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ABSTRACT

We present for the first time an explicit, complete and closed-form solution to the three-
dimensional problem of two fixed centres, based on Weierstrass elliptic and related functions.
With respect to previous treatments of the problem, our solution is exact, valid for all initial
conditions and physical parameters of the system (including unbounded orbits and repulsive
forces), and expressed via a unique set of formulae. Various properties of the three-dimensional
problem of two fixed centres are investigated and analysed, with a particular emphasis on
quasi-periodic and periodic orbits, regions of motion and equilibrium points.

Key words: gravitation — celestial mechanics.

1 INTRODUCTION

The problem of two fixed centres is the dynamical system con-
sisting of two fixed bodies exerting inverse-square forces on a test
particle. It is also known as Euler’s three-body problem (E3BP), the
Euler—Jacobi problem, and the two-centre Kepler problem, and it
is the simplest three-body problem of physical interest. The solv-
ability of the E3BP was first established by Euler in the 1760s, who
demonstrated the existence of integrals of motion involving inverse
square roots of quartic expressions. Later on, the E3BP attracted
the attention of Legendre, Lagrange and Jacobi, who recognized
that the solution of the E3BP can be expressed in terms of elliptic
functions and integrals.

Throughout the twentieth century, mathematicians and as-
tronomers frequently returned to the E3BP. Darboux (1901) showed
how the E3BP can be generalized with the addition of complex
masses at complex distances, while retaining separability in the
elliptic coordinate system. Charlier (1902) used the E3BP as the
starting point for a discussion of the restricted three-body problem
in his treatise on celestial mechanics. Hiltebeitel (1911) introduced
further generalizations of the E3BP involving linear and inverse-
cube forces.

In the early days of quantum mechanics, the E3BP served as a
model of the hydrogen molecule ion Hj (Pauli 1922). The advent
of the space age brought a renewed interest in the E3BP, after it
was established that it could be used as an approximation of the
potential of rotationally symmetric rigid bodies (Vinti 1959; Demin
1961; Aksenov, Grebenikov & Demin 1962; Deprit 1962; Aksenov,
Grebenikov & Demin 1963; Alfriend et al. 1977). Even recently,
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the E3BP has been the subject of ongoing research, both in its clas-
sical formulation but also in connection with quantum mechanics
and general relativity (Cordani 2003; Varvoglis, Vozikis & Wodnar
2004; Waalkens, Dullin & Richter 2004; Coelho & Herdeiro 2009).
The work of O’Mathiina (2008) is particularly noteworthy, devoting
four chapters to the E3BP.

From a purely mathematical point of view, the interest in the
E3BP arises from the fact that it belongs to the very restrictive class
of Liouville-integrable dynamical systems (Arnold 1989). From a
physical and astronomical point of view, the E3BP is noteworthy
for at least two reasons:

(i) as a (completely solvable) stepping-stone between the two-
body problem and the three-body problem. In particular, the planar
E3BP is analogous to a circular restricted three-body problem with-
out centrifugal force;

(ii) as an approximation of the potential of a rotationally sym-
metric rigid body.

Despite more than two centuries of research, a full and explicit
solution to the E3BP has so far proven elusive. As pointed out by
O’Mathina (2008), most authors explain that the solution involves
elliptic functions and integrals, but they stop short of explicitly
computing such solution or even sketching out how it is to be
attained. This is particularly true for the three-dimensional E3BP,
which is typically treated as an extension of the bidimensional case.
Even in the very thorough exposition of O’Mathiina (2008), the
solution of the three-dimensional E3BP is limited to the case of
negative energy and it is not explicit in the third coordinate and in
the time—angle relation.

The aim of this paper is to present for the first time a full explicit
solution to the three-dimensional E3BP in terms of Weierstrass el-
liptic and related functions. Our solution is expressed via unique
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formulae valid for any set of physical parameters and initial condi-
tions of the three-dimensional case. The use of the Weierstrassian
formalism allows us to provide a compact formulation for the solu-
tion and to avoid the fragmentation usually associated with the use
of Jacobi elliptic functions.

We need to point out that our focus is the three-dimensional case,
and although the method presented here might also be suitable for
the solution of the bidimensional case, we will not consider planar
motion: our solution to the three-dimensional case stands alone and
it is not formulated as a generalization of the bidimensional case.
We also need to make clear that the main objective of this work is to
detail the derivation of our solution and to present its general math-
ematical properties. The application to problems of astronomical
and physical interest is left for subsequent publications.

The paper is structured as follows: in Section 2, we formulate the
problem and we identify the integrals of motion in the Hamiltonian
formalism; in Section 3, we solve the equations of motion and
the time equation in elliptic—cylindrical coordinates; Section 4 is
dedicated to the analysis of the solution, which focuses on periodic
and quasi-periodic orbits, regions of motion, equilibrium points and
displaced circular orbits; Section 5 is dedicated to the conclusions
and to possible future extensions of the work presented here.

2 FORMULATION OF THE PROBLEM

The setup of the three-dimensional E3BP is sketched in Fig. 1.
Without loss of generality, we can position the two centres on the
positive and negative z-axis at a distance a from the origin of an
inertial reference frame. This choice naturally allows us to take
immediate advantage of the cylindrical symmetry of the problem,
as it will be shown shortly. The Lagrangian of a test particle moving
in the potential generated by the two fixed centres reads
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L(ri)=—+ ad 2
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V24 y2 4+ (z+a)

where r = (x, y, z) is the vector of Cartesian coordinates of the test

particle, r its time derivative, and p , represent the strength of the

two centres of attraction. ;, can either be positive or negative,
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Figure 1. Setup of the three-dimensional E3BP. Two fixed centres 11 and
1o are located on the positive and negative z-axis at a distance a from the
origin of an inertial frame of reference. | and uo exert inverse-square
forces F and F, (attractive or repulsive) on a test particle P located at the
position r. The cylindrical radius p is the magnitude of the projection of r
on the xy plane. ¢ is the azimuthal angle.
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resulting, respectively, in attractive or repulsive forces on the test
particle. In the gravitational E3BP, 1, are gravitational parame-
ters:

w12 =GM,,, 2

where M), are the masses of the two centres and G is the gravi-
tational constant. Although our solution is valid for both negative
and positive i), in the analysis of the results we will focus on the
gravitational E3BP, as it is arguably the most useful version of the
E3BP in an astronomical context.

Following Waalkens et al. (2004), the first step of the separation
of the problem is the introduction of cylindrical coordinates:

X =pcose, p=+x2+y, 3)

v =psing, ¢ = arctan(y, x), @

for the coordinates and

X =pcos¢ — ppsing, DZM, )]

L - . yx— Xy

y=psing + ppcosp, ¢="—7, (6)
x-+y

for the velocities, where arctan (y, x) is the two-argument inverse
tangent function. The Lagrangian in cylindrical coordinates reads
pZ 4 p2 ¢2 4 22
2
+ Hi . + K2 -
Ver+@—ay Vo +G+a)
As aresult of the rotational symmetry of the system, the ¢ coordinate
is now cyclic and the Lagrangian is reduced to two degrees of
freedom (in the variables p and z).
We now proceed to introduce elliptical coordinates on the (p, z)
plane via the transformation

L(p. .20, 0,2) =

O]

p=ay/(82—1) (1-n?), ®)

7z = aén, )
its inverse

Vol +G@+ay + Ve + e —a)

£ = = (10)
Vi + @ +aP —\/p*+(z —a)
n = . : (an
a
and the corresponding transformations for the velocities,
: 02 oo (£2
_fE o) —im (g ) (12)
(2 =1) (=)
t=al(én+En), (13)
and
i L[ pericra pp+z<z—a>} 14
2a | VpP+@+a) Vo +GE-a)
2a | \/pP+(Gz+al Vpt+@—a)]
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The right-hand side of equation (10) represents the sum of the
distances of the point (p, z) from the two centres, normalized by
2a. Similarly, the right-hand side of equation (11) represents the
difference of the distances of the point (p, z) from the two centres,
normalized by 2a. It thus follows that the lines of constant £ and n
in the (p, z) plane are ellipses and branches of hyperbolaec whose
foci are coincident with the masses. The domain of & is [1, 00), the
domain of nis [—1, 1].
The Lagrangian in elliptic—cylindrical coordinates reads

LLz éZSZ (1 _ nZ) N 7'72”2 (‘;’_-2 _ l)

L(En¢:E0.¢) = 5 £2_1 1—n?

+¢7 (82 =1) (1=7) + &0 + &0

3! Mn2
+ + .
a—n a@+n
Switching now to the Hamiltonian formulation of the problem with

a Legendre transformation, we introduce the generalized momenta
via the relations

(16)

aL . 2 _ 2
pe= g =% (iz — ) : amn
oL 2 p?
pn=a—ﬁ=a2ﬁ(i_:2), (18)
oL .
P =55 = ap (8 —1)(1-n), (19)
and the inverse
. pe(E2-1)
_ i (1-n*)
= 2E ) Q1)
L Po
¢=2 E-1)(1-n) (22)
The Hamiltonian then reads
1
H (Psv P> Poy 6., ¢) = m
< [pi (€= 1) +py (1-17)]
Py i 1o 23

T E NP aG-m aG+tn

Dy is a constant of motion equal to the z component of the angu-
lar momentum per unit mass of the test particle. When py is zero,
the trajectory of the particle crosses the z-axis and it remains con-
strained to a plane (that is, the problem is reduced to the planar
case). As explained earlier, we will not consider here this special
case, and we always assume that p, is non-zero (or, equivalently, &
# 1and n # £1).

We proceed now to the introduction of the new Hamiltonian
‘H., obtained through the following Poincaré time transformation
(Siegel & Moser 1971; Carinena, Ibort & Lacomba 1988; Saha
2009):

H. =MH—-h) (8 —n°), (24)
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where /i is the energy constant of the system (i.e. the numerical value
of ‘H after the substitution of the initial conditions into equation 23).
The Hamiltonian H, generates the equations of motion with respect
to the new independent variable t (often called a fictitious time),
connected to the real time ¢ through the differential relation

dr = (&% —n”) d. (25)

The Poincaré time transform can be seen as the Hamiltonian ana-
logue of a Sundman transformation (Sundman 1912): it regularizes
the problem by slowing time down when the particle is close to
either fixed centre (note how in correspondence of the two centres
£2 — n? is zero).

The equations of motion in fictitious time read

d oH, d oM,

& _ Qe dp 0T (26)
dr apg dr af

d oH, dp, oM,

L R < Jli0 ) @7
dr ap, dr on

d oH, d oH,

do _OH. - dpy O 28)
dr ap¢ dr 6¢>

while the complete expression for H,; is

He (pe. py» D361, &) = —E7h — %(m + p2)

P PE o
242 (2 — 1) - 2a? (& =1)
2

2
2 1 _ Py Py 2
+0'h == (u M2)+2a2(1—n2) +55 (1-n%). (9

The Hamiltonian . has thus been separated into the two constants

of motion

he =~ — £ Gu b+ P P 1) o
§ a 2¢> (82 —1)  2a? ’

2

2
Ui P p;
Nh— = (u — )+ s5 7 + o5 (1=n7) . (D)
a 2a(

& 1—»n?)  2a°

We can now move on to the solution of the equations of motion.

3 INTEGRATION OF THE EQUATIONS
OF MOTION

We proceed now to the explicit integration of the equations of mo-
tion (26)—(28) and of the time equation (25). We detail initially
the solution for the & coordinate; the solution for the n coordi-
nate if formally identical, while the solutions for the ¢ coordi-
nate and for the time equation require a different procedure. The
solutions for the momenta p; and p, will be easily computed via
the solutions for £ and 7. In this section, we will focus on the math-
ematical details of the solution. Section 4 will be dedicated to the
analysis of our results.

3.1 Solution for &

The equation of motion for &, equation (26), reads

¢ &p:  pe
S _ 2 32
dr a? a? (32)
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Figure 2. Phase portraits for the & variable in 10 randomly generated cases. The shaded region corresponding to £ < 1 is the domain in which the & variable
does not represent any real physical coordinate. The trajectories in the (£, d€ /dt) plane are elliptic curves. All the portraits refer to bounded trajectories, apart

from the third panel in the first row.

We can use the constant of motion /; to express p; as a function of
&, via the inversion of equation (30):

1
pe =t ——/ fe (§),

£ 1 (33)
where
fe &) = 2&%a*h + & Quia + 200)
+ &2 (=2a*h + 2a%hs) + & (—2u1a — 2poa)
—2d°h; — pj, (G4

is a polynomial of degree 4 in £. The equation of motion for & then
reads

& _ V®)

dr a?

Before proceeding to the integration and inversion of this equa-
tion, we need to highlight a useful property of f:(§). It can be
checked by direct substitution that

fe ()= —p; <0,

that is, the value of the polynomial is always negative for £ = 1. On
the other hand, for any choice of initial conditions, f:(§) must as-
sume positive values in a subrange of £ > 1, otherwise the radicand
in equation (35) would be negative. Consequently, the polynomial
f:(§) must have at least one real root in the range (1, +00) (i.e.
in the domain of interest for the variable £). Fig. 2 visualizes the
phase portraits for £ in a few randomly selected cases. It should be
noted how a necessary condition for unbounded motion is a positive
energy constant /: according to equations (34) and (35), if & is neg-
ative the radicand on the right-hand side of equation (35) assumes
negative values for & — oo. Thus, for negative & the phase portrait
for the & variable must be a closed curve.
The integration by quadrature of equation (35) reads

(35)

(36)

/ R By 37)
= —_— S,

& Je (s) a* Jo

where s is a dummy integration variable, & is an arbitrary initial

value for & and, without loss of generality, we have set the initial

fictitious time to 0. The =+ sign in front of the integral on the right-
hand side can be chosen as the sign of the initial value of d¢ /dt. With
this convention, the right-hand side of equation (37) represents the
time needed by the system to evolve from & to £ along a trajectory
in which the sign of d& /dt is constant.

The left-hand side of equation (37) is an elliptic integral which
can be inverted to yield £(t) using a formula by Weierstrass, re-
ported in Whittaker & Watson (1927, section 20.6). The general
formula is rather complicated, but it can be simplified considerably
by choosing as the initial value for the integration a root &, of the
polynomial f; (§). With such a choice, equation (37) reads

§  ds 1 [

=4+
& féf (S) a? 7

where now t; is the fictitious time of root passage for & . In analogy
with the Kepler problem, when &, is the smallest reachable root in
the domain of interest T¢ can be considered as a kind of fictitious
‘time of pericentre passage’ for the & variable. T can be computed
by solving the elliptic integral

& ds

& fé (S)

As we have mentioned above, the existence of at least one root &,
in the domain of interest for & is guaranteed by the properties of
the coefficients of f:(§). &, can be computed either numerically or
algebraically (via the quartic formula).

Equation (38) can now be integrated and inverted to yield

)
o (5) - L1 @)
In this formula, the derivatives of f;: (&) are to be taken with respect

to &, and g is a Weierstrass elliptic function defined in terms of
the two invariants

ds, (38%)

T = +a? (39)

1
=6+ (40)

14 h
— = Cath:
3 3

22 2 22 a*h’?
& = pmja” +2upaa” + usa” +

472

a*h
+?E — 2d’hp, 1)
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2 2 2.2
wnih wih Hip
g3:—;a4+ 135a4+ l4¢a2
2 2
_ ﬂﬂ a*h+ ﬁﬂ«za“hs + Ml/”azpi
3 3
Zh Zh 2 52
_““; a4+l’«z3£a4+“241’¢az
°h* 11k 11h a®h}
a + §aon? — a(’hg— 5
27 9 9 27
2h? 2h
+ Ta“pé - 7041’1517;1 (42)

computed from the coefficients of the polynomial f;(§) following
Whittaker & Watson (1927, section 20.6). Without giving a full
account of the theory of the Weierstrassian functions (for which
we refer to standard textbooks such as Whittaker & Watson 1927,
Abramowitz & Stegun 1964 and Akhiezer 1990), we will recall
here briefly a few fundamental notions about the g function. As
commonly done, in the following we will suppress the verbose
notation g (7; g2, g3) in favour of just g, (), with the understanding
that g refers to a Weierstrass function defined in terms of the
invariants (41) and (42).

The elliptic function (z; g2, g3) is a doubly periodic complex-
valued function of a complex variable z defined in terms of the two
invariants g, and g3. The complex primitive half-periods of g can
be related to the invariants via formulae involving elliptic integrals
and the roots e, e, and ez of the Weierstrass cubic

47 — gt — g3 =0 43)

(e.g. see Abramowitz & Stegun 1964, section 18.9). The sign of the
modular discriminant

A=g —27g} (44)

determines the nature of the roots e, e, and e3. In this specific case,
the invariants are by definition real, 7 is also real, and g¢(7) can
thus be regarded as a real-valued singly periodic function on the
real axis (see Abramowitz & Stegun 1964, chapter 18). We refer to
the real half-period of ¢ as we. It should be noted that, according
to equation (39), if the real period of p; is 2w, then the period of
E(T)is 2a2a)5.

¢ is an even function, and it has second-order poles at each point
of the period lattice. That is, g satisfies the following properties
(where k € Z):

05 (1) = ¢ (T + 2kwy) (45)
#5 (1) = s (—7), (46)
Tli;nkwé s (1) = +0o0, “47)

and in proximity of T = 2kw, the function g, (7) behaves, on the real
axis, like 1/72 in proximity of T = 0. Fig. 3 illustrates graphically
the behaviour of the Weierstrass elliptic function on the real axis.

We can also use the inverse Weierstrass elliptic function p~! to
express the time of root passage via the inversion of equation (40)
after setting 7 = 0:

1 i &)
2 —1 1" &
=a"p, |7 fe )+ ———0|- (48)
R FZE e TS

This is an alternative (but equivalent) formulation of the elliptic
integral (39). It must be noted that the function g~ has two solutions

MNRAS 455, 3480-3493 (2016)

10

o (2;2,3)

Figure 3. Plot of ©(2, 3; z) on the real axis over two real periods (solid
line). In this specific case, the real period 2w is approximately 2.39. The
vertical dashed lines represent asymptotes, close to which g behaves like
1/z? close to zero. The vertical dash—dotted lines in correspondence of the
real half-period w cross g at its absolute minimum value, and they are axes
of symmetry for ¢ within the real period.

within the fundamental parallelogram of g, and thus two possible
values for 7, exist. This ambiguity physically translates to the fact
that each value assumed by the & coordinate is visited twice along
a trajectory, once with a positive value for d¢ /dt and once with a
negative value.! The correct choice for 7 is the value which, when
plugged into equation (75) (which describes the evolution of p; in
fictitious time), returns the initial value of p;.

3.2 Solution for »

The equation of motion for 7, equation (27), reads
& _ v’n Py

dr a? a?’

Following the same procedure adopted for &, we can express p, by
inverting equation (31), and rewrite the equation of motion as

(1777_:|:\/fn(77)7 (50)

dr a?

where f;, () is a polynomial of degree 4 in 7:

(49)

fv} ) = 2774a2h + 773 (—2p1a + 2u0a)
+ (—2a2h — 2a2h,]) +nQuia — 2ua)
+ 2azh,7 - pi. (51)

It is easy to verify by direct substitution that
fr(ED) =—p; <0, (52)

which implies that in the domain of interest, n € ( — 1, 1), the
polynomial f, () must have real roots. Fig. 4 visualizes the phase
portraits for 7 in a few randomly selected cases.

‘We can then adopt also for 7 the simplified inversion method from
Whittaker & Watson (1927, section 20.6), and write the solution of

! Another manifestation of this ambiguity is the symmetry with respect to
the horizontal axis of the phase portraits — see the examples in Fig. 2.
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Figure 4. Phase portraits for the 7 variable in 10 randomly generated cases. The shaded regions corresponding to 7 < —1 and 1 > 1 are the domains in which
the n variable does not represent any real physical coordinate. The trajectories in the (1, dn/dt) plane are elliptic curves.

equation (50) as
1 Iy ()
U(T)=77r+1 T z | .
on () = S Sy )
Analogously to &,, 1, is a root of the polynomial £, () and 7,, is the

fictitious time of root passage for the variable 1. The Weierstrassian
function g, is defined in terms of the two invariants

a*h?  14h

(53)

& = pia® = 2pipaa’ + pia’ + =+ 70%
4p2
+ n —2a2hp§,, 54)
2h h szz
g3=—MTla4 /‘13'7 at + 14¢a2
2p 4 2 4 M2 5 o
+ 5 natho+ =hna'hy = S
2,2
_wh oy sy 4 HaPe o
3 3 4
a®h® 11h, o ML I+ a®h}
27 9 9 27
212 2h ,
+5-a'py+ Sa'hypy, (55)
and 7, can be calculated as
1 Iy (1)
2 -1 " n
- — ) 56
Ty =a e, 24fy] (7))+4(n0_m) (56)

In analogy with the notation adopted for &, we refer to the real
period of g, as 2w,. The period of n(z) is 2d’w,.

3.3 Solution for ¢ and for the time equation

The equation of motion for ¢, equation (28), and the time equation,
equation (25), read

d¢ _ py ! !

dr ~— a* 52(1)—1+1—n2(t) 57
d
ai=s%ﬂ—n%w. (58)
T

The solution of these two equations involves the integration by
quadrature of a rational function of Weierstrass elliptic functions.
In order reduce visual clutter, we introduce the notation

Ac=flE). Ay=fm). (59)

1 1
=€) By= 5 f) (). (60)

Ag, B:, A, and B, are all constants of motion depending on the
physical parameters of the system and on the initial conditions.

The general theory of the integration of rational functions of
Weierstrass elliptic functions is given, e.g. in Halphen (1886, Chap-
ter VII) and Greenhill (1959, Chapter VII). Here, it will be enough
to first perform a fraction decomposition with respect to g, and
then to integrate the decomposed fractions using the formulae from
Tannery & Molk (1893, Chapter CXII). After the substitution of
equations (40) and (53) into equation (57), the decomposition for
d¢/dr is

do _ Py As
T s+ 1) [ () + R
B PoAs
2 T—T, Ag—4B: & +4B,
8a” (&, — 1) {605 ( azé) + W}
_ PsAy
8a2(n, + 1) [@n <r;21',7> + ‘Anij(ijivli)wn}
+ pd)Ar]
T—1, Ay—4Byn,+4B,
8a%(n, — 1 [ip, (52 + S
Do Py
+ - . 61
a (g2 — 1) a? (n} — 1) ®1)
The decomposition for dz/dt reads
dt A} AcE,
i~ ]
el () -] 2 () 4]
A7 Ayt
— s - - —
oo (52) —m] 2o () - 5]
(62)

MNRAS 455, 3480-3493 (2016)
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In order to integrate equations (61) and (62), we employ two formu-
lae from Tannery & Molk (1893, Chapter CXII) (see also Gradshtein
& Ryzhik 2007, section 5.141):

du 1 o —v)
— 1 2, s 63
/p(u)—@(v) o @ {“a<u+v)+ ”5(”)} ©3)

/ du S (= v) = £ (u +v)
[p(u)_p(v)]z—p,z(v){—fu—v—Cu v

du
-2 —p" ——|. (64
up (v) — (v)/@(u)_mv)} (64)

It can easily be recognized how the terms in equations (61) and (62)
are in the form of the integrands on the left-hand sides of equations
(63) and (64) (modulo additive and multiplicative constants).>>

Following Tannery & Molk (1893, Chapter CXII), we introduce
the shorthand notation for the two integrals (63) and (64)

du
= [ 65
S, v) /p(u)—sa(v) 63)

du

Jz(u,v)Z/iz (66)
(9 ) = ()]

(with the understanding that we will add a £ or n subscript depending

on the subscript of the Weierstrassian functions appearing in the

integrals). With this convention, we can integrate equation (61) and

obtain

¢ (1) = ¢o -
ot [ () - ()]
- 8(2)%1)2 ‘751 (T ;Zfs » Vg 2) —Jea (—%, Vs 2)}
_#i”l)z :jn,, <T a—zrn’an) =T < %’Um)}
i 8(54’%]) j (r ) ) T (-2 )}
T (,;;,r_l) & (f:;r_])’ (67)
where we have introduced the constants
Ba = __W] ’ (68)
na=g” :_W] : (69)
=y :_%} ’ (70)

21t must be noted how the right-hand sides of equations (63) and (64)
have singularities when g'(v) is zero. In this situation, alternative formulae
need to be used, as detailed in Tannery & Molk (1893, Chapter CXII) and
Gradshtein & Ryzhik (2007, section 5.141). We will not consider this special
case here.

3 We need to point out a potential problem in the numerical evaluation of the
right-hand side of equation (63), related to the appearance of the multivalued
complex logarithm. If one uses the principal value for In, the right-hand side
of equation (63) will be discontinuous in correspondence of the branch cuts.
In appendix A2 of Biscani & 1zzo (2014), we discuss in detail the problem,
and we provide a solution based on the Fourier series expansion of In o (z).

MNRAS 455, 3480-3493 (2016)

A, —4Byn, +4B,,} an

4 — 1

in order to simplify the notation. Analogously, the integration of
equation (62) yields

a’A? T—T T,
o= [ () = ()
a’AgE, T—T T,
e [Js( azé,bs>—Jg,l(—a—i,bs)}
a*A? T—T T
B 16n {‘7”’2 (TH’I’”) =Tz (UTZ’b”)}

a*Am, T—1, T,
- 2 I:«Z].l ( a2 s bn) - j)].l <_a77 bn):|

Up2 = p_l l:—

+ (8 =), (72)
where we have introduced the constants
b: = ;' (B:), (73)
b, =g, (B,) (74)

again in order to simplify the notation.

3.4 Solution for p; and p,

The explicit solution in fictitious time for p; and p,, can be computed
by inverting equations (32) and (49) to yield

& &
P = T (75)
= —L S (76)
PO =170 Tar

The derivatives of £(r) and n(r) can be computed from the
solutions (40) and (53):

Aoy ( ngrs )

i@
dr 4a? [5’95 (r;f) ~ Bg]z’ )

@ _ A (%) ) 8
() )

4 ANALYSIS OF THE RESULTS

In the previous sections, we computed the full exact solution of the
three-dimensional E3BP. The evolution of the coordinates &, 1 and
¢ in fictitious time is given by equations (40), (53) and (67). The
evolution in fictitious time of the momenta p; and p, is given by
equations (75) and (76) (the third momentum, p,, is a constant of
motion). The connection between the fictitious time 7 and the real
time ¢ is given by equation (72). The equations are valid for all
initial conditions and physical parameters of the three-dimensional
system (that is, when py is not zero).

The solutions for &, n, ps and p, are expressed solely in terms of
the elliptic functions g and g’. & and p¢ are thus periodic functions
of 7 with period 2a*w;, while 1 and p, are periodic functions of t
with period 2a’w,. In general, the two periods will be different.
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The solutions for ¢(t) and #(t) involve also the Weierstrassian
functions o and ¢ (see equations 63 and 64), which are not elliptic
functions: they are quasi-periodic functions.* The fictitious time
derivatives (57) and (58) of ¢ and ¢, however, involve only the
function g and they can be thus seen as sums of functions with two
different periods, 2a’w; and 2a’w,. Such functions are sometimes
called almost-periodic functions (Besicovitch 1932).

In a way, the fictitious time t can be considered as the E3BP ana-
logue of the eccentric anomaly in the two-body problem. Kepler’s
equation for the elliptic two-body problem reads

E —esinE
H(E)= ———, (79)
n

where E is the eccentric anomaly, e the eccentricity of the orbit
and n the (constant) mean motion. Clearly, Kepler’s equation is
structurally similar to (albeit much simpler than) equation (72): they
are both transcendental equations featuring a combination of linear
and periodic parts. Kepler’s equation is a quasi-periodic function,
so that

271
t(E+27r)=t(E)+7. (80)

In a similar fashion, #(7) is the sum of two parts, one quasi-periodic
with quasi-period 2a’w¢, the other quasi-periodic with quasi-period
Zaza),,. Following the nomenclature introduced earlier, we can then
refer to #(7) (and to ¢(7) as well, since it is structurally identical) as
an almost quasi-periodic function. In Section 4.2, we will examine
periodicity and quasi-periodicity in the E3BP in more detail.

4.1 Boundedness and regions of motion

As we noted in the previous paragraph, the solution of the E3BP
in terms of Weierstrassian functions is expressed as a set of unique
formulae valid for all initial conditions and physical parameters of
the system. That is, both bounded and unbounded orbits can be
described by the same equations. Now, according to equations (8)
and (9), the test particle can go to infinity only when & goes to
infinity (by definition, the n coordinate is confined to the [—1, 1]
interval). The solution for £(7), here reproduced for convenience,

f (&)
o () - L1 @)
shows how the necessary and sufficient condition for the motion to
be bounded is

81

E(f)=§r+%

L,
%, min > ﬂfs &), (82)

where : min is the minimum value assumed by g; in the real period
2w; . When this condition holds, the right-hand side of equation (81)
has no poles and &(7) is bounded. Vice versa, when the condition
does not hold £ will reach infinity in a finite amount of fictitious

4 Here, we use the term ‘quasi-periodic’ in the following sense: a function f
is quasi-periodic with quasi-period T'if f(z + T) = g(z, f(z)). In the specific
cases of o and ¢, the following relations hold:

o(z+T)=Aefo (7)), (83)

tz+T)=¢()+C, (84)

where A, B and C are constants (Abramowitz & Stegun 1964, equations
18.2.19 and 18.2.20).

The 3D problem of two fixed centres ~ 3487

time. According to the theory of elliptic functions, within the real
period and on the real axis

pé,min = 605 (wé) . (85)

That is, the global minimum of g on the real axis is in correspon-
dence of the real half-period. In addition,

9z (@) = e, (86)

where e; is one of the roots of the Weierstrass cubic (43). By using
equations (86) and (85), we can thus rewrite the condition (84) as

1 "
e > ﬁfg &) (87)

For unbounded orbits, we can compute the fictitious time at which
& goes to infinity, 7, using the condition

oo T 1 ”
@(rﬁQ)—ﬁ&@o=a (88)
that is,
1
%=Q+f@ﬂﬂﬁ@%~ (89)

When the motion is unbounded 7, is a real quantity, whereas when
the motion is bounded 7, becomes complex. With the definitions
(73) and (60), we can rewrite equation (89) as

T =T +a’9; " (B:) . (90)

We can then immediately verify how the substitution of 7, for t in
equation (62) leads to the two denominators of the form

T7%) _p 91
9\ =2 3 (€3]

on the right-hand side to go to zero. That is, for 7 = 7, d¢/dr has a
vertical asymptote, and the real time thus goes to infinity in a finite
amount of fictitious time.

In contrast to #(t), ¢(r) has no asymptotes in fictitious time.
For t = 1, in unbounded orbits ¢(t) assumes the finite value
¢~ (which can be calculated via the substitution of 7, for 7 in
equation 67). In the E3BP, ¢, plays the same role that the approach
and departure angles play in hyperbolic trajectories in the two-body
problem.

It should be noted that o~' is a multivalued function, and
there are thus two possible values to choose from for 7., within
the fundamental parallelogram of . This duality physically cor-
responds to the fact that unbounded orbits have two asymp-
totes, one inbound and one outbound. Correspondingly, there are
two possible ¢, values, one at t = —oo and the other one at
t = oo. Fig. 5 illustrates graphically the evolution in fictitious
time of the coordinates and of 7 in a representative unbounded
trajectory.

It is worth stressing that, from a purely mathematical point of
view, even in unbounded trajectories the evolution of £ is still pe-
riodic. This periodicity is in fictitious time and it does not carry
over to the evolution in real time because of the asymptotes in
H7).

In bounded trajectories, by contrast, both £ and n vary period-
ically within the finite ranges [Emin, Emax] a0d [Mmin, Nmax]- Conse-
quently, #(t) has no asymptotes in bounded trajectories, and the
periodicity of & and 7 in fictitious time translates to a periodicity in
real time. Fig. 6 illustrates graphically the evolution in fictitious time
of the coordinates and of ¢ in a representative bounded trajectory.

MNRAS 455, 3480-3493 (2016)
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Figure 5. Evolution in fictitious time 7 of the coordinates &, n and ¢, and of the real time 7 in a representative unbounded orbit in the E3BP. £(t) features two
vertical asymptotes, reaching infinity in a finite amount of fictitious time. #(7) also has two vertical asymptotes. n(t) is bounded in the interval [—1, 1] by its

geometrical definition, and ¢(7) assumes finite values when & and ¢ go to infinity.
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Figure 6. Evolution in fictitious time t of the coordinates &, 1 and ¢, and of the real time 7 in a representative bounded orbit in the E3BP. £(7) and 7(t) are
periodic functions with two different periods. #(7) and ¢(t) are almost quasi-periodic functions.
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Figure 7. Regions of motion on the (p, z) plane in a representative bounded
trajectory. The motion is confined within the two ellipses implicitly defined
by & (p, 2) = {&min, Emax} and within the two hyperbolic branches defined
implicitly by 7 (0, z) = {min, Tmax}. Both the ellipses and the hyperbolic
branches are represented by the dashed lines. The solid line represents the
actual trajectory of the test particle. The two centres of attraction are lying
on the z-axis at z = +1.

In Section 2, we introduced the elliptic—cylindrical coordinate
system defined by equations (10) and (11):

VPGt + Vo + )
- = ,

& (92)

g VP Gral = Vp+G—ay
- 2a '

For fixed values of £ and 5, these two equations define confocal
ellipses and hyperbolic branches in the (p, z) plane. This means
that, in bounded orbits, the motion of the test particle in the (p, z)
plane is confined in the intersection of two geometric regions:

93)

(i) an elliptic ring implicitly defined by the condition &, < &

IA

émax,
(ii) a hyperbolic ring implicitly defined by the condition 7,
77 S nmax-

IA

The regions of motion in a representative bounded case are illus-
trated in Fig. 7.

We can explicitly compute the fictitious time at which & and
n assume their minimum and maximum values. According to the
theory of elliptic functions, g has a global finite minimum on
the real axis in correspondence of the real half-period w: (and,
analogously, g, has a global minimum at ,)). The global maximum
for ¢ on the real axis is at 2kw; (k € Z), where the value of the
function is +00. Consequently:

Emin =& (7:5) o Emx =6 (azwé + TE) ’ %94)

Nmin = 1 (Tn) ’ Nmax = 7 (azu)n + Tn) . (95)

4.2 Periodicity and quasi-periodicity

In the previous sections, we have mentioned how the evolution of &
and 7 in fictitious time is periodic, with two periods that, in general,

The 3D problem of two fixed centres 3489

will be different. The periodicity in fictitious time of each coordinate
translates to a periodicity in real time only for bounded orbits. By
contrast, the evolution in fictitious time of the third coordinate ¢
and of the real time 7 derives from the integration of almost periodic
functions, and it is thus almost quasi-periodic. We are now going to
examine in more detail the behaviour of ¢ and . We will focus on
the study of ¢(7), as #(t) is structurally identical.

The derivative in fictitious time for ¢(7), equation (57), can be
seen as a linear combination of two periodic functions:

dp  dg: () | dg, (D)
dr = dt + dr ’ (96)
where
dee (z) Dy

v a2 20— 1]’ ©n
d¢n (T) o P (98)

dr a2 [1 —n? (1')] '
The sign of d¢/dt is either always positive or always negative,
depending on the sign of the constant p,, and thus ¢(7) is a mono-
tonic function. ¢¢(7) is given by the terms in equation (67) related
to &, and similarly ¢,(7) is given by the terms related to 7, so that
equation (67) can be written as

¢ (1) =¢o+ d: (1) + ¢, (). 99)

Since their derivatives are periodic functions with periods 2w, and
2w,, ¢(7) and ¢, () are arithmetic quasi-periodic functions with
quasi-periods 2w; and 2w,,. That is, for any 7 € R,

o (r + 2w5) — ¢ (1) _

. o, (100)
¢, (T +2w,) — ¢, (1) _ o, (100
2w,

where ®; and &, are constants representing the average rate of
change of ¢:(7) and ¢, (7). It follows then that the average rate of
change of ¢(7) is simply

D + D, (102)

That is, ¢(7) will oscillate almost periodically around a line parallel
to the line

(0 + @) 7. (103)

The situation is illustrated in Fig. 8.

The ratio between the periods of £ and 7, w; /w,, is in general a
real value. If
Weg n
@ _n (104)
w, m
where n and m are two coprime positive integers, then & and n will
share the same finite period T = 2mw; = 2nw,:

E(1) =& (v +2mw;) =E(x +T), (105)

n@) =n(t+2nw,) =n+T). (106)

We refer to this case as an isochronous configuration. In an
isochronous configuration, d¢/dr and d¢/dt become periodic func-
tions of period 7. ¢(7) and #(7) are integrals of periodic functions,
and thus they are arithmetic quasi-periodic functions:

o +T)=¢(1)+¢r, (107)

t@+T)=1t()+1r, (108)

MNRAS 455, 3480-3493 (2016)
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20

Figure 8. Evolution in fictitious time 7 of the ¢ coordinate in a represen-
tative bounded trajectory in the E3BP. The solid line represents the actual
evolution of the ¢ coordinate, while the dashed line represents the average
rate of change of ¢ in fictitious time, which amounts to ®z + @, (see
equation 103). ¢ is an almost quasi-periodic function of t.

where ¢7 and f7 are two constants depending only on the initial
conditions and physical parameters of the system. From a geomet-
ric point of view, an isochronous configuration generates a quasi-
periodic three-dimensional trajectory. That is, after a quasi-period
T, the coordinates £ and n and the momenta ps and p, will as-
sume again their original values, while the coordinate ¢ will be
augmented by ¢r.

It is possible to look for isochronous configurations by setting
up a numerical search. After fixing two coprime positive integers n
and m and the physical parameters of the system, the goal will be
to find a set of initial conditions that minimises the quantity

|ma)5 — na),]’ . (109)

Such a search can be performed with standard minimization al-
gorithms. In this case, we used the SLSQP algorithm from Kraft
(1994), as implemented in the scipy pyTHON library (Jones et al.
2001). Fig. 9 displays a representative quasi-periodic trajectory
found by a numerical search.

As a next step, we can look for periodic orbits: if, in an
isochronous configuration, the ¢y constant is commensurable with
2m, then the trajectory of the test particle in the three-dimensional
space will be a closed curve. In other words, the search for periodic
orbits can be cast as the minimization of the function

271

mo; — nw,| + ¢>T%7 , (110)

where n, m and k are positive integers, n and m are coprime and %
is the modulo operator. Fig. 10 displays a representative periodic
trajectory found by a numerical search.

4.3 Equilibrium points

In the last section of our analysis, we will briefly examine the
equilibrium points in the E3BP. It is clear from the form of the
Lagrangian (1) that in Cartesian coordinates there is an equilibrium
point lying on the z-axis, where the forces exerted by the two bodies
are balanced. This is a ‘real’ equilibrium point, in the sense that the
test particle will be at rest if placed in this point with a null initial
velocity. This equilibrium point corresponds to the L, , 3 Lagrangian
points in the circular restricted three-body problem.

MNRAS 455, 3480-3493 (2016)

In elliptic—cylindrical coordinates, we cannot properly character-
ize the equilibrium point on the z-axis as it lies in correspondence of
asingularity of the coordinate system. On the other hand, in elliptic—
cylindrical coordinates we have another set of equilibrium points
characterized by constant £ and/or 5. These are not equilibrium
points in which the particle is at rest:

(i) if only & is constant, then the motion is confined to a section
of the surface of an ellipsoid of revolution,

(ii) if only 7 is constant, then the motion is confined to a section
of the surface of a hyperboloid of revolution,

(iii) if both & and 7 are constant, the motion is confined to a circle
resulting from the intersection of an ellipsoid and a hyperboloid of
revolution.

The third case, in particular, corresponds to the following initial
setup:

(i) the net force acting on the particle is parallel to the xy plane,

(ii) the velocity vector of the particle is also parallel to the xy
plane,

(iii) the direction and the magnitude of the velocity vector are
those of a Keplerian circular orbit with a virtual centre of attraction
on the z-axis, whose mass is exerting a force equal to the net force
acting on the particle.

In other words, this case corresponds to a circular orbit parallel
to the xy plane along which the z components of the forces from
the two centres of attraction cancel each other, leaving a net force
directed towards the z-axis. We refer to this particular setup as a
displaced circular orbit.

From the point of view of our solution to the E3BP, a displaced
circular orbit is characterized by the solutions for £ and 7 collapsing
to constant functions. According to equations (40) and (53), this can
happen only when

L&) =0, (111)

fi ) =0. (112)

From the physical point of view, the balance of the z components
of the two forces acting on the test particle leads to the following
relation between p and z:

p=¢w+nﬁmm—oﬂﬁ*a—ﬁﬂhm+mm.(Ha

(i (@ — 21 = [wa (@ + )1

Given a pair of coordinates (py4, z4) satisfying equation (113), we
can then compute the magnitude of the total net force acting on the
test particle (parallel to the xy plane and directed towards the z-axis)
as

F, = M1Pd + M2 Pd (114)

I:p3 + (Zd - a)z} 213 [pj + (Zd 4 a)2] 2/3°

F, corresponds to the force exerted by a virtual centre of attraction,
lying at the coordinates (0, z,) in the (p, z) plane, whose gravitational
parameter is

ta = p;Fy. (115)

3 Displaced circular orbits are also present in the Stark problem, which is a
limiting case of the gravitational E3BP (Namouni & Guzzo 2007; Lantoine
& Russell 2011; Biscani & 1zzo 2014).
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2.5

2.0

Figure 9. Graphical depiction of a representative quasi-periodic orbit in the E3BP over a single quasi-period. In this specific case, the periods of & and 7 are
in a ratio of 3/7 with an accuracy of 104, The left-hand panel displays the trajectory in the (p, z) plane (solid line), together with the boundaries of the region
of motion (dashed lines). The right-hand panel displays the trajectory in the three-dimensional space. In quasi-periodic orbits, the trajectory in the (p, z) plane
is a closed figure similar to a Lissajous curve (the difference being that here the periodic functions defining the figure are elliptic functions, rather than circular
functions). In the three-dimensional space the trajectory is not closed: after one quasi-period & and n will assume again the original values, while ¢ will be
augmented by a constant quantity.

I

Figure 10. Graphical depiction of a representative periodic orbit in the E3BP over a single period. In this specific case, the periods of & and » are in a ratio of
91/99 with an accuracy of 1013 and %TT = 96 with an accuracy of 107!, The left-hand panel displays the trajectory in the (p, z) plane (solid line), together
with the boundaries of the region of motion (dashed lines). The right-hand panel displays the trajectory in the three-dimensional space. Analogously to a
quasi-periodic orbit, the trajectory in the (p, z) plane is a closed elliptic Lissajous figure. Unlike in the quasi-periodic case, the three-dimensional trajectory
is also a closed figure. For this orbit, a = 1, u; = 1, up = .05, the initial Cartesian position vector is (1.207 937 596 667 36, —0.493 320 558 636 725,
1.197 606 785 945 65), and the initial Cartesian velocity vector is (—0.498435 147674914, 0.548228 167205 306, 0.496 626916283 632). The period is
405.074 289 498 234.

We can now use the well-known relation between gravitational Figs 11 and 12 depict two representative slightly perturbed displaced
parameter and orbital radius for circular Keplerian orbits to compute circular orbits.
the velocity along a circular displaced orbit as

5 CONCLUSIONS AND FUTURE WORK

_ 116 In this paper, we have presented for the first time a complete, closed-
i = E (116) form solution to the three-dimensional problem of two fixed centres.

MNRAS 455, 3480-3493 (2016)
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Figure 11. Graphical depiction of a slightly perturbed displaced circular orbit in the E3BP near the xy plane. The initial conditions have been chosen close to
the setup described by equations (113) and (116). The left-hand panel displays the trajectory in the (p, z) plane (solid line), together with the boundaries of the
region of motion (dashed lines). The right-hand panel displays the trajectory in the three-dimensional space.
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Figure 12. Graphical depiction of a slightly perturbed displaced circular orbit in the E3BP far from the xy plane. The initial conditions have been chosen close

to the setup described by equations (113) and (116). The left-hand panel displays the trajectory in the (p, z) plane (solid line), together with the boundaries of

the region of motion (dashed lines). The right-hand panel displays the trajectory in the three-dimensional space.

Our solution is based on the theory of Weierstrass elliptic and re-
lated functions, and it is expressed via unique formulae valid for
any set of initial conditions and physical parameters of the system.
Remarkably, our solution is strikingly similar to (albeit more com-
plicated than) the solution of the two-body problem: the real time
is substituted by a fictitious time, analogue to the mean anomaly
in Kepler’s problem, and the connection between real and fictitious
time is established by an equation structurally similar to Kepler’s
equation.

The compact form of our solution allows us to investigate the
properties of the dynamical system. In particular, we have for-
mulated analytical criteria for quasi-periodic and periodic motion,
and we have identified, via a simple numerical search, a few con-
crete representative quasi-periodic and periodic orbits. We have also
discussed the dichotomy between bounded and unbounded orbits,
the topology of the regions of motion, and we have identified dis-

MNRAS 455, 3480-3493 (2016)

placed circular orbits as equilibrium points in elliptic—cylindrical
coordinates.

In future papers, we will focus on the physical and astronomical
applications of the results presented here. Of particular interest
are the application of our solution to the Vinti potential and the
interpretation of the E3BP as a limiting case of the circular restricted
three-body problem.
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APPENDIX A: SOLUTION ALGORITHM

In this section, we are going to detail the steps of a possible im-
plementation of our solution to the three-dimensional E3BP, start-
ing from initial conditions in Cartesian coordinates. The algorithm
outlined below requires the availability of implementations of the
Weierstrassian functions g, &', g ~', ¢ and o, and of a few related
ancillary functions (e.g. for the conversion of the invariants g, and
g3 to the periods).
The algorithm is given as follows.

(i) Transform the initial Cartesian coordinates into initial elliptic—
cylindrical coordinates &, n and z, and compute the initial Hamilto-
nian momenta p;, p, and py. The formulae for these transformations
are available in Section 2.

(ii) Compute the constants of motion A, h; and h,, through the
substitution of the initial Hamiltonian coordinates and momenta
into equations (23), (30) and (31).
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(iii) Compute the values of the invariants g, and g3 for both g
and g,, using equations (41), (42), (54) and (55). The periods of e
and g, can be determined from the invariants using known formulae
(see e.g. Abramowitz & Stegun 1964, Chapter 18).

(iv) Determine the roots &, and n, of the polynomials (34) and
(51). Since these are quartic polynomials, there are four possible
values for each root. We can immediately discard complex roots
and those roots whose values are outside the domains of interest
for the variables (i.e. (1, +00) for & and (—1, 1) for n). Note that
complex roots and roots outside the domain of physical interest
can still be used for the computation of the solution, but they lead
to complex-valued times of pericentre passage and they have no
immediate physical interpretation.

(v) Using the surviving values for &, and 7,, compute the times
of pericentre passage 7 and t, via equations (48) and (56). As
explained at the very end of Section 3.1, the calculation of 7 and
T, via ! produces a pair of values for each &, and 5,. We can
immediately discard the values of £, and 7, which result in complex
7¢ and 1, for they correspond to unreachable roots.

(vi) At this point either one (for unbounded motion) or two (for
bounded motion) values for &, and n, remain, both real. We select
the smaller values for &, and 7, (as we are interested in the times
of pericentre passage), and we compute the corresponding pairs of
values for 7; and 7, via equations (48) and (56). These pairs of
values will all be real and positive. We select the smaller values
for both times of pericentre passage and we check the sign of the
initial values for d§ /dt and dn/drt: if they are positive, we negate
the corresponding time of pericentre passage (as the pericentre was
reached before T = 0), otherwise we can leave them as they are (as
the pericentre will be reached after T = 0).

(vii) After having determined &,, 7¢, , and 7,, we have all the
ingredients to implement the solutions for the three coordinates,
their conjugate momenta and the time equation (equations 40, 53,
67,72,75 and 76).

The procedure outlined above assumes the following conven-
tions:

(i) the period pairs for o and g, are chosen as explained in
Section 3.1: the first period is always real and positive, the second
one is always complex with positive imaginary part;

(ii) the p~! function returns a pair of values within the funda-
mental parallelogram defined by the periods pair.

APPENDIX B: CODE AVAILABILITY

We have implemented our solution to the E3BP in an open-
source PYTHON module which is freely available for download here:
https://github.com/bluescarni/e3bp.

The module depends on the w_elliptic pyTHON/c++ library,
which provides an implementation of the Weierstrassian functions.
The code is available here: https://github.com/bluescarni/w_elliptic.
All the numerical computations and all the graphs presented in
the paper have been implemented with and produced by these two
software modules.

This paper has been typeset from a TX/IATEX file prepared by the author.
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