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ABSTRACT
Eight pulsars have low braking indices, which challenge the magnetic dipole braking of pulsars.
222 pulsars and 15 magnetars have abnormal distribution of frequency second derivatives,
which also make contradiction with classical understanding. How neutron star magnetospheric
activities affect these two phenomena are investigated by using the wind braking model of
pulsars. It is based on the observational evidence that pulsar timing is correlated with emission
and both aspects reflect the magnetospheric activities. Fluctuations are unavoidable for a
physical neutron star magnetosphere. Young pulsars have meaningful braking indices, while
old pulsars’ and magnetars’ fluctuation item dominates their frequency second derivatives.
It can explain both the braking index and frequency second derivative of pulsars uniformly.
The braking indices of eight pulsars are the combined effect of magnetic dipole radiation and
particle wind. During the lifetime of a pulsar, its braking index will evolve from three to one.
Pulsars with low braking index may put strong constraint on the particle acceleration process
in the neutron star magnetosphere. The effect of pulsar death should be considered during the
long term rotational evolution of pulsars. An equation like the Langevin equation for Brownian
motion was derived for pulsar spin-down. The fluctuation in the neutron star magnetosphere
can be either periodic or random, which result in anomalous frequency second derivative and
they have similar results. The magnetospheric activities of magnetars are always stronger than
those of normal pulsars.
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1 IN T RO D U C T I O N

Pulsars are rotating magnetized neutron stars (Gold 1968). Up to
now, more than two thousand pulsars have been discovered. Mag-
netars are a special kind of pulsars. They may have much higher
magnetic field than normal pulsars. Magnetars are assumed to be
powered by the decay of their strong magnetic field (Duncan &
Thompson 1992; Kouveliotou et al. 1998). Timing observations of
pulsars and magnetars can give us some information about their
dipole magnetic field. Once a pulsar’s period and period deriva-
tive are measured, its characteristic dipole magnetic field is usually
calculated by assuming magnetic dipole braking (Tong 2016)

Bc = 6.4 × 1019(P Ṗ )1/2 G. (1)

The rotational evolution of the pulsar in the magnetic dipole braking
model is

− I��̇ = 2μ2�4

3c3
sin2 α, (2)
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where μ = BR3

2 is the neutron star’s magnetic dipole moment,
I = 1045 g cm2 is the neutron star’s moment of inertia and α is
the magnetic inclination angle which is the angle between the rota-
tional axis and the magnetic axis. The spin-down of pulsars can be
described by a power-law (Lyne, Pritchard & Smith 1993)

ν̇ ∝ νn, (3)

where the ν and ν̇ are pulsars’ spin frequency and its derivative,
respectively, n is the so-called braking index. Observationally, the
braking index is defined by the pulsar’s frequency second derivative
(Lyne et al. 2015)

n = νν̈

ν̇2
. (4)

Besides this gradual trend of spinning down, real pulsars and magne-
tars also show various kinds of timing irregularities. These include
glitches (Dib, Kaspi & Gavriil 2008; Yu et al. 2013) and timing noise
(e.g. frequency second derivatives and subsequent timing residuals,
Hobbs, Lyne & Kramer 2010; Dib & Kaspi 2014).

The magnetic dipole braking assumption predicts a braking index
n = 3 (or equivalently a predicted ν̈ = 3ν̇2/ν). However, two groups
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of observational phenomena challenge this assumption. First, the
observations of eight pulsars reveal that all their steady braking
indices are less than 3. They are PSR B1509−58 (n = 2.839 ±
0.003; Livingstone et al. 2005a; Livingstone & Kaspi 2011), PSR
J1119−6127 (n = 2.684 ± 0.002; Weltevrede, Johnston & Es-
pinoza 2011), PSR J1846−0258 (n = 2.65 ± 0.01, Livingstone
et al. 2006), PSR B0531+21 (the Crab pulsar, n = 2.51 ± 0.01;
Lyne et al. 1993; Lyne et al. 2015), PSR B0540−69 (n = 2.14 ±
0.009; Livingstone, Kaspi & Gavriil 2005b; Ferdman, Archibald &
Kaspi 2015), PSR J1833−1034 (n = 1.857 ± 0.001; Roy, Gupta
& Lewandowski 2012), PSR B0833−45 (the Vela pulsar, n = 1.4
± 0.2; Lyne et al. 1996), PSR J1734−3333 (0.9 ± 0.2; Espinoza
et al. 2011). Secondly, timing observations of more than 300 pul-
sars found an anomalous distribution of ν̈ (Hobbs et al. 2010).
Furthermore, timing observations of 15 magnetars have also found
anomalous ν̈ measurement (see Table 4 and references therein).

The above two groups of observations will result in two con-
sequences. First, there may be other effects contribute to pulsar
braking. Secondly, these effects may have fluctuations which is un-
avoidable for a physical system. One of the potential models which
can explain pulsars and magnetars spin-down is the wind brak-
ing model (Xu & Qiao 2001; Kou & Tong 2015). The rotational
evolution of the Crab pulsar has already been studied in the wind
braking model by considering the particle density and the effect of
pulsar death (Kou & Tong 2015). However, there are other seven
pulsars with measured braking indices. They include the high mag-
netic field pulsars (PSR J1119−6127, PSR J1846−0258 and PSR
J1734−3333) and the low braking index pulsars (the Vela pulsar
and PSR J1734−3333), which have different timing characteris-
tics from the Crab pulsar. Therefore, it is necessary to study the
rotational evolution of all these eight pulsars.

The second aspect comes from that for some pulsars their timing
variations are correlated with changes in the pulse profile (Lyne
et al. 2010; Keith, Shannon & Johnston 2013; Brook et al. 2016).
Both the variation of timing and pulse profile may be caused by
changes in the pulsar’s magnetosphere. The switched spin-down
state of intermittent pulsars (Kramer et al. 2006; Camilo et al. 2012;
Lorimer et al. 2012) are also correlated with their magnetospheric
activities. For a real magnetosphere, there will always be some
fluctuations. After considering this aspect, the braking indices of
young pulsars and ν̈ of old pulsars and magnetars can be understood
uniformly. The fluctuations of the magnetosphere can account for
the measured ν̈ of pulsars and magnetars.

The wind braking model and understandings of eight pulsar’s
braking indices are presented in Section 2. The fluctuating neutron
star magnetosphere and modelling of ν̈ of pulsars and magnetars
are shown in Section 3. Discussions and conclusions are given in
Section 4 and Section 5, respectively.

2 BR A K I N G IN D I C E S O F EI G H T P U L S A R S I N
T H E W I N D BR A K I N G MO D E L

2.1 The wind braking model of pulsars

Pulsars are oblique rotators in general. Xu & Qiao (2001) proposed
that both the magnetic dipole radiation and particle outflow con-
tribute to the braking torque of pulsars. In this wind braking model,
the magnetospheric rotational energy loss rate is (Xu & Qiao 2001;
Kou & Tong 2015)

Ė = 2μ2�4

3c3
η. (5)

The rotational evolution of the pulsar is

− I��̇ = Ė = 2μ2�4

3c3
η, (6)

where η is a dimensionless function: η = sin2 α + 3κ�φ/�


cos2 α. It depends on the magnetic inclination angle α, the particle
number density κ (in units of Goldreich–Julian density, Goldre-
ich & Julian 1969), the particle acceleration potential �φ. �
 is
the maximum acceleration potential. For the vacuum gap model
(VG(CR); Ruderman & Sutherland 1975), η = sin2 α + 4.96 ×
102κB

−8/7
12 �−15/7 cos2 α, where B12 is the magnetic field strength in

units of 1012 G. Expressions of η depend on the specific acceleration
model (see table 2 of Kou & Tong 2015).

The braking index in the pulsar wind braking model is

n = 3 + �

η

dη

d�
. (7)

The wind braking model includes the magnetic dipole radiation term
(proportional to sin2 α) and the particle wind term (proportional to
cos2 α). The magnetic dipole radiation will result in a braking index
n = 3, while the particle wind term corresponds to a braking index
of n ≈ 1. Therefore, a braking index of 1 ≤ n ≤ 3 of pulsars
are expected in the wind braking model (Xu & Qiao 2001). As
a pulsar evolves, its braking index will change from about 3 to
about 1 which means that the pulsar evolves from magnetic dipole
braking dominated case to the wind braking dominated case (Kou
& Tong 2015). For the long term rotational evolution of pulsars, the
effect of pulsar death should be taken into consideration (Young,
Manchester & Johnson 1999; Contopoulos & Spitkovsky 2006).
The radio emissions will stop when the pulsars’ rotational period
approaches to the death period. The death period is defined as (Kou
& Tong 2015)

Pdeath = 2.8

(
B

1012

)1/2(
Vgap

1012

)−1/2

s, (8)

where Vgap is the maximum acceleration potential drop in the open
field line religions. For old pulsars, the effect of pulsar death should
be taken into account. Based on a series of previous works on wind
braking of pulsars (Xu & Qiao 2001; Li et al. 2014; Kou & Tong
2015; Kou, Ou & Tong 2015), it is applied to all the eight pulsars
with braking index measured.

2.2 The braking indices and long term rotational evolution of
eight pulsars

The magnetic field strength, magnetic inclination angle and particle
density are assumed to be constant during the calculations.1 The
VG(CR) model is taken as an example to calculate the rotational
evolution of the eight pulsars. The observational information of the
eight pulsars are summarized in Table 1. Bc is the characteristic
magnetic field. τ c is the characteristic age τc = P

2Ṗ
. τ obs is the

observational age of pulsars. P0 is the assumed initial rotational
period (Igoshev & Popov 2013; Noutsos et al. 2013; Gullon et al.
2014). α is the observed (or assumed) magnetic inclination angle.

Given a pulsar’s age, its initial rotational period P0 can be cal-
culated through equation (6). However, the pulsars’ age is poorly
known. Therefore, an initial rotational period is assumed for each
pulsar and its age in the wind braking model is calculated. Except for
PSR J1734−3333, the other seven pulsars’ initial rotational period

1 The case of variable particle density is considered in Kou et al. (2015).
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Table 1. Input parameters of eight pulsars. The columns are, respectively: the pulsar’s name, the observed braking index, the characteristic magnetic field,
the characteristic age, an independent age observation, the assumed initial rotational period and the observed (or assumed) magnetic inclination angle.
References of braking indices are in Section 1.

PSR name n Bc τ c τ obs P0 α

(1012 G) (yr) (yr) (ms) (◦)

B1509−58 2.839(3) 30 1555 1500(1) 20 60(9)

J1119−6127 2.684(2) 81 1607 7100(2) 20 45(10)

J1846−0258 2.65(1) 97 726 700(3) 20 45
B0531+21(Crab) 2.51(1) 7.5 1239 915(4) 20 45(11)

B0540−69 2.14(1) 9.9 1669 1000(5) 20 50(9)

J1833−1034 1.857(1) 7.1 4853 1000(6) 20 45
B0833−45(Vela) 1.4(2) 6.7 11303 9000(7) 20 70(12)

J1734−3333 0.9(2) 104 8128 8000(8) 500 45

Notes. The observational age are from: (1) Gaensler et al. (1999); (2) Kumar et al. (2012); (3) Blanton & Helfand (1996); (4) Lyne et al. (1993); (5) Park
et al. (2010); (6) Bocchino et al. (2005); (7) Page et al. (2009); (8) Ho & Anderson (2012).
The observed magnetic inclination angle are from: (9) Zhang & Cheng (2000); (10) Rookyard, Weltevrede & Johnston (2015); (11) Du et al. (2012); (12)
Du et al. (2011).

are assumed to be P0 = 20 ms. For PSR J1734−3333, consider-
ing its low braking index, an initial rotational period of 500 ms is
adopted. PSR B0540−69 is taken as an example to show the differ-
ent choice of initial rotational period. When this pulsar was given
an initial rotational period of 10, 20 and 30 ms, the correspond-
ing age are 2047, 1736 and 1262 yr, respectively. There are only
slight difference for their age. The observational age information
of these eight pulsars are based on their associated supernova rem-
nants (Bocchino et al. 2005; Park et al. 2010; Ho & Anderson 2012;
Kumar, Safi-Harb & Gonzalez 2012). Most information about the
magnetic inclination angle α are from fitting the light curve and
spectra of γ -rays pulsars (Zhang & Cheng 2000; Du et al. 2011;
Du, Qiao & Wang 2012). They include PSR B1509−58, the Crab
pulsar, PSR B0540−69 and the Vela pulsar. PSR J1846−0258, PSR
J1833−1034 and PSR J1734−3333 lack inclination angle informa-
tion, so an inclination angle of 45◦ is used for these three pulsars.
PSR J1833−1034 was taken as an example to test the difference
choice of magnetic inclination angle. The corresponding results can
be seen in Fig. 1. It shows that the evolutional traces in P − Ṗ di-
agram are not obviously different from each other, especially for
young pulsars.

The model parameters calculated from equations (6) and (7) are
presented in Table 2. The magnetic fields of PSR J1119−6127 and
PSR J1846−0258 can reach to more than 1014 G which are even
higher than some of the magnetars. Comparing the magnetic field
in the wind braking model to the characteristic magnetic field in
Table 1, PSR J1119−6127 and PSR J1846−0258 have similar val-
ues for these two factors. However, for PSR J1734−3333, the de-
rived magnetic field has obvious gap with the characteristic mag-
netic field. It may due to the presence of pulsar wind contribute extra
braking torque to the pulsar. The Vela pulsar and PSR J1734−3333
have large age in the wind braking model among these eight pulsars,
which may be the reason for their low values of braking index.

Based on the calculations above and parameters of Tables 1 and 2,
the long term rotational evolution of these eight pulsars are shown
in Fig. 2. Except for PSR J1833−1034, the Vela pulsar and PSR
J1734−3333, the other five pulsars will first move to the lower right
in the P–Ṗ diagram before they arrive the transition point. The
transition point is defined as when the pulsar braking index equals 2.
It means that there is a balance between the effect of magnetic dipole
radiation and the effect of particle wind. Before they arrive at the
transition point, the spin-down of pulsars are dominated by magnetic
dipole radiation and the braking indices values are between 2 and 3.

Figure 1. Long term rotational evolution of PSR J1833−1034 with differ-
ent inclination angle in the VG(CR) model. The blue, red and black line
represents inclination angle of 30◦, 45◦ and 60◦, respectively.

After that, pulsars will move to the upper right in the P–Ṗ diagram,
and the spin-down of them are dominated by particle wind. During
this process, the braking indices values are between 1 and 2. PSR
J1833−1034, the Vela pulsar and PSR J1734−3333 have already
been in this stage. However, they will not become magnetars. They
may pass through the magnetar domain, but all of them will move
forward lower right again considering the effect of pulsar death.
Finally, after a pulsar stops radio emissions and the particle outflow
ceases, the spin-down of pulsars is dominated by the magnetic
dipole radiation again.

2.3 Results for individual sources

Fig. 3 shows the braking indices of these eight pulsars as a function
of their rotational period in the VG (CR) model. The braking index
will decrease from 3 to 1 as the rotational period increases. When
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Table 2. Calculated parameters of eight pulsars. The columns are, respectively: the pulsar’s name, the particle density,
the magnetic field strength (in units of 1012 G), the derived age in the wind braking model from an assumed initial period,
the death period and the corresponding age when the pulsar stops radio emission.

PSR name κ B12 τw Pd τ d

(103) ( yr) ( s) (105 yr)

B1509−58 0.08 34 1588 5.17 1.97
J1119−6127 0.025 107 1739 9.15 1.05
J1846−0258 0.057 125 794 9.9 0.47
B0531+21(Crab) 0.57 9.4 852 2.71 0.79
B0540−69 0.9 9.8 1764 2.77 0.59
J1833−1034 0.41 6.9 6000 2.32 1.39
B0833−45(Vela) 1.75 3.6 19134 1.69 2.38
J1734−3333 0.139 24.3 10444 4.37 0.93

Figure 2. Long term rotational evolution of the eight pulsars in the VG(CR)
model. The P–Ṗ diagram of pulsars is updated from fig. 1 in Tong & Wang
(2014).

n = 3, the pulsar spin-down is dominated by its magnetic dipole
radiation. With its evolution, the particle wind becomes stronger
and stronger. A braking index of n = 2 can be used to indicate
the moment when the magnetic dipole radiation and particle wind
balances. After that, the particle wind continues to be stronger until
n ≈ 1, when the pulsar spin-down is dominated by the particle wind.

2.3.1 PSR B1509−58

The braking index of PSR B1509−58 is n = 2.84. It is near to the
value of n = 3, which is dominated by magnetic dipole radiation. In
the pulsar wind model, the spin-down of this pulsar is dominated by
magnetic dipole radiation while the particle wind still make some
contribution. Therefore, the characteristic magnetic field is similar
to the derived magnetic field. And the characteristic age is similar
to the derived age. Based on the three dimensional outer magneto-
sphere model (Cheng, Ruderman & Zhang 2000), the inclination
angle of PSR B1509−58 is found to be about 60◦ (Zhang & Cheng
2000). Gaensler et al. (1999) concluded that PSR B1509−58 has an
age of less than 1700 yr by estimating the distance and dispersion
measures of it. PSR B1509−58 was used as an example to calculate

the short term evolution of period with age, which is shown in Fig. 4.
The pulsar evolves slowly in the early age which is dominated by
magnetic dipole radiation. Later, it evolves rapidly when the effect
of particle wind dominates.

2.3.2 PSR J1119−6127

The braking index of PSR J1119−6127 (n = 2.68) is also near 3.
Its spin-down is dominated by magnetic dipole radiation at present.
The derived emission height of PSR J1119−6127 is about 500 km,
suggesting α ∼ 17◦–30◦ (Weltevrede et al. 2011). Later, Rookyard
et al. (2015) pointed out that the region of inclination angle between
48◦ and 144◦ should be excluded. Kumar et al. (2012) estimated its
associated supernova ramnant G292.5−0.5 age between 4.2 and 7.1
kyr at an assumed distance of 8.4 kpc.

2.3.3 PSR J1846−0258

PSR J1846−0258 has a variable braking index (Archibald et al.
2015b; Kou et al. 2015). As it is dominated by magnetic dipole
radiation, its characteristic magnetic field is comparable with the
derived magnetic field. Although Wang, Takata & Cheng (2013)
gave 10◦ as the inclination angle of PSR J1846−0258, this value will
lead to an extraordinary high magnetic field (B = 5.12 × 1014 G).
Therefore, an inclination of 45◦ is taken during the calculations.
The death period of PSR J1846−0258 is the largest among the
eight pulsars.

2.3.4 PSR B0531+21 (The Crab pulsar)

The Crab pulsar has been monitored for a long term (Lyne et al.
1993, 2015). The timing parameters of Lyne et al. (1993) is valid
for AD 1969. As the pulsar was born at AD 1054, its age was 916 yr
at AD 1969. Du et al. (2012) took 45◦ as the magnetic inclination
angle to calculate the light curves of the Crab pulsar. The factors
here are slightly different from Kou & Tong (2015). Although the
observation age is certainly 916 yr, 20 ms are taken as its initial
period and the corresponding age is 852 yr. The particle density
here is 0.57 × 103ρGJ while it is 1.0 × 103ρGJ in Kou & Tong
(2015). Because the particle density is sensitive to the magnetic
inclination angle.

2.3.5 PSR B0540−69

Like PSR J1846−0258, PSR B0540−69 also has variable timing
behaviour (change of spin-down rate; Kou et al. 2015; Marshall et al.
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Figure 3. Pulsar braking index as a function of their rotational period in the VG(CR) model. The dashed lines are observational value of braking index and
the dotted line is the transition value of n = 2.

2015). Like PSR B1509−58, Zhang & Cheng (2000) calculated the
light curves and spectra of PSR B0540−69 and found an inclination
angle of 50◦. Based on various methods such as the pulsar spin-
down, the kinematics of the optical ejecta, and the overall dynamics

of the ejecta evolutionary models, the age of its associated supernova
remnant 0540−69.3 has been estimated to be 700–1600 yr (Park
et al. 2010). PSR B0540−69 has similar parameters (τ obs, B12 and
Pd) with the Crab pulsar.
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Figure 4. Rotational period as a function of age for PSR B1509−58 in the
VG(CR) model. The red point is its present period and age.

2.3.6 PSR J1833−1034

There are no inclination angle information about PSR J1833−1034,
so an inclination angle of 45◦ is adopted during the calculations.
Its characteristic age is similar to the derived age. However, by
applying a model of interaction between the pulsar wind nebula,
the remnant and the supernova environment, Bocchino et al. (2005)
argued that its associated supernova remnant G21.5−0.9 age may
be 200–1000 yr, which is different from our derived value.

2.3.7 PSR B0833−45 (the Vela pulsar)

For pulsars with low braking index (1 ≤ n ≤ 2), there are two
possible reasons. First, when a pulsar was born it has already been
dominated by the particle wind (n ≤ 2). Secondly, the pulsar is
very old so that the braking index evolves to the present low value.
The Vela pulsar has the highest characteristic age among the eight
pulsars. Du et al. (2011) found that for the viewing angle of 64◦,
any magnetic inclination angle between 60◦ and 75◦ in the annular
gap model can produce light curves with two sharp peaks and a
large peak separation. Page et al. (2009) found that using 300 pc as
the distance can give an age of the supernova remnant Vela about
5400–16 000 yr as emphasized by Tsuruta et al. (2009). Its long term
rotational evolution in different acceleration models are calculated
in Fig. 5. Each particle acceleration model has its own minimum
value of braking index. They are listed in Table 3. As for its low
braking index (n = 1.4 ± 0.2), the Vela pulsar is a good source to
constrain the particle acceleration models. The SCLF(II,ICS) model
has already been ruled out in the case of the Vela pulsar.

2.3.8 PSR J1734−3333

PSR J1734−3333 lacks information about its inclination angle so
an inclination angle of 45◦ is used during the calculations. It has the
highest characteristic magnetic field among the eight pulsars. Ho
& Anderson (2012) estimated its age by considering the supernova
remnant size and expansion velocity to obtain an age about 2000 yr;
and considering the pulsar’s distance away from the centre of the
supernova remnant and pulsar space velocity, to obtain an age about
23 000 yr. Like the Vela pulsar, PSR J1734−3333 has low braking
index value. Its death period is at the same level with its present
period. As a result, the death effect becomes a virtual factor for its
rotational evolution. Its long term rotational evolution in different
acceleration models are calculated in Fig. 6. Compared to the Vela

Figure 5. Long term rotational evolution of the Vela pulsar in the different
acceleration models. The expression of η can be seen in table 2 of Kou
& Tong (2015). The top line is the OG model, while the bottom line is
the SCLF(II,CR) and NTVG(CR) model. Since the power index of � in
the VG(CR) model and SCLF(I) are similar, their lines are coincident.
For the same reason, the VG(ICS) model and the NTVG(ICS) model, the
SCLF(II,CR) model and the NTVG(CR) model are similar, respectively.

pulsar, PSR J1734−3333 is a better source to constrain the particle
acceleration models. It can be seen that only the VG(CR), SCLF(I)
and OG models are valid for this pulsar.

3 FR E QU E N C Y S E C O N D D E R I VAT I V E S O F 2 2 2
P U L S A R S A N D 1 5 M AG N E TA R S C O N S I D E R I N G
M AG N E TO S P H E R I C F L U C T UAT I O N S

3.1 Summary of ν̈ observations of pulsars and magnetars

Hobbs et al. (2010) presented the timing solutions for 366 pulsars,
including 335 non-recycled pulsars.2 From table 1 in Hobbs et al.
(2010), 222 non-recycled pulsars have significant ν̈ measurement.3

Among them, 117 have positive ν̈, 105 have negative ν̈. The remain-
ing 113 non-recycled pulsars have no significant ν̈ measurement.
Therefore, there are roughly equal number of pulsars with positive,
negative and no significant ν̈. The ν̈ measurement of magnetars lies
in various individual timing papers. They are collected in Table 4.
Up to now, a total of 15 magnetars have ν̈ measurement. Out of
these 15 magnetars, 5 have positive ν̈, 10 have negative ν̈. Seven
confirmed magnetars4 have no ν̈ reported (see the McGill online
catalogue for updates;5 Olausen & Kaspi 2014).

2 Recycled pulsars are defined as P < 0.1 s and Ṗ < 10−17 (Hobbs et al.
2010).
3 By saying significant, the criterion |ν̈| ≥ 5σν̈ is chosen.
4 They are the three low-Ṗ magnetars: SGR 0418+5729, 3XMM
J185246.6+003317, CXO J164710.2−455216; SGR 0526−66 (in Large
Magellanic Cloud), CXOU J010043.1−721134 (in Small Magellanic
Cloud), SGR 1627−41, and CXOU J171405.7−381031.
5 http://www.physics.mcgill.ca/∼pulsar/magnetar/main.html
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Table 3. The minimum braking index in each acceleration model. Except for the NTVG(CR) and NTVG(ICS) model, others are listed
in table 3 of Li et al. (2014). The SCLF(II,ICS) model can be ruled out for the Vela pulsar. As for PSR J1734−3333, only the VG(CR),
SCLF(I) and OG models are meaningful. VG stands for vacuum gap, SCLF stands for space charge limited flow, OG stands for outer
gap, CAP stands for constant acceleration potential, NTVG stands for near threshold vacuum gap. CR stands for curvature radiation,
ICS stands for inverse Compton scattering. See Li et al. (2014), Kou & Tong (2015) and references therein for more information about
each acceleration model.

Model VG(CR) VG(ICS) SCLF(II, CR) SCLF(II, ICS) SCLF(I)

nmin 0.86 1.1 1.3 2.4 0.86
Model OG CAP NTVG(CR) NTVG(ICS)
nmin −0.71 1 1.24 1.12

Figure 6. Long term rotational evolution of PSR J1734−3333 in the dif-
ferent particle acceleration models. Only three particle acceleration models
are drawn because the low braking index of PSR J1734−3333 is less than
other models’ minimum value of braking index. The red, green and blue
line represents the VG(CR), SCLF(I) and OG model, respectively. The red
line and the green line are coincident.

For pulsars and magnetars with ν̈ measured, their distribution
on the P–Ṗ diagram is shown in Fig. 7. It can be seen that only
for young pulsars, their ν̈ give a meaningful braking index. For old
pulsars, their ν̈ can be both positive and negative. The ν̈ as a function
of ν̇ for pulsars and magnetars are shown in Fig. 8. The observations
show that: (1) the ν̈ can be both positive and negative. It may reflect
the timing noise of pulsars and magnetars, not the braking index.
(2) The ν̈ increase with |ν̇|, as had been shown by previous works
(Hobbs et al. 2010). This correlation explains other correlations,
e.g. correlation between ν̈ and characteristic age etc. (3) Magnetars
have a higher level of timing noise than normal pulsars (Woods
et al. 2002). This is not unexpected since magnetars have more
magnetospheric activities than normal pulsars (Mereghetti, Pons &
Melatos 2015). (4) The ν̈ can change sign for the same source during
different time span of observations (Hobbs et al. 2010; Dib & Kaspi
2014).

3.2 Fluctuating neutron star magnetosphere

The correlation between ν̇ variations and radio emissions indi-
cates that the magnetospheric processes are responsible for both

the change of torque on the neutron star and the radio emissions
(Lyne et al. 2010; Keith et al. 2013; Brook et al. 2016). If the varia-
tion amplitude in ν̇ is less than 1 per cent, then this change of torque
may remain undetected by current pulsar timing and it may result
in some kind of timing noise. Denote the time averaged rotational
energy loss rate in the neutron star magnetosphere as Ėsteady, then

− I��̇ = Ėsteady. (9)

The slow down of the neutron star may be written in a general form

�̇ = −k�n, (10)

where the minus sign on the right hand of the above equation means
the neutron star is slowing down, and k may also depend on � etc.
The second time derivative of the angular velocity is

�̈ = �̇2

�

[
n + �

�̇

d

dt
log k

]
. (11)

And the corresponding steady state braking index will be

nsteady = n + �

�̇

d

dt
log k. (12)

If k depends on time only implicitly through � which is true in the
case of wind braking: n = 3 and k ∝ η (�), then

nsteady = 3 + �

η

dη

d�
. (13)

For young pulsars, this expression is valid, and it is consistent with
equation (7). In the above expression for the braking index, it is
assumed that the second frequency derivative of a pulsar is not
contaminated by the noise process. Then the braking index reflects
the torque dependence on �. However, in the real case, fluctuations
in the magnetosphere are unavoidable. The fluctuation in the neutron
star magnetosphere can be modelled via periodic function or random
variable. These two approximations give the same result.

3.2.1 Periodic fluctuations

In the presence of some fluctuation in the neutron star magneto-
sphere, the magnetospheric torque may also fluctuate. Assuming
periodic fluctuations, then the magnetospheric rotational energy
loss rate is

Ė = Ėsteady

(
1 + δ sin

2π

T
t

)
, (14)

where δ is the amplitude of the fluctuation, and T is the time-scale.
The corresponding slow-down rate of the neutron star is

�̇ = −k�n

(
1 + δ sin

2π

T
t

)
. (15)
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Table 4. Timing parameters of 15 magnetars. The columns are, respectively: the source name, the pulse frequency,
the frequency derivative, the frequency second derivative and the references. The last digit uncertainties of ν̈ are
included, usually 1σ TEMPO-reported uncertainties.

Source name ν ν̇ ν̈ Refs.
(s−1) (s−2) (s−3)

4U 0142+61 0.115 − 2.679 × 10− 14 − 2.0(2) × 10− 23 a
SGR 0501+4516 0.173 − 1.789 × 10− 13 3.016 × 10− 22 b
1E 1048.1−5937 0.155 − 2.43 × 10− 13 − 1.62(8) × 10− 20 c
1E 1547.0−5408 0.483 − 6.19 × 10− 12 − 6.69(7) × 10− 18 d
PSR J1622−4950 0.231 − 7.5 × 10− 13 2.9 × 10− 20 e
1RXS J170849.0−400910 0.091 − 2.38 × 10− 13 400(50) × 10− 22 f
SGR J1745−2900 0.266 − 9.60 × 10− 13 − 2.6(1) × 10− 20 g
SGR 1806−20 0.132 − 4.73 × 10− 12 − 1.3(4) × 10− 18 h
XTE J1810−197 0.18 − 2.53 × 10− 13 9.40(6) × 10− 21 i
Swift J1822.3−1606 0.118 − 4.3 × 10− 15 4.4(6) × 10− 22 j
SGR 1833−0832 0.132 − 6.0 × 10− 14 − 1.3(2) × 10− 20 k
Swift J1834.9−0846 0.403 − 1.308 × 10− 12 − 1.2(3) × 10− 20 l
1E 1841−045 0.085 − 2.866 × 10− 13 − 3.2(4) × 10− 22 m
SGR 1900+14 0.193 − 2.913 × 10− 12 − 1.72(3) × 10− 19 n
1E 2259+586 0.143 − 0.973 × 10− 14 − 6.5(4) × 10− 24 o

Notes. References:
a: From Dib & Kaspi (2014), table 6 there. The ephemeris with the largest number of time of arrivals are selected.
b: From Camero et al. (2014), table 2 there. There frequency second derivative is converted from the period second
derivative in that paper. Therefore, it includes no uncertainties.
c: From Archibald et al. (2015a), table 2 there.
d: From Dib et al. (2012), table 4 there.
e: Estimated from fig. 1 in Levin et al. (2012). ν̇ is approximately the median value between MJD 55100 and
55300. ν̈ is estimated from ν̇ measurement during this time span.
f: Also from Dib & Kaspi (2014), table 4 there.
g: From Coti Zelati et al. (2015), table 2 there, solution A. See Tong (2015) for alternative explanations.
h: From Woods et al. (2007), table 3 there.
i: From Camilo et al. (2007), table 1 and fig. 3 there.
j: From Scholz et al. (2012), table 2 there. Timing solution 3 is selected, since it is the best guess by the authors.
See Tong & Xu (2013) and Scholz, Kaspi & Cumming (2014) for alternatives.
k: From Esposito et al. (2011), table 3 there.
l: From Esposito et al. (2013), table 2 there.
m: Also from Dib & Kaspi (2014), table 3 there.
n: From Woods et al. (2002), table 2 there.
o: Also from Dib & Kaspi (2014), table 5 there.

The angular velocity second derivative is

�̈ = �̇2

�

[
n + �

�̇

d

dt
log k(1 + δ sin

2π

T
t)

]
(16)

= �̇2

�

[
nsteady + �

�̇

d

dt
δ sin

2π

T
t

]
(17)

= �̇2

�

[
nsteady − 4πδ

τc

T
cos

2π

T
t

]
. (18)

In the above deductions, a serial expansion of δ is made since
fluctuation satisfies δ 	 1. From equation (18), for 4πδ τc

T

 1 or

τc 
 T
4πδ

, the �̈ will be dominated by the fluctuation term. That
is for old pulsars, their �̈ are more likely to be dominated by
the magnetospheric fluctuations. Since the fluctuation contribution
contains a cosine term, this means that there should be roughly
equal number of positive �̈ and negative �̈. At the same time, for
some pulsars their �̈ may be not very significant. Only for young
pulsars τc 	 T

4πδ
, their �̈ may be dominated by the steady state

case and the corresponding braking index is meaningful. For old
pulsars, their corresponding braking indices have lost the original
meaning. Therefore, instead of employing the braking index, �̈ will

be used in the following. When the fluctuation dominates, �̈ is

�̈ = �̇2

�
× −4πδ

τc

T
cos

2π

T
t (19)

= −2πδ
|�̇|
T

cos
2π

T
t, (20)

where |�̇| is the absolute value of �̇. Observationally, the frequency
is used instead of angular velocity. The corresponding expression
is

ν̈ = −2πδ
|ν̇|
T

cos
2π

T
t. (21)

Besides δ and T, ν̈ also depends on t. Then the ν̈ may change
sign during different time span of observations, which is consistent
with Hobbs et al. (2010). Statistically, the amplitude of ν̈ due to
magnetospheric fluctuation with amplitude δ and time-scale T is

|ν̈| = 2πδ
|ν̇|
T

. (22)

The amplitude of |ν̈| is proportional to |ν̇|, which is also consistent
with the observations (see Fig. 8). The same result can be obtained
when assuming random fluctuation in the magnetosphere. Fig. 9
shows the model calculations along with the observational data.
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Figure 7. Distribution of pulsars and magnetars with ν̈ measured on the
period–period derivative diagram. Black ‘+’ means pulsars with positive ν̈

and black ‘©’ for negative ν̈. Blue ‘+’ and ‘©’ are for magnetars. Grey
squares are pulsars with braking index measured. The arrow marks the
evolution direction of the pulsar (see Kou & Tong 2015, fig. 6 there for more
explanations).

Figure 8. ν̈ versus ν̇ for pulsars and magnetars. Black ‘+’ stands for pulsars
with postive ν̈ and black ‘©’ for negative ν̈ (from table 1 in Hobbs et al.
2010). Blue ‘+’ and ‘©’ are for magnetars (from Table 1).

The amplitude of ν̈ depends on the combination of δ/T. The time-
scale is chosen as T = 0.1 yr for both pulsars and magnetars. In the
real case, the time-scale can vary from source to source. This choice
has absorbed all the differences between different sources into the
fluctuation amplitude. Magnetars have more magnetospheric activ-
ities that are reflected in their larger values of fluctuation amplitude.
It can be seen that most of the radio pulsars are located in the range
of δ between 10−7 and 10−5 while most of the magnetars are lo-
cated in the range of δ between 0.001 and 0.1. The magnetospheric
fluctuation of magnetars are more dramatic than that of normal
pulsars.

Figure 9. Same as Fig. 8, with the model calculations added (equation 22).
The time-scale is chosen as T = 0.1 yr for both pulsars and magnetars. The
lower three lines are δ = 10−5, 10−6, 10−7 for the dashed, dot–dashed and
solid line, respectively. The upper three lines are δ = 0.1, 0.01, 0.001 for the
dashed, dot–dashed and solid line, respectively.

3.2.2 Random fluctuations

The rotational energy loss rate due to the magnetospheric process
may be made up of a steady component and a fluctuating compo-
nent

Ė = Ėsteady(1 + δ(t)), (23)

where δ(t) is a random variable. The slow down of the neutron star
is

�̇ = −k�n(1 + δ(t)). (24)

In general, the slow-down rate is determined by a dissipation term
and a fluctuation term. This is similar to the Langevin equation
for Brownian motion (Pathria & Beale 2011; Thorne & Blandford
20166), except that the above equation is non-linear in the general
case, e.g. n = 3 and k also depends on �. In order to linearize
equation (24), the angular velocity can be separated into a steady
component and a fluctuating component

�(t) = �0(t) + �1(t), (25)

where �0(t) is the angular velocity as function of time in the steady
case, �1(t) is a fluctuating term. According to the definition, �0(t)
satisfies: �̇0(t) = −k(�0)�0(t)n, where the dependence of k on �

is written explicitly. Substituting equation (25) into equation (24),

�̇0 + �̇1 = −k(�0 + �1) · (�0 + �1)n(1 + δ(t)) (26)

= −k(�0 + �1) · �n
0

(
1 + �1

�0

)n

(1 + δ(t)). (27)

Only keeping linear terms of δ or �1, k(�0 + �1) = k(�0) +
dk
d�

|�0�1, (1 + �1
�0

)n = 1 + n�1
�0

. After some recollection, the equa-

tion for �̇1 is

�̇1 + β�1 = A(t), (28)

where β = ( dk
d�

|�0 + k(�0)n 1
�0

)�n
0 = nsteady

2
1
τc

> 0 is the dissipa-

tion term, and A(t) = −k(�0)�n
0δ(t) = �̇0δ(t) is the fluctuation

6 We use some pre-final version of this book found on the web, e.g.
http://pmaweb.caltech.edu/Courses/ph136/yr2012/.
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term. Equation (28) is the same as the Langevin equation for Brow-
nian motion. It may be called ‘Langevin equation for pulsar spin-
down’.

From equation (28), �1 is a Markov random process. Since there
are many degrees of freedom in the magnetosphere which result in
the fluctuation term, �1 is a Gaussian random process. Therefore,
�1 is a Gaussian, Markov random process. The spectral density
for a Gaussian, Markov process has the general form (Thorne &
Blandford 2016)

S�1 (f ) = 4σ 2
�1

/τr

(2πf )2 + (1/τ 2
r )

, (29)

where σ 2
�1

is the variance of �1, and τ r is the relaxation time. In the
present case, the relaxation time is approximately the dissipation
time-scale τ r ∼ τ c. This will be proved later by solving equation
(28) directly. The observational time-scale of pulsars are generally
smaller than the relaxation time f−1 	 τ r or τ−1

r 	 f . This is
contrary to the Brownian motion case, where the observational time-
scale are much larger than the relaxation time-scale. The spectral
density for �1 can be simplified

S�1 (f ) = 4σ 2
�1

/τr

(2πf )2
. (30)

This approximation is equal to neglecting the dissipation term in
equation (28) and �1 has a random-walk type spectral density. The
spectral density for �̇1 is

S�̇1
(f ) = (2πf )2S�1 (f ) = 4σ 2

�1
/τr. (31)

The variance of �̇1 is

σ 2
�̇1

=
∫ ∞

0
S�̇1

(f )df . (32)

In principle, the upper bound in the integration is infinity and the
variance of �̇1 diverges. However, for a fluctuation with typical
variation time-scale T, this may set up an upper limit for the corre-
sponding frequency range f ≤ fupp = T−1. Then the variance of �̇1

is

σ 2
�̇1

=
∫ fupp

0
S�̇1

(f )df = (4σ 2
�1

/τr)fupp = 4σ 2
�1

τrT
. (33)

Similarly, the spectral density and variance of �̈1 are

S�̈1
(f ) = (2πf )4S�1 (f ) = 16π2f 2σ 2

�1
/τr, (34)

σ 2
�̈1

=
∫ fupp

0
S�̈1

df = 16π2σ 2
�1

3τrT 3
. (35)

The rms fluctuation of �̈1 is

σ�̈1
=

√
16π2σ 2

�1

3τrT 3
= 1√

3
2π

σ�̇1

T
. (36)

From equation (28) and neglecting the dissipation term �̇1 =
�̇0δ(t), therefore

σ�̇1
= |�̇0|δ, (37)

where δ is the rms fluctuation of δ(t). Therefore, the rms fluctuation
of �̈1 is

σ�̈1
= 1√

3
2πδ

|�̇0|
T

. (38)

It is consistent with the result when assuming periodic fluctuations,
equation (22). From equation (37), σ�̇1

/|�̇0| ∼ δ. For fluctuation

amplitude δ 	 10−2, their effect on spin-down rate is very small
and they mainly contribute to ν̈ which characterize the level of
timing noise. For fluctuation amplitude δ ≥ 10−2, its effect on the
spin-down rate is also observable. At the same time, the fluctu-
ating magnetosphere will also result in some variation of pulsar
pulse profile. Therefore, some correlation between the spin-down
rate variations and pulse profile variations are expected. This may
corresponds to the observations of Lyne et al. (2010).

Equation (28) can also be solved directly. For the interested fre-
quency range 1

τr
	 f 	 T −1, β and A(t) may be considered as

constant. The Fourier transform of equation (28) is

(−i2πf + β)�̃1 = Ã, (39)

where �̃1 and Ã are the Fourier transform of �1(t) and A(t), respec-
tively. Therefore,

�̃1 = Ã

β − i2πf
. (40)

The spectral density of �1 is

S�1 (f ) = SA(f )

(2πf )2 + β2
, (41)

where SA(f) is the spectral density of A(t). Compared with equa-
tion (29), the relaxation time-scale is 1

τr
= β = nsteady

2
1
τc

. Therefore,
τ r ∼ τ c for a steady state braking index 1 ≤ nsteady ≤ 3. From the
definition A(t) = �̇0δ(t), the spectral density of A(t) is

SA(f ) = �̇2
0Sδ(f ), (42)

where Sδ(f) is the spectral density of δ(t). The fluctuation δ(t) may
has a white noise type spectral density. Introducing a high frequency
cutoff and denote the rms fluctuation of δ(t) as δ, then the spectral
density of δ(t) is

Sδ(f ) = δ2T . (43)

Therefore, the spectral density of �1 is

S�1 (f ) = �̇2
0δ

2T

(2πf )2 + β2
. (44)

For the interested time-scale f−1 	 τ c or 1
τc

	 f , the spectral
density of �1 can be simplified

S�1 (f ) = �̇2
0δ

2T

(2πf )2
. (45)

The spectral density and variance of �̇1 and �̈1 can be obtained
straightforward. The same result is obtained as in the above calcu-
lations.

4 D I SCUSSI ONS

Based on the fact that pulsar timing is correlated with changes in
pulse shape (Lyne et al. 2010; Keith et al. 2013; Brook et al. 2016),
the fluctuating magnetosphere are used to explain the following two
aspects. First, the measured braking indices of eight pulsars are less
than 3. Secondly, the abnormal distribution and variety of ν̈ for 222
pulsars as well as 15 magnetars. Unlike the sudden switch of pulsar
spin-down rate (Kramer et al. 2006; Camilo et al. 2012; Lorimer
et al. 2012), timing noise is a continued process. It indicates that
switched states reflect the sudden increasement of particle wind (Li
et al. 2014; Kou et al. 2015) while timing noise reflects persistent
fluctuations of particle wind, which includes periodic fluctuations
(Section 3.2.1) or random fluctuations (Section 3.2.2). Therefore,
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Sections 2 and 3 are not separated and they are two aspects of one
problem. The values of τ c and δ can decide the fluctuations of pul-
sars, which can be seen in equation (18). It shows that, for young pul-
sars with small characteristic age, it will translate to equation (13).
However, for old pulsars with large characteristic age, it can be
written into equation (22). Fig. 7 shows that these two groups of
neutron stars have different characteristic age.

The magnetospheric changes of neutron stars will affect both the
pulse profile and spin-down torque. The changes of pulse profile
may also contribute to the timing noise. Therefore, magnetospheric
changes alone will contribute two factor to the timing noise. The
magnetospheric changes include the variation of total particle num-
ber and particle spatial distribution. A change of total particle num-
ber density will result in a significant change of spin-down rate (Li
et al. 2014; Kou et al. 2015). If the total number of particles is the
same only the spatial distribution of particles is changed, then the
pulse shape may change a lot while flux density and spin-down rate
may change only very little (e.g. PSR J1602−5100; Brook et al.
2016). As seen in Fig. 9, the fluctuation amplitude of magnetars is
larger than that of normal pulsars. It may be due to magnetars are
magnetizm-powered while pulsars are rotation-powered. The �1

in equation (28) is a Gaussian, Markov random process. Markov
process may explain several pulsar timing phenomena, such as in-
termittency, profile change and switched state (Cordes 2013).

Based on the analysis of pulsar timing noise, the fluctuation time-
scale is chosen as T ∼ 0.1 yr (Lyne et al. 2010; Keith et al. 2013).
Quasi-periodic fluctuations of magnetosphere may result in both
observed distribution of frequency second derivative and quasi-
periodic timing residual (Liu et al. 2011). Several pulsars may have
high variation amplitude δ, which will lead to a considerable change
of ν̇ (e.g. at 1 per cent level). If fluctuations are divided into high
state and low state, the observed two state of ν̇ are easily understood.
However, for variation amplitude less than 1 per cent, this change
of torque may remain undetected at present.

There are several other models suggested to explain the braking
index or timing noise of pulsars. A fall-back disc formed from su-
pernova material modulates the spin-down of young pulsars, which
would cause the pulsars to loss energy more quickly and a brak-
ing index between 2 and 3 (Alpar, Ankay & Yazgan 2001). Later,
the modified fall-back disc model was used to explained the low
braking index of PSR J1734−3333 (Caliskan et al. 2013; Liu et al.
2014; Chen & Li 2015) and the Vela pulsar (Ozsukan et al. 2014).
However, this model about pulsar spin-down only try to explain the
steady braking indices of pulsars but not including the variable and
wide distribution of ν̈ of pulsars and magnetars. In addition, whether
every supernova explosion can form a fall-back is still a question.
An alternative theory about braking index is magnetic field evolu-
tion (Chen & Li 2006; Pons, Vigano & Geppert 2012; Ho 2015).
Some works in this direction also considered the distribution of ν̈

as well as long term red noise (Zhang & Xie 2012; Xie, Zhang &
Liao 2015; Yi & Zhang 2015). However, the correlations between
pulsar timing and pulse profile point to a magnetospheric origin of
pulsar spin-down torque.

5 C O N C L U S I O N S

A fluctuating neutron star magnetosphere is considered. The braking
indices of eight pulsars and anomalous frequency second derivatives
of pulsars and magnetars can be understood uniformly in this sce-
nario. If the characteristic age is small, then the measured frequency
second derivative gives a meaningful braking index. The analysis
is consistent with Kou & Tong (2015). The rotational evolution of

the eight normal pulsars which have meaningful braking indices
(1 ≤ n ≤ 3) are spun-down by both magnetic dipole radiation and
particle wind. In the P–Ṗ diagram, these eight pulsars will evolve
to the death valley but not to the cluster of magnetars (Fig. 2). It
indicates that the effect of pulsar death is important for the long term
rotational evolution of pulsars. If pulsars have braking indices near
3 (e.g. PSR B1509−58 and PSR J1119−6127), the characteristic
magnetic field will have similar values with the derived magnetic
field. Because in this case, pulsars are dominated by magnetic dipole
radiation. For the same reason, the characteristic age will also have
similar values with the derived age. Therefore, for young pulsars
their values of characteristic magnetic field and characteristic age
still have reference meaning. The two low braking index pulsars (the
Vela pulsar and PSR J1734−3333) are good examples to constrain
different acceleration models in the neutron star magnetosphere
(Figs 5 and 6). For PSR J1734−3333, except VG(CR), SCLF(I)
and OG model, other acceleration models are ruled out. Also, the
effect of pulsar death make important influence at present for PSR
J1734−3333.

For old pulsars with large characteristic age, their frequency sec-
ond derivative are dominated by the magnetospheric fluctuations.
In this case, the frequency second derivative is better to identify
the spin-down behaviour of pulsars instead of the braking index. It
can explain the observations of 222 pulsars in Hobbs et al. (2010)
and 15 magnetars (e.g. Dib & Kaspi 2014): (1) the abnormal and
wide distribution of pulsars and magnetars ν̈; the statistically equal
values of positive and negative ν̈ (equation 21); (2) the ν̈ can change
sign for the same source during different time span of observations
(equation 21). Magnetars always have larger fluctuation amplitude
than normal pulsars. The magnetospheric variations may have the
form of random fluctuation. The fluctuating component �̇1 is a
Gauss, Markov process. This case has similar results with periodic
fluctuation, which confirms the calculations of that case. These two
different cases show the same distribution of ν̈. The magnetospheric
fluctuation will influence both pulsar timing and radiation, which
has already been obtained by the observations (Lyne et al. 2010). It
indicates that the pulsar braking torque originates from neutron star
magnetosphere and it has fluctuations.
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