution within
the vortex has been derived and compared with observed asymmet-
ric disc structures (Lyra & Lin 2013). By constructing realistic three-
dimensional magnetohydrodynamics (MHD) simulations including
dust particles, Zhu & Stone (2014) have found that dust trapping
vortices can reproduce Atacama Large Millimeter/submillimeter
Array (ALMA) observations reasonably well.

However, some transition discs are quite massive. For an exam-
ple, the disc-to-star mass ratio is ∼4 per cent in the HD 142527
system. Recently, Mittal & Chiang (2015) have suggested a differ-
ent mechanism for azimuthal particle trapping in massive discs by
allowing the star to move around the barycentre of the system due
to the gravitational pull of the massive lopsided structure. They sug-
gest that, if the azimuthal structure in these discs is massive enough,
its gravitational force to the central star can displace the star from
the barycentre of the system. Such displacement causes an m = 1
mode indirect force to the disc, which can lead to an asymmetric
horseshoe flow pattern. This pattern can be self-sustaining as long
as it can lead to enough gravitational force required to offset the
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star. However, Mittal & Chiang (2015) applied a prescribed indirect
force to the disc, and it is unclear if this mode can sustain with the
indirect force self-consistently calculated from the disc asymmetric
structure itself.

Furthermore, the disc self-gravity has been ignored in Mittal &
Chiang (2015). If the disc is so massive that the indirect force can
become important, the disc self-gravity should play an even more
important role in shaping the asymmetric structure. Suppose the
lopsided pattern at a distance r from the star has a mass mLP, the
acceleration of the central star is on the order of ∼GmLP/r2 and
thus the indirect force felt by unit mass in the disc is ∼GmLP/r2. On
the other hand, the force due to the self-gravity of the asymmetric
pattern is on the order of GmLP/�r2, where �r is the scale of the
asymmetric pattern. Since �r � r, the disc self-gravitating force
should be larger than the indirect force. Previous simulations by
Lin (2012) have shown that self-gravity can suppress large-scale
vortices produced by Rossby wave instability (RWI; Lovelace et al.
1999). Linear instability analysis by Lovelace & Hohlfeld (2013)
has also suggested that disc self-gravity can stabilize the m = 1
RWI mode when the disc’s Toomre Q parameter Q < (π/2)(r/H ),
where H is the disc’s scale height. On the other hand, the indirect
force is a large-scale m = 1 driving force, which can facilitate m
= 1 large-scale structure. Thus, a self-consistent model including
both the indirect force and disc self-gravity is necessary.

In this paper, we present a self-consistent model including both
the indirect force and disc self-gravity, focusing on their effects on
the gas structure of the vortex. In the subsequent paper (Baruteau
& Zhu 2016), we will study how these effects impact particle con-
centration in vortices. In Section 2, we first follow Mittal & Chiang
(2015) using test particle method to study asymmetric structures
in pressureless non-self-gravitating discs. Then we introduce our
hydrodynamical simulations including both disc pressure and self-
gravity in Section 3. Results are presented in Section 4 and summa-
rized in Section 5.

2 ‘FA ST MODES’ IN PRESSURELESS
NON-SELF-GRAVITATING FLUIDS

Although the horseshoe solution led by the indirect force (Mittal
& Chiang 2015) seems to be distinct from the traditional vortex
solution (Goodman et al. 1987), both solutions are steady in a
Keplerian rotating reference frame. Thus, they are both classified
as ‘fast modes’, in contrast with the ‘slow modes’ (Tremaine 2001;
Lin 2015) that is almost steady in an inertial reference frame. In
this section, we present the traditional vortex solution and the new
horseshoe solution together in the pressureless fluid.

In a frame which is centred on the star and rotates at the angular
frequency �f , the Euler equation for the disc becomes

∂v

∂t
+ (v · ∇)v = − 1

ρ
∇P − ∇�∗ − ∇�ind − ∇�sg

− �f × (�f × r) − 2�f × v, (1)

where �∗, �ind, and �sg are the potential due to the direct gravita-
tional force from the star, the indirect force due to the acceleration
of the reference frame (or the star), and the disc self-gravity. Specif-
ically �ind = −ac · r , where ac is the acceleration of the central
star. The last two terms in equation (1) are the centrifugal force
and the Coriolis force. The pressure term, indirect force term, and
self-gravity term are all related to the disc density distribution (ρ)
which has to be solved with the continuity equation.

For a ‘fast mode’ which is steady in the rotating frame, we have
∂v/∂t = 0 so that the fluid streamlines and trajectories coincide.
We can then use the trajectories of test particles to study the flow
streamlines. Such test particle method has been widely used in
studying discs in binary systems (Paczynski 1977) and galactic
dynamics (Contopoulos 1979; Binney et al. 1991). The position
and velocity of the test particle (r , u) are

dr
dt

= u, (2)

du
dt

= − 1

ρ
∇P − ∇�∗ − ∇�ind − ∇�sg

−�f × (�f × r) − 2�f × u. (3)

If the indirect force term is known beforehand and the density
related terms (pressure and self-gravity) are small compared to
other terms, we can ignore these density related terms to simplify
the problem further and search all possible ‘fast modes’ as in Mittal
& Chiang (2015). Equations (2) and (3) can be solved given initial
position and velocity for a test particle. Although we can have
infinite trajectories, for a given flow only trajectories that do not
intercept each other or itself represent allowed streamlines. For a
steady flow, the streamlines also have to be closed, unless there
is external mass flowing in. Thus, in the rest of this section, we
will look for closed non-intercepting trajectories through numerical
integration of equations (2) and (3) using the fixed time step fifth-
order Runge–Kutta method.

To search these possible ‘fast mode’ flow patterns, we choose
�p = �f = 1, where �p is the pattern speed. In this case, the pattern
is steady in the rotating frame. The lopsided pattern is assumed to be
symmetric to the x-axis so that the indirect force is along the x-axis.
The indirect force is opposite to the direction of the acceleration
of the central star, and it is a constant force anywhere in the disc.
The prescribed indirect force is determined from hydrodynamical
simulations in Section 3. In the unit that GM∗ = 1, the indirect force
is −5.625 × 10−3x̂ (Section 3). Test particles are launched at the
x-axis with vx = 0. Since the force is symmetric to the x-axis and
the particle is initialized with only vy at the x-axis, this symmetry
implies that the particle trajectory is a non-intercepting closed orbit
only if vx = 0 when the particle crosses the x-axis for the first time
after it has been launched. By varying vy, we search these closed
non-intercepting orbits.

We have searched closed non-intercepting orbits of particles with
and without including indirect force due to the large-scale lopsided
pattern. Without the indirect force, the most simple ‘fast mode’ is the
traditional pressureless elliptical vortex having an aspect ratio(χ ) of
2. This is shown in the left-hand panel of Fig. 1. Fluid streamlines in
this mode are the trajectories of test particles undergoing epicyclic
motion in the rotating frame. The guiding centre approximation
suggests that, in the rotating frame whose angular frequency (�f)
equals the test particles’ mean motion, eccentric particles undergo
anticyclonic epicyclic motions and form ellipses with aspect ratios
of 2. All test particles in the left-hand panel of Fig. 1 have their mean
motion equal to �f but different eccentricities. This ‘fast mode’ is
the only ‘fast mode’ when there is no indirect force.1 This mode

1 In a frame rotating at �f, an eccentric particle must have its mean motion
equal to �f or in first-order mean motion resonance with �f to form a non-
intercepting closed orbit. However, streamlines cannot consist of different
first-order mean motion resonant orbits (e.g. 2:1, 3:2, 4:3,...) since these
orbits are discretized in space while streamlines should be continuous in
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Figure 1. Two closed non-crossing orbit configurations when the centre-
of-mass is not at the star. Left-hand panel: the eccentric orbits forms a
vortex pattern with an aspect ratio of 2. The solid curves have considered
the indirect force while the dotted curves have not considered the indirect
force. Clearly, the indirect force has small effect on these eccentric orbits.
Right-hand panel: similar to Mittal & Chiang (2015) fig. 1, horseshoe shaped
orbits form due to the indirect force. In both panels, the orbits are initiated
at the same x positions. The lopsided pattern in the right-hand panel is much
more elongated than the one in the left-hand panel.

can also be derived from the traditional compressible vortex solution
under the pressureless limit (Section 3).

When the indirect force due to the displacement of the star from
the barycentre of the system is included, two classes of closed non-
intercepting smooth orbits with dramatically different velocities
have been found. The first class of orbits forms the χ ∼ 2 vortex
solution above, with a slight modulation by the indirect force. In
this mode, the test particles only need one orbital time (2π/�f ) to
finish one circle around the vortex centre, and the acceleration due
to the addition of the star’s gravity and the inertial force is on the
order of ∼eGM/r2, much larger than the indirect force. Thus, the
indirect force has very little effect on this class of orbits (red curves
in Fig. 1). The aspect ratios of the ellipses are still ∼2.

Another class of closed non-intercepting orbits in the rotating
frame is from slowly moving test particles (the right-hand panel of
Fig. 1),2 as originally shown by Mittal & Chiang (2015). Different
from the vortex solution above where test particles undergo rapid
epicyclic motion, test particles in this mode undergo slow horseshoe
orbits induced by the indirect force. The libration frequency for the
particle is around

√
3μ�f (Mittal & Chiang 2015), where μ is the

ratio between the distance from the barycentre to the star and is
equal to 0.0056 in our setup. Test particles in the right-hand panel
of Fig. 1 thus need ∼10 orbital time to finish one circle around
the vortex centre. The motion of these test particles is so slow
in the rotating frame that inertial forces almost balance the star’s
gravity, and the indirect force plays a crucial role in determining
the orbits. During one horseshoe orbit, the test particle loses and
gains angular momentum from the indirect force. In the limit that
the indirect force becomes zero, these horseshoe orbits gradually
become circular orbits around the central star.

space. Streamlines can neither consist of orbits in the same first-order mean
motion resonance (e.g. 2:1) but having different eccentricities, since these
orbits will intercept each other. Thus, the only possible fluid streamlines
consist of trajectories of test particles having their mean motion equal to �f

but different eccentricities, as shown in the left-hand panel of Fig. 1.
2 Starting from some initial positions, we can find multiple smooth closed
orbits while at some positions only roughly smooth closed orbits can be
found.

3 H Y D RO DY NA M I C A L S I M U L AT I O N S

Although the two ‘fast modes’ in pressureless fluids have distinct
aspect ratios, they become less distinct when the gas pressure is
considered. The compressible vortex solution by Goodman et al.
(1987, GNG solution) suggests that, even without either the indirect
force or disc self-gravity, the gas pressure alone can lead to vortices
with any aspect ratio larger than 2. In the special case that the
vortex aspect ratio (χ ) equals 2, the GNG solution becomes the
pressureless vortex solution with streamlines as those shown by the
test particle method in the left-hand panel of Fig. 1. For a vortex
with χ larger than 2, the pressure force starts to balance the tidal
force, Coriolis force, and centrifugal force. When χ becomes larger,
the net force which leads to vortex rotation becomes smaller, so that
the vortex rotates slower and is more elongated. Eventually when χ

keeps increasing, this net force can be so small that any additional
force (such as the indirect force and self-gravity) starts to affect the
vortex structure.

To study how the indirect force and disc self-gravity affect the
vortex solution in compressible fluids, we have carried out two-
dimensional hydrodynamical simulations including both of these
forces.

3.1 Set-up

The hydrodynamical code we used is FARGO-ADSG (Baruteau &
Masset 2008a,b) which is built on FARGO (Masset 2000) but with
optional self-gravity and energy equation. Since the numerical grid
is centred at the central star, the velocity equations in a rotating
frame are

∂vr

∂t
+ vr

∂vr

∂r
+ vφ

∂vr

r∂φ
− v2

φ

r

= − ∂P

ρ∂r
− ∂�∗

∂r
− ∂�ind

∂r
− ∂�sg

∂r
+ �2

f r + 2�fvφ, (4)

∂vφ

∂t
+ vr

∂vφ

∂r
+ vφ

∂vφ

r∂φ
− vφvr

r

= − 1

ρr

∂P

∂φ
− 1

r

∂�∗
∂φ

− 1

r

∂�ind

∂φ
− ∂�sg

∂φ
− 2�fvr , (5)

where the indirect potential �ind = −ac · r and ac is the acceler-
ation of the central star due to the disc’s gravity. It is calculated
by integrating the gravitational acceleration from each grid cell on
to the central star. Indirect forces are calculated at each time step
and added to the equation of motion. The simulations are run in
the inertial frame centred at the star, but analyses shown later are
done in the rotating frame with �f equal to the pattern speed of
the asymmetric disc structure so that the time derivatives in these
equations become almost zero.

To make each grid cell have the same length in both the radial
and azimuthal directions, our grids are uniformly spaced in log r
from rin to rout, where rin = 0.1r0 and rout = 10r0. Our standard
simulations have 752 grids in the radial direction, and 1024 grids
in the azimuthal direction. When disc self-gravity is included, a
softening length of 0.3 disc scale height is used in the self-gravity
potential to mimic the effect of a finite disc thickness. Outflow
boundary condition is used at both inner and outer boundaries.

To generate a vortex in the simulation, we initialize the disc
surface density with a density bump in the radial direction which
will later break into vortices through Papaloizou–Pringle instability
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Table 1. Simulations.

Run 
0 Self-gravity Indirect force Rc
a 
max(R = Rc) b 
min(R = Rc) b �R/Rc

c

g5 5 × 10−3 No No 0.89 8.8 × 10−3 3.8 × 10−3 0.23
g5i 5 × 10−3 No Yes 0.78 1.3 × 10−2 1.8 × 10−3 0.30
g5g 5 × 10−3 Yes No 0.98 6.5 × 10−3 5.0 × 10−3 0.12
g5gi 5 × 10−3 Yes Yes 1.03 6.5 × 10−3 4.8 × 10−3 0.15

g5giH 5 × 10−3 Yes Yes 1.02 6.6 × 10−3 4.8 × 10−3 0.15
g0p2i 2 × 10−4 No Yes 0.88 3.7 × 10−4 1.4 × 10−4 0.24
g0p2g 2 × 10−4 Yes No 0.92 3.4 × 10−4 1.6 × 10−4 0.20
g0p2gi 2 × 10−4 Yes Yes 0.90 3.4 × 10−4 1.6 × 10−4 0.21
g0p5i 5 × 10−4 No Yes 0.88 9.1 × 10−4 3.8 × 10−4 0.22
g0p5g 5 × 10−4 Yes No 0.93 8.3 × 10−4 4.3 × 10−4 0.20
g0p5gi 5 × 10−4 Yes Yes 0.92 8.3 × 10−4 4.1 × 10−4 0.20

g1i 1 × 10−3 No Yes 0.87 1.9 × 10−3 6.6 × 10−4 0.25
g1g 1 × 10−3 Yes No 0.93 1.6 × 10−3 8.9 × 10−4 0.18
g1gi 1 × 10−3 Yes Yes 0.94 1.6 × 10−3 8.6 × 10−4 0.19

g1giH 1 × 10−3 Yes Yes 0.95 1.6 × 10−3 8.6 × 10−4 0.19
g2i 2 × 10−3 No Yes 0.86 3.8 × 10−3 1.3 × 10−3 0.25
g2g 2 × 10−3 Yes No 0.94 3.0 × 10−3 1.9 × 10−3 0.17
g2gi 2 × 10−3 Yes Yes 0.96 3.1 × 10−3 1.8 × 10−3 0.17
g10i 10 × 10−3 No Yes 0.51 5.8 × 10−2 4.3 × 10−3 0.26
g10g 10 × 10−3 Yes No 1.02 1.1 × 10−2 9.4 × 10−3 0.15
g10gi 10 × 10−3 Yes Yes 1.03 1.2 × 10−2 9.5 × 10−3 0.15

g10giH 10 × 10−3 Yes Yes 1.02 1.1 × 10−2 9.6 × 10−3 0.15

Various disc α

g5(α = 10−5) 5 × 10−3 No No 0.90 8.6 × 10−3 3.8 × 10−3 0.22
g5(α = 10−4) 5 × 10−3 No No 1.00 5.1 × 10−3 4.8 × 10−3 0.09
g5(α = 10−3) 5 × 10−3 No No 0.88 3.7 × 10−3 3.7 × 10−3 –

aRc is the radial position where the maximum surface density lies at 150 orbits.
b
max(R = Rc) and 
min(R = Rc) are the maximum and minimum density along the azimuthal direction at R = Rc at 150 orbits.
c�R is the width of the vortex in the radial direction. It is the distance between two radial positions where 
 = (
max + 
min)/2 at the azimuthal angle of the
vortex centre.

(Papaloizou & Pringle 1984, 1985) or RWI (Lovelace et al. 1999;
Li et al. 2000, 2001). The initial density profile is


(r) = 
0

{
ζ + exp

[
− (r − r0)2

2σ 2

]}
, (6)

where ζ = 0.01 and r0 = 1. Lyra et al. (2009b) and Regály et al.
(2012) have showed that RWI can be excited in α discs only if the
density jump is sharp enough with jump width less than about 2
pressure scale-height (H). H is defined as cs/�K, where cs is the
disc sound speed, and �K is the orbital frequency. Thus, we choose
σ = 2H(r0). To trigger m = 1 mode in the instability, we add a small
perturbation to the gas surface density as in Heemskerk, Papaloizou
& Savonije (1992):


(r, φ) = 
(r)

[
1 + 10−3 cos(φ) sin

(
π

r − rin

rout − rin

)]
. (7)

We have run the simulations for 500 orbits, and in this paper we
refer one orbit as the orbital time (2π/�) at r0.

We use the isothermal equation of state so that P = 
c2
s . The

choice of an isothermal equation of state is for the sake of simplicity,
but we note that the inclusion of an energy equation impacts the
growth and saturation phases of the RWI (see e.g. Les & Lin 2015,
where the RWI is induced by a gap-opening planet). Since the
whole disc has the same temperature, the disc aspect ratio h ≡ H/r
increases as

√
r . We take h = 0.1 at r = r0, which is typical for a

protoplanetary disc at 10s of au. A small viscosity with α = 10−6 is
included in the simulation. We find that adding this small viscosity
significantly improves the convergence of the simulation. To explore

the effect of α on the vortex structure, we have also increased α to
10−3 for our fiducial run.

To study the effect of indirect force and self-gravity on the vortex
structure, we choose discs which are relatively massive but still
gravitationally stable. Our fiducial run assumes 
0 = 5 × 10−3

(models g5 in Table 1) which has a total mass of 0.017M∗, and the
Toomre parameter, Q ≡ cs�/(πG
), is ∼6 at r = r0. We also vary

0 from 2 × 10−4 to 0.01 (g0p2 to g10), and the corresponding
Q varies from 160 to 3. The effects of the indirect force and self-
gravity become more important in more massive discs. For runs
which only include the indirect force, we add ‘i’ at the end of
their model names. For runs which only include disc self-gravity,
we add ‘g’ at the end of their names. For runs including both the
indirect force and self-gravity, we add ‘gi’ at the end of their names.
For three high-resolution runs having 1536 radial grids and 2048
azimuthal grids, the model names are ended with ‘H’. All the runs
are summarized in Table 1.

4 R ESULTS

After the simulations start, an m = 1 mode grows exponentially, and
in most runs it saturates at ∼40 orbits. For runs where self-gravity is
important (e.g. g10g), it saturates at a slightly longer time (e.g. ∼60
orbits). With our fiducial disc mass (g5), the disc surface density
for runs having either the indirect force or disc self-gravity or both
are shown in Fig. 2. In Fig. 2 and all figures below, we have rotate
the images so that the maximum gas surface density is always at
φ = π . Table 1 gives the radial position where the maximum surface
density lies at 150 orbits, labelled as Rc. Since Rc = 1 initially, the
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3922 Z. Zhu and C. Baruteau

Figure 2. Upper panels: the disc surface density contours at 150 orbits for case g5, g5i, g5g, and g5gi in the r–φ plane. Middle and bottom panels: the disc
surface density contours for the same cases at 150 (middle panels) and 400 (bottom panels) orbits in the x–y plane.

deviation of Rc from 1 reflects the radial migration speed of the
vortex. At 150 orbits, the maximum and minimum density along
the azimuthal direction at R = Rc are also given in Table 1, labelled
as 
max and 
min. The ratio between 
max and 
min represents the
strength of the vortex. The vortex radial width based on the vortex
density structure is also given in Table 1.

Fig. 2 clearly shows that the indirect force strengthens the vortex.
Compared with case g5 (the leftmost panels), the vortex in case g5i
(the second panel from the left) is more roundish with a radial width
larger than 2 disc scale height, and has a higher contrast between
the vortex centre and the background (also shown in Table 1). This
stronger vortex also excites stronger density waves. These density
waves carry the angular momentum of the vortex away and enable
vortex migration (Paardekooper, Lesur & Papaloizou 2010). With
strong density waves excited, the vortex in g5i migrates inward fast.
The vortex in case g5i migrates from r = 1 to 0.5 within 400 orbits.

On the other hand, disc self-gravity stabilizes the vortex. With
only self-gravity included (case g5g, the third panel from the left),
the saturated m = 1 mode breaks into two vortices at ∼100 or-
bits and these two vortices are found to remain separated even at
400 orbits. This is consistent with Goodman & Narayan (1988),
Lin (2012), and Yellin-Bergovoy, Heifetz & Umurhan (2015) that
self-gravity inhibits RWI, especially for low m modes. Quantita-
tively, linear instability analysis by Lovelace & Hohlfeld (2013)
has suggested that disc self-gravity can suppress RWI modes with

m < (π/2)(r/H )Q−1. The suppression of m = 1 mode in the case
g5g whose (π/2)(r/H )Q−1 = 2.5 is consistent with this criterion.

However, when both disc self-gravity and the indirect force are
included (case g5gi, the rightmost panel), the m = 1 mode persists
in the simulation. The shift of power from the m = 2 mode to
the m = 1 mode when the star is allowed to move has first been
seen in numerical simulations by Christodoulou & Narayan (1992).
Although disc self-gravity tries to stabilize the vortex and inhibits
the m = 1 mode, the indirect force tries to maintain the m = 1
mode. Eventually, the vortex in case g5gi is weaker than the vortex
in case g5, and it migrates considerably slower than the vortex in
either g5 or g5i. Detailed analyses suggest that it migrates less than
0.5 per cent in the radial direction within 500 orbits.

Both the indirect force and disc self-gravity become more impor-
tant for shaping the vortex structure when the disc becomes more
massive. Fig. 3 shows the surface density of discs having differ-
ent masses (increasing mass from left- to right-hand panels) if the
indirect force or self-gravity or both are included (from upper to
lower panels). For the smallest disc mass (g0p2), both disc self-
gravity and the indirect force are weak, and they have negligible
effects on the vortex structure. With the disc surface density in-
creasing, the indirect force starts to strengthen the vortex and the
vortex migrates faster in a more massive disc (upper panels). On the
other hand, disc self-gravity starts to weaken the vortex (the middle
row of Fig. 3) in massive discs. As mentioned above, RWI modes
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Massive lopsided transition discs I 3923

Figure 3. Upper panels: the disc surface density contours at 150 orbits for discs having different masses (from left- to right-hand panels) if the indirect force or
self-gravity or both are included (from upper to lower panels). From left- to right-hand panels, (π/2)(r/H )Q−1 = 0.1, 1, 2.5, 5, and m = 1 mode is suppressed
when (π/2)(r/H )Q−1 > 1.

with m < (π/2)(r/H )Q−1 (Lovelace & Hohlfeld 2013) will be af-
fected by disc self-gravity. From left- to right-hand panels in Fig. 3,
(π/2)(r/H )Q−1 = 0.1, 1, 2.5, 5, respectively. As expected, m = 1
mode is completely suppressed in the rightmost two cases, and only
weak m = 2 perturbations have been observed. In the most massive
case, even the m = 2 perturbation is significantly suppressed. When
both the indirect force and self-gravity are included (lower panels),
these two effects seem to be competing with each other, but eventu-
ally the effect of self-gravity seems to be dominant and the vortices
become weaker than those in the top panels. The indirect force
which has m = 1 symmetry also leaves its imprint by maintaining
the m = 1 disc asymmetry. The middle and bottom panels suggest
that, as long as disc self-gravity is included, the vortex migrates
slowly in the disc.

To quantitatively compare the asymmetric structure in simula-
tions with different masses, cuts of the disc’s surface density across
the vortex centre along the r and φ directions are shown in Fig. 4.
The peak density in the radial profile is at a larger position for
a more massive disc, suggesting that the vortex migrates inward
slower (or even migrates slightly outward) in a more massive disc.
The density profile in the azimuthal direction clearly shows that the
vortex becomes weaker in a more massive disc due to the stabiliz-
ing effect of disc self-gravity. The density ratio between the vortex
centre and the background is ∼2 for the least massive disc while it
is ∼1.2 for the most massive case. The similarity between low- and
high-resolution runs suggests that the simulations are numerically
converged. There is a slight difference for the azimuthal density

Figure 4. Density cuts across the vortex centre along the r (the left-hand
panel) and φ (the right-hand panel) directions for g0p2gi, g0p5gi, g1gi, g2gi,
g5gi, and g10gi (from heavy to light curves). The dotted curves are from
high-resolution runs g1giH, g5giH, and g10giH.

profile for the most massive cases between g10gi and g10giH. In
g10giH, some small vortices are present which do not merge with
the big vortex at 150 orbits. However, the big vortex has similar
structures as that in the lower resolution run.

Since the vortex structure sensitively depends on the disc viscos-
ity (de Val-Borro et al. 2007; Fu et al. 2014; Zhu & Stone 2014),
we have carried out three additional simulations with α = 10−5,
10−4, and 10−3 using the same set-up as our fiducial case g5 which
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Figure 5. The upper left-hand panel: the streamlines in the rotating frame for horseshoe orbits in the pressureless fluid (the same as the right-hand panel of
Fig. 1). Upper middle and right-hand panels: the density contours and streamlines in the frame corotating with the lopsided structure for g5, g5i, and g10gi at
150 orbits. Lower panels: the difference between the azimuthal velocity of the fluid element at φ = π and the local Keplerian velocity.

has α = 10−6. Table 1 shows that in the case with α = 10−5 the
vortex has a similar strength as our fiducial case, but it becomes
significantly weaker in cases with bigger α. Intuitively, we would
expect that the vortex cannot be generated when the growth time-
scale of RWI is comparable with the viscous spreading time-scale
of the density bump (�R2/ν). In our simulations, the width of the
density bump is �R = 0.2H, and the vortex saturates at around 50
orbits. Thus, α = 0.01 should suppress the vortex formation. In our
simulations, a comparable but smaller α(α = 10−3) has completely
suppressed the vortex.

To understand how the gas pressure, the indirect force, and disc
self-gravity affect the vortex structure, the density contours and
the fluid streamlines in the frame corotating with the asymmetric
structure are shown in the upper panels of Fig. 5. The indirect force
alone in the leftmost panel can generate a lopsided structure which
has a similar aspect ratio as the vortex in case g5 (the second panel
from the left). However, they have very different velocity structures
as shown in the bottom panels of Fig. 5, indicating the presence of
the gas pressure has significantly altered the fluid velocity structure.
When both the indirect force and the gas pressure are considered, the
indirect force gives an additional force to spin the vortex, making the
vortex stronger with a smaller aspect ratio (case g5i, the third panel
from the left). The strong vortex in g5i has a large radial extend.
The radial width measured from the vortex density structure is ∼3.4
H(R = Rc) (Table 1). The radial width measured from the largest
elliptical vortex streamline in Fig. 5 is ∼4 H(R = Rc). These results
suggest that the vortex can have an envelope extending beyond the

sonic point of the vortex by a factor of ∼2 (also in Fu et al. 2014;
Zhu et al. 2014).

However, when disc self-gravity is included and the disc is rel-
atively massive (the rightmost panels in Fig. 5 for case g10gi), the
streamlines remarkably go across the asymmetric structure without
any rotary vortex motion around the density maximum. The vortex
motion occurs at a much larger distance around r ∼ 1.2, and the
density contours do not coincide with the velocity streamlines. This
is due to the fact that the lopsided structure orbits around the star
at a speed significantly slower than the local Keplerian speed when
the disc self-gravity starts to dominate the vortex dynamics. In these
massive discs, the ‘fast mode’ appears to be transiting to the ‘slow
mode’. As shown in Fig. 6, the red pluses suggest that the pattern
speed for the lopsided structure is 80 per cent of the Keplerian speed
in case g10gi. The corotation radius where the disc’s Keplerian an-
gular speed3 matches the structure’s pattern speed is thus at r ∼ 1.2
instead of r ∼ 1. In the frame corotating with the disc asymmetric
structure as shown in the rightmost panel of Fig. 5, the zero velocity
point is thus at r ∼ 1.2.

We would expect that such sub-Keplerian asymmetric disc struc-
ture cannot trap dust particles at the gas maximum. This is because
dust particles always try to move at the local Keplerian speed and
they will move in and out of the sub-Keplerian asymmetric structure

3 Strictly speaking, the disc does not rotate at the exact Keplerian speed due
to disc self-gravity.
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Figure 6. The pattern speed with respect to the vortex position in case g5
(black pluses), g10i (green pluses), and g10gi (red pluses). The dotted curve
represents the Keplerian speed. The squares are Keplerian speed at the same
radial positions as the pluses. The dashed line labels the pattern speed for
the g10gi case. The corotation radius is at r ∼ 1.2, further than the vortex
itself.

quickly and cannot be trapped. But for particles at the corotation
radius, they will remain at the same relative position with the asym-
metric structure and can potentially be affected by the asymmetric
disc structure. When we include dust particles in the simulations
(Paper II), some particles indeed concentrate to the corotation ra-
dius at r ∼ 1.2. Particles outside the vortex motion at r ∼ 1.2 feel a
non-zero gas drag and sink to the centre of this vortex motion. This
interesting radial offset between the gas and dust lopsided structures
will be shown in Paper II and may be observable with ALMA.

The detailed force balance for the vortex in various cases has been
presented in Appendix A, where we can see the pressure gradient
plays an important role in determining the vortex structure.

5 C O N C L U S I O N S

We have studied asymmetric flow patterns in massive discs. We
have first searched possible ‘fast modes’ (lopsided structures orbit-
ing around the central star at the Keplerian speed) in pressureless
fluid using test particle methods. Without the indirect force that
comes from the displacement of the central star by the lopsided
structure, the only ‘fast mode’ is the traditional pressureless anticy-
clonic vortex with an aspect ratio (χ ) of 2. When the indirect force
is considered, besides the pressureless vortex mode, another ‘fast
mode’ whose streamlines consist of slowly liberating horseshoe or-
bits exist, as shown by Mittal & Chiang (2015). The streamlines in
this mode are highly elongated with very large aspect ratios.

When the gas pressure is included, these two modes are less dis-
tinct. Together with the indirect force, the gas pressure significantly
alters the lopsided structure. Vortices with any aspect ratio are now
possible even due to the gas pressure alone (Goodman et al. 1987).
Vortex with a larger aspect ratio rotates around the vortex centre
slower, and can be more easily affected by other additional forces
(such as the indirect force and self-gravity).

Using two dimensional global hydrodynamical simulations with
both the indirect force and disc self-gravity self-consistently in-
cluded, we have studied the effect of the indirect force on the vortex
structure, which is initiated by the RWI. The simulations confirm
that the indirect force alone can widen the vortex streamlines to be
more than two disc scale heights wide in the radial direction when

the mass ratio between the disc and the central star is �1 per cent,
and the vortex migrates faster when the indirect force becomes im-
portant. However, for such discs, disc self-gravity becomes equally
(if not more) important than the indirect force. In massive discs
where (π/2)(r/H )Q−1 > 1 (Lovelace & Hohlfeld 2013), disc self-
gravity alone suppresses the m = 1 mode. But the indirect force
restores the m = 1 lopsided structure. Still, overall, the vortex is sig-
nificantly weakened by disc self-gravity. Vortices’ inward migration
slows down. Vortices in some cases can even migrate outwards.

One important observation is that, when the disc is massive
enough (e.g. Q ∼ 3), the lopsided gas structure orbits around the
star at a speed significantly slower than the local Keplerian speed.
In this case, there is a radial shift between the lopsided structure
itself and the corotation radius where the disc’s Keplerian rotation
matches the structure’s pattern speed. Since dust can be trapped at
the corotation radius, it suggests that there could be a radial shift
between the gas and dust distributions in vortices of massive discs.
Dust distribution in vortices in massive discs is presented in Pa-
per II. Overall, disc self-gravity is important to regulate the vortex
structure in massive discs and it has observational signatures which
may be probed by current and future observations.

Our simulations have several limitations. First, we have only ex-
plored a small parameter space of disc structures. Besides H/r = 0.1,
we have also explored discs with H/r = 0.05, 0.07, 0.08, and 0.09
at r0 while keeping σ = 2H(r0) in equation (6). Significant growth
of the RWI has been observed only when H/r > ∼0.09 despite the
fact that the density bump is always 2 scale height wide in each
case, implying the vortex production by the RWI is sensitive to the
disc and density bump structure. Second, our 2D simulations cannot
capture vortex instabilities occurring in 3D, such as the elliptical
instability (Lesur & Papaloizou 2009). The effects of indirect force
and disc self-gravity on these instabilities need further study. More-
over, in massive discs where the gas and dust lopsided structures
have a radial offset, how such offset affects the parametric instabil-
ity from dust to gas feedback also needs to be revisited (Railton &
Papaloizou 2014).
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A P P E N D I X A : FO R C E BA L A N C E
W I T H I N T H E VO RT E X

The force balance at θ = π for various cases is shown in Fig. A1.
For a circular orbit, the tidal force −∂�∗/∂r + �2

f r , Coriolis force
(2�fvφ), and centrifugal force (v2

φ/r) balance each other. When
only the indirect force is included (the leftmost panel), the ve-
locity at r = 1 becomes slightly super-Keplerian since the Cori-
olis force and the centrifugal force need to balance the indirect
force. Thus, the velocity in the rotating frame at r = 1 becomes
vφ ∼ vK + find/2� where vK is the Keplerian velocity. The leftmost
panel of Fig. A1 also suggests that the force which turns the vortex
(−vr

∂vr

∂r
− vφ

∂vr

r∂φ
) is at a similar amplitude as the indirect force.

With the gas pressure included (right-hand panels), the pressure
gradient (the cyan dotted curve) is quite large, and its balance with
other forces leads to the vortex rotation. When disc self-gravity has
been included (the rightmost panels), the self-gravitational force
becomes zero at r ∼ 0.95. The pressure gradient becomes zero at
r ∼ 1. To balance the self-gravitational force at r ∼ 1, the addition
of tidal force, Coriolis force, and centrifugal force has to be larger
than zero at r ∼ 1. This is possible if the corotation radius is at
r > 1.

Figure A1. The disc surface density and force balance with respect to r at φ = π for horseshoe orbits in pressureless fluid, g5, g5i, and g10gi at 150 orbits

(from left to right). Bottom panels: various force components. The red curve is − ∂�∗
∂r

+ �2
f r + 2�fvφ , the blue dotted curve is

v2
φ

r
, the cyan dotted curve is

− ∂P
ρ∂r

, the green dotted curve is −vr
∂vr
∂r

− vφ
∂vr
r∂φ

, the black dotted curve is − ∂�ind
∂r

, and the orange dotted curve is − ∂�sg
∂r

. The solid curves are the total
forces which add one additional force represented by the dotted curve in the same colour.
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