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ABSTRACT
Digital correlated double sampling (DCDS), a readout technique for charge-coupled devices
(CCD), is gaining popularity in astronomical applications. By using an oversampling ADC
and a digital filter, a DCDS system can achieve a better performance than traditional analogue
readout techniques at the expense of a more complex system analysis. Several attempts to
analyse and optimize a DCDS system have been reported, but most of the work presented in
the literature has been experimental. Some approximate analytical tools have been presented
for independent parameters of the system, but the overall performance and trade-offs have not
been yet modelled. Furthermore, there is disagreement among experimental results that cannot
be explained by the analytical tools available. In this work, a theoretical analysis of a generic
DCDS readout system is presented, including key aspects such as the signal conditioning stage,
the ADC resolution, the sampling frequency and the digital filter implementation. By using a
time-domain noise model, the effect of the digital filter is properly modelled as a discrete-time
process, thus avoiding the imprecision of continuous-time approximations that have been used
so far. As a result, an accurate, closed-form expression for the signal-to-noise ratio at the
output of the readout system is reached. This expression can be easily optimized in order to
meet a set of specifications for a given CCD, thus providing a systematic design methodology
for an optimal readout system. Simulated results are presented to validate the theory, obtained
with both time- and frequency-domain noise generation models for completeness.

Key words: instrumentation: detectors – methods: analytical – techniques: imaging spec-
troscopy – telescopes.

1 IN T RO D U C T I O N

Charge-coupled devices (CCDs) are widely used for scientific imag-
ing because of their high quantum efficiency, linearity and photon
dynamic range. However, the dynamic range of astronomical CCDs
is usually limited by the readout noise produced by the on-chip
amplifier and the reset noise at the sensing capacitor (White et al.
1974; Barbe 1975; Janesick 2001). A correlated double sampling
(CDS) scheme removes the reset noise and attenuates low-frequency
noise components (White et al. 1974; Barbe 1975). White noise
components can also be reduced by using a limited-bandwidth pre-
amplifier. However, lowering the bandwidth requires a longer sep-
aration between samples due to the signal settling, which increases
the pixel time and the low-frequency noise contribution (Kansy
1980; Hopkinson & Lumb 1982).
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In the search for a better noise reduction, a differential-averaging
scheme was proposed, which was proven to be optimal for white
noise components (Hegyi & Burrows 1980). The usual implementa-
tion, known as dual slope integration, comprises analogue switches
and an integrator (Janesick 2001). By using this technique on a
standard CCD, the noise can be lowered at the expense of a reduced
frame rate by using longer pixel integration times. However, the
readout noise cannot be reduced without bound due to the contri-
bution of low-frequency noise, which imposes a noise floor that
limits the performance of CCDs for low-light applications. A com-
prehensive analysis of analogue readout schemes can be found in
Hopkinson & Lumb (1982), which provides analytical expressions
useful for design.

The development of low-noise readout techniques was inactive
for over two decades, until Gach et al. (2003) proposed the digital
correlated double sampling (DCDS) scheme. In this scheme, most
of the analogue circuitry is replaced by an oversampling ADC and a
digital filter. Due to the development of high-speed, high-resolution
ADCs, the digital implementation of the differential-averaging has
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outperformed the traditional dual slope integration. Furthermore,
the DCDS scheme allows us to implement any arbitrarily shaped
filter instead of a simple averaging filter, thus increasing the design
complexity compared to that of the well-studied analogue tech-
niques.

Based on a qualitative understanding of noise correlation prop-
erties, Gach et al. (2003) experimentally found that, for a particular
CCD, a weighted filter performs better than an averaging filter.
However, this result was only optimal for a specific setup and was
not supported by an analytical framework. Using a different exper-
imental setup, Clapp (2012) tested similar weighted profiles, but
reported a better performance for the averaging filter. Clapp also
presented an approximated expression to compute the noise of the
DCDS system, although it was derived only for an averaging filter.
Therefore, the theory failed to explain the disagreement with Gach
et al. (2003). Afterwards, Tulloch (2013) simulated the performance
of several weighted filters and reported a marginal noise reduction
over the averaging filter at low pixel rates. A first approach to com-
pute optimal weights analytically was presented by Alessandri et al.
(2013), who analysed the design of the digital filter for noise reduc-
tion under ideal settling conditions of the video signal. Other design
variables such as the ADC sampling frequency and resolution, and
the amplifier bandwidth have been studied independently (Smith
2013; Tulloch 2013; Stefanov & Murray 2014). However, there has
been no analysis for the overall performance of a DCDS readout
system with arbitrary weighted filters.

In this work, an in-depth theoretical analysis of a generic DCDS
readout system is presented as follows: Section 2 provides a math-
ematical description of the DCDS system. In Section 3, the output
statistics of the system are computed with the proper continuous-
and discrete-time treatment of the noise processes involved. The
signal-to-noise ratio (SNR) optimization model is depicted in Sec-
tion 4, and a simulation model for a DCDS readout system is de-
picted in Section 5. Theoretical and simulated results are presented
in Section 6. In Section 7, conclusions are drawn.

2 R E A D O U T S Y S T E M

Fig. 1 depicts a generic setup of a DCDS readout system along with
the characteristic waveforms of a CCD. The measurement of each
pixel is performed as follows: the sensing capacitor Cs is reset to Vref

by the analogue switch M1. Due to thermal noise, charge injection
and clock feedthrough, a voltage drop �V produces an uncertain
initial voltage, which will be referred to as the reset voltage. At t = td,
the pixel charge is transferred to the sensing capacitor, discharging
the capacitor by a voltage Vp, which is related to the pixel charge
ne by the output sensitivity Sv, thus

Vp = Svne. (1)

Therefore, the voltage at the sensing capacitor can be expressed as

va(t) = Vr − vp(t), (2)

where Vr = Vref − �V is the reset voltage, vp(t) = Vpu(t − td) is
the pixel signal and u(t) is the Heaviside function. The reset pulse
is left out of equation (2) for simplicity, and it is assumed that the
reset voltage is fully settled.

The voltage at the sensing capacitor is buffered by an on-chip
amplifier, which adds noise to the measurement. This amplifier can
be modelled as a noiseless amplifier (block Amp in Fig. 1) preceded
by an equivalent series noise voltage source with two-sided Power
Spectral Density (PSD) S(iω) (Gray 2009). Hence, the voltage at

Figure 1. Generic setup of a DCDS readout system (top), and typical
waveforms of a CCD (bottom), where va is the voltage at the CCD sensing
capacitor, and vc is the voltage after the on-chip amplifier and the signal
conditioning stage, both described by G(s). The signal is sampled starting
at t = 0, and the digital filter depicted by hj is applied to compute the pixel
value. The amplifier noise, modelled by n(t), is not considered in the plots
for simplicity.

the input of the noiseless amplifier is given by

vb(t) = Vr − vp(t) + n(t), (3)

where n(t) is the amplifier input-referred series noise voltage.
The CCD output is processed by a signal conditioning stage as

depicted in Fig. 1. For analysis purposes, the noiseless amplifier and
the signal conditioning circuit can be described by a single generic
transfer function G(s) with impulse response g(t).

The signal at the ADC input can be computed as a linear convo-
lution between vb(t) and g(t), hence

vc(t) = {Vr ∗ g}(t) − {vp ∗ g}(t) + {n ∗ g}(t), (4)

where ∗ is the convolution operator. Then, the signal is sampled
with a period Ts, where t = 0 is arbitrarily defined before the
first sample, as shown in Fig. 1. A column vector of N samples
x = [x1, . . . , xj, . . . , xN]t is taken at t = jTs, with j = 1, . . . , N,
thus

xj = vj + rj + nj + qj, (5)

wherevj =−{vp ∗ g}(jTs),rj ={Vr ∗ g}(jTs),nj ={n ∗ g}(jTs)and
qj is the quantization and electronic noise introduced by the ADC.
Finally, the digital filter described by h= [h1, . . . , hj, . . . , hN]t is
applied to compute the pixel value as

Px = htx

=
N∑

j=1

hjxj, (6)

which is the output of the DCDS system.
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3 O U TPU T STATISTIC S

Knowing the noise characteristics of the system at the ADC input,
the expression for the SNR after the digital filter is derived as
follows. The mean value of the pixel measurement can be computed
as

μx = E{Px}

=
N∑

j=1

hj(E{vj} + E{rj} + E{nj} + E{qj})

=
N∑

j=1

hj(vj + rj), (7)

since nj and qj are zero-mean random variables (see Section 3.2),
and both vj and rj are deterministic functions of Vr and Vp, which
are constant within a pixel. The variance of the pixel measurement
is given by

σ 2
x = E{(htx − μx

)2}

= E

⎧⎨
⎩

⎛
⎝ N∑

j=1

hjnj + hjqj

⎞
⎠

2⎫⎬
⎭ . (8)

Considering that nj and qj are independent variables (see
Section 3.2), the expected value of their product is zero, thus

σ 2
x =

N∑
j=1

N∑
k=1

hjhkE{njnk} +
N∑

j=1

N∑
k=1

hjhkE{qjqk}

=
N∑

j=1

N∑
k=1

hjhkRn[j, k] +
N∑

j=1

N∑
k=1

hjhkRq[j, k]

= σ 2
amp + σ 2

ADC, (9)

where Rn[j, k] and Rq[j, k] are the terms of the discrete autocorre-
lation matrices of the amplifier and ADC noise, respectively. The
noise models for these processes and the procedures to compute σ 2

amp

and σ 2
ADC are presented separately in the following subsections.

3.1 Output amplifier noise

The noise of the CCD output amplifier usually comprises white
noise and one or more low-frequency noise components (Hopkinson
& Lumb 1982; Janesick 2001). For mathematical purposes, the two-
sided PSD of the amplifier input-referred series noise voltage is
described as a superposition of power-law noise sources given by

S(iω) =
∑

m

Am |ω|αm [V 2/Hz]

=
∑

m

Sm(iω)[V 2/Hz], (10)

which describes white noise (αm = 0) and low-frequency noise,
where αm is usually between −1 and −2. Accordingly, at the ADC
input, the noise spectrum is given by

Sc(iω) =
∑

m

Sm (iω) |G(iω)|2 [V 2/Hz]. (11)

Given the composition of equation (11), the output-referred volt-
age noise will be derived for a single power-law noise source Sm(iω),
and the total noise can be computed as the superposition in quadra-
ture of the contribution of each power-law noise source.

Although the autocorrelation matrix from equation (9) could be
computed by the inverse Fourier transform of Sc(iω), it usually
does not yield a closed-form expression and requires N infinite-
length numerical integrations. Therefore, the resulting expression
for σ 2

x provides little insight for design. An alternative approach,
widely used in instrumentation for detectors in particle physics
experiments, employs a time-domain noise model to design optimal
filters. The noise is modelled as a sequence of pulses with a certain
shape ỹ(t), arriving poissonianly at times ta with an average rate
ν and random sign (Goulding 1972; Radeka 1988; Pullia & Gatti
2001; Pullia & Riboldi 2004; Avila, Alvarez & Abusleme 2013).
The pulse shape that models a noise source Sm(iω) referred to the
ADC input is expressed as (see Appendix A)

ỹm(t) =
√

Am

ν

dαm/2

dtαm/2
g(t). (12)

The total integrated noise σ 2
m measured at the ADC input is com-

puted in the time domain using Campbell theorem (Papoulis & Pillai
2002).

σ 2
m = ν

∫ t

−∞
ỹ2

m(t − ta)dta

=
∫ ∞

−∞
y2

m(ta)dta, (13)

which is equivalent to the amplifier noise autocorrelation function
evaluated at t = 0 (see Appendix B). When the noise converges to
a finite value, and according to Parseval theorem, σ 2

m can also be
computed in the frequency domain (Radeka 1988), thus

σ 2
m = 1

2π

∫ ∞

−∞
Sm(iω) |G(iω)|2 dω. (14)

The total integrated noise can be decomposed into two uncorrelated
noise sources: the noise contribution of pulses that arrive before
sampling (i.e. ta < 0) and the noise generated within the sampling
window (i.e. 0 < ta < NTs), hence

σ 2
m =

∫ 0

−∞
y2

m(t − ta)dta +
∫ t

0
y2

m(t − ta)dta

= σ 2
m,0(t) + σ 2

m,t (t). (15)

Since σ 2
m,0(t) is the contribution of pulses generated before the first

sample, its autocorrelation matrix is given by

Rm,0[j, k] = σm,0(jTs)σm,0(kTs), (16)

and its contribution after the filter is directly computed as

σ̂ 2
m,0 =

⎛
⎝ N∑

j=1

hjσm,0(jTs)

⎞
⎠

2

. (17)

Using equation (15), this can be written as

σ̂ 2
m,0 =

⎛
⎝ N∑

j=1

hj

√
σ 2

m − σ 2
m,t (jTs)

⎞
⎠

2

. (18)

The contribution of the noise generated within the sampling win-
dow is computed by the same principle, which is developed in detail
by Avila et al. (2013). Thus,

σ̂ 2
m,t =

N∑
j=1

(
N−j∑
k=0

hj+k

√
σ 2

m,t ((k + 1)Ts) − σ 2
m,t (kTs)

)2

. (19)
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Finally, the output-referred contribution of Sm(iω) is

σ̂ 2
m = σ̂ 2

m,0 + σ̂ 2
m,t (20)

and the total amplifier noise contribution is added in quadrature,
hence

σ 2
amp =

∑
m

σ̂ 2
m. (21)

3.2 ADC noise autocorrelation

Consider an ADC with a resolution of B bits and a full-scale volt-
age range VFSR, so � = VFSR/2B is the least-significant bit (LSB).
If the ADC is not overloaded, and if the input signal is large and
active enough to span over several quantization levels, the quanti-
zation noise is modelled as an uncorrelated, zero-mean white noise
with variance σ 2

q = �2/12 (Widrow 1956). In the case of a DCDS
system, a slow varying but noisy signal is sampled, and the afore-
mentioned conditions are met if � is comparable to the standard
deviation of the independent noise between two samples. This noise
is composed by the CCD noise contribution generated within two
samples and the ADC electronic noise σ 2

e , also called transition
noise. Therefore, the LSB is upper-limited by

� <

√
σ 2

e +
∑

m

σ 2
m,t (Ts). (22)

Under this assumption, the autocorrelation matrix of the ADC noise
is given by

Rq[j, k] = δ[j, k]
(
σ 2

q + σ 2
e

)
, (23)

where δ[j, k] is the Kronecker delta. The ADC noise contribution at
the filter output is directly computed as

σ 2
ADC =

(
σ 2

q + σ 2
e

) N∑
j=1

h2
j . (24)

For larger values of �, the quantization noise may be partially cor-
related and the noise contribution will be higher than that predicted
in equation (24). Therefore, in order to benefit from the quanti-
zation noise reduction of the digital filter, the ADC resolution is
lower-limited by

B > log2

⎛
⎝ VFSR√

σ 2
e + ∑

m σ 2
m,t (Ts)

⎞
⎠ . (25)

Nevertheless, a higher resolution still provides a benefit in the op-
timal setup due to a lower quantization noise, and equation (25) is
rarely an active restriction in low-noise applications. Furthermore,
typical high-resolution ADCs have a transition noise of several LSB,
so this equation is met regardless of the CCD noise. If the ADC res-
olution is fixed, the full-scale range referred to the sensing capacitor
can be adjusted by the gain at the signal conditioning stage, thus
trading the electrons range for a lower quantization noise. Although
there are more thorough models for the quantization noise auto-
correlation matrix (Gray 1990; Gray & Neuhoff 1998), the model
presented here is accurate for the conditions of operation of a DCDS
system and was chosen for its simplicity.

4 SN R O P T I M I Z AT I O N

In order to optimize the SNR, an analytical expression for the im-
pulse response of the signal conditioning stage should be given,

since it determines both the mean value and the variance of the
pixel measurement. A typical signal conditioning stage for a DCDS
system has a transfer function of the form

G(s) = G0
τ2s

(1 + τ2s)(1 + τ1s)
, (26)

which comprises a single-pole high-pass filter defined by τ 2, static
gain G0 and a single-pole low-pass filter with time constant τ 1.
However, it is straightforward to extend the analysis presented here
for higher order systems.

Even though G(s) comprises the effect of the AC coupling capac-
itor, in a well-designed system the coupling capacitor will be large
enough so as to keep the signal integrity within a pixel (Hegyi &
Burrows 1980). Hence G(s) ≈ G0/(1 + τ 1s). By setting td = N

2 Ts,
and according to equation (7), the pixel mean value is

μx =G0

⎛
⎝Vp

N∑
j= N

2 +1

hj

(
1−e

−
(

j− N
2

)
Ts/τ1

)
+ Vr

N∑
j=1

hj

⎞
⎠ . (27)

Since the reset voltage remains constant within a pixel, it can be
completely removed if the filter coefficients add up to zero, which is
the basis of the differential sampling scheme. Replacing the signal
conditioning impulse response into equation (12), and computing
the fractional derivative, the pulse shape ym(t) can be expressed as

ym(t) =
√

AmG0u(t)

(
τ2/τ1

τ2 − τ1
t−αm/2E1,1−αm/2(−t/τ1)

− 1

τ2 − τ1
t−αm/2E1,1−αm/2(−t/τ2)

)
, (28)

where Ea, b(t) is the Mittag–Leffler function (Mathai & Haubold
2008). Finally the SNR is expressed as

SNR =

(
G0Vp

∑N

j= N
2 +1 hj

(
1 − e

−
(

j− N
2

)
Ts/τ1

))2

σ 2
amp + σ 2

ADC

, (29)

which is an analytic function of the CCD noise parame-
ters, the filter coefficients and a set of design variables γ =
{G0, τ1, τ2, Ts, N, B, VFSR}. The signal power, the reset noise and
the amplifier noise are proportional to G2

0, therefore changing the
gain only affects the overall SNR due to the quantization noise.

The optimization is performed as follows. Given a fixed set of de-
sign variables γ̃ = {G̃0, τ̃1, T̃s, Ñ, B̃, ṼFSR}, the noise coefficients
σ 2

m and σ 2
m,t (jTs) can be pre-computed with a single, finite-length

numerical integration, and the SNR can be expressed solely as a
function of the filter coefficients. Since the SNR is a highly non-
linear function, the filter optimization is carried out by fixing the
pixel gain and minimizing the noise. Hence, the optimization prob-
lem is formulated as

minimize
h

σ 2
read(h, γ̃ ) = σ 2

amp + σ 2
ADC

subjectto

N∑
j= N

2 +1

hj

(
1 − e

−
(

j− N
2

)
T̃s/τ̃1

)
= 1

N∑
j=1

hj = 0. (30)

This problem can be solved with standard optimization software
tools (Fourer, Gay & Kernighan 2003; Byrd, Nocedal & Waltz
2006). The overall optimization is performed as a semi-exhaustive
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Figure 2. Simulation diagram: for each pixel, the reset voltage, pixel charge
and amplifier noise are randomly generated and added as voltages. Time-
and frequency-domain models can be selected for noise generation. An
analogue filter is emulated with the simulation time-step, and then the signal
is downsampled to Ts. The ADC electronic noise is added and the signal is
quantized. Finally, the digital filter is applied to compute the error.

search in the design space γ , which is usually bounded by the ap-
plication requirements, available hardware and other design-related
trade-offs.

5 D C D S R E A D O U T S Y S T E M S I M U L AT I O N
SE TUP

Based on the mathematical description of the DCDS readout system
presented in Section 2, a set of simulations were programmed in
MATLAB. As depicted in Fig. 2, a random reset voltage Vr is generated
for each pixel. The pixel charge is computed as a random, integer
number of electrons ne, which is converted into voltage with the
output sensitivity and added to the reset voltage at t = td. The
amplifier PSD is defined by white noise and a single low-frequency
noise component, hence

S(iω) = As + Af |ω|b, (31)

with −2 ≤ b ≤ −1. It is usual to describe the low-frequency noise
amplitude by the corner frequency fc, defined as the frequency at
which the low-frequency noise power is equal to the white noise
power. In this case,

S(iω) = As

(
1 +

∣∣∣∣ ω

2πfc

∣∣∣∣
b
)

(32)

and Af = As(2πfc)−b.
For completeness, the noise can be generated by two methods.

(i) Time-domain (T-D) generation of noise pulses, based on the
method proposed by Pullia & Riboldi (2004).

(ii) Frequency-domain (F-D) generation of noise, implemented
by the method proposed by Kasdin (1995).

The noise is added to the signal, and the analogue filter, described
by G0, τ 1 and τ 2, is emulated to obtain the signal at the ADC
input. The time-step of the simulation is defined by an oversam-
pling rate over Ts for accuracy in the noise generation and filter-
ing, so the signal is downsampled to Ts at the ADC to generate
N samples. The ADC electronic noise is added to these samples,
which are quantized with resolution B over a voltage range VFSR

and digitally filtered by the FIR described by h. The pixel value
is converted to electrons and compared with ne to compute the er-
ror. The simulation is entirely determined by the design variables

γ = {G0, τ1, τ2, Ts, N, B, VFSR}, the filter coefficients and the sys-
tem parameters ζ = {As, Af, b, Sv, σe}.

6 T H E O R E T I C A L A N D S I M U L AT E D R E S U LTS

A set of theoretical and simulated results are presented to validate
the theory and illustrate the potential of the proposed method. The
results were generated for the two sets of parameters shown in
Table 1, which are characterized by the noise PSD depicted in
Fig. 3. The CCD1 parameters were estimated from Cancelo et al.
(2012), whereas the parameters for CCD2 were taken from Tulloch
(2013), which depicts a typical E2V CCD. The LSB is set to 1
electron, so a full-well of up to 262.144 electrons could be read for
an 18-bit ADC, and the ADC electronic RMS noise σ e was set at
3�. The high-pass filter time constant is fixed at 10 Hz to keep the
signal integrity.

Figs 4 and 5 show a set of optimal filter coefficients for different
scenarios. Since CCD2 has a higher corner frequency than CCD1,
the optimal coefficients for CCD2 are always steeper near the charge
dump, which is consistent with the principle introduced by Gach
et al. (2003). Figs 4(a) and (b) show that the coefficients are not
symmetrical for low bandwidths, whereas for a higher bandwidth
as in Figs 4(c) and (d), the optimal filter approaches those already
reported in the literature for ideal signal setting (Alessandri et al.
2013). These results can be understood by considering that a lower
bandwidth enlarges the noise temporal correlation, thus producing
a better noise cancellation by the subtraction near the charge dump.
Therefore, the optimal solution assigns more weights to the middle
coefficients. However, some samples after the charge dump are
attenuated because the charge is not fully settled, thus there is an
optimal bandwidth for this trade-off. In this case, for both CCDs the
noise performance was better at 1 MHz. This approach defies the
accepted convention to use a high bandwidth and discard samples
until the signal is settled after the charge dump. Imposing these
conditions, the optimal coefficients tend to be flat but produce a
sub-optimal result due to the additional restrictions. This explains

Table 1. CCD1 and CCD2 noise parameters and sensitivity. The noise PSD
is described by equation (32).

Parameter CCD1 CCD2

As

(
0.5 nV√

Hz

)2 (
1.5 nV√

Hz

)2

fc 20 kHz 150 kHz
b −1.2 −1
Sv 2.5μV/e− 8μV/e−

Figure 3. Noise PSD of CCD1 and CCD2. The noise amplitude is referred
to the sensing capacitor by the sensitivity Sv and shown in units of e−/

√
Hz

for a fair comparison. The low-frequency noise corner frequency fc is marked
for each CCD.
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Figure 4. Normalized filter coefficients for a 10 µs sampling window and
100 samples. The optimal coefficients were computed for both CCDs with
1 and 5 MHz bandwidths.

Figure 5. Normalized filter coefficients for a 10 µs sampling window and
2.5 MHz bandwidth. The optimal coefficients were computed for both CCDs
with 50 and 200 samples.

the disagreement between Gach et al. (2003) and Clapp (2012), and
supports the results reported by Tulloch (2013).

Fig. 6 shows the contribution of all noise sources and the total
RMS noise over the pixel rate, taken with a 40 MSPS ADC and
a fixed bandwidth for every pixel rate. The theoretical predictions
are plotted with solid lines, whereas the error bars were generated
with simulations. The simulated results were obtained with the
frequency-domain method for noise generation, although the time-
domain method produces equivalent results. Each simulation point
was computed for 100 pixels and repeated 20 times to compute the
mean value and the error bars. The pixel rate is computed as the
inverse of the sampling window, so it only depends on the sampling
rate and number of samples. The time required for the reset pulse
and charge transfer is not considered because it can vary for different
CCDs and does not depend on the presented method, so the actual

Figure 6. RMS noise along with white and flicker noise contributions
versus pixel rate. The results were generated with a 40 MSPS ADC and
500 kHz bandwidth. The theoretical predictions are plotted with solid lines
and the simulation results are shown by the error bars.

Figure 7. RMS noise versus pixel rate for both CCDs. The standard av-
eraging filter (flat) is compared with the optimal filter computed by the
proposed method (opt). The results were generated with a 20 MSPS ADC
and different bandwidths at the signal conditioning stage.

pixel rate is slightly lower. Due to the corner frequency location,
white noise is dominant in CCD1 over most of the plotted range,
whereas its contribution in CCD2 is dominant below 200 kHz.

The optimal setup was compared with the standard setup for a
DCDS system with flat weights. In the latter, half of the samples
are taken at the reset level. After the charge dump, some samples
are discarded until the signal is settled to �/2 and the remaining
samples are used to compute a simple differential average. Fig. 7
depicts the RMS noise over the pixel rate for both configurations
and different bandwidths at the signal conditioning stage. Since the
optimal filter is computed as a function of the bandwidth for every
pixel rate, the proposed method performs adequately for a typical
range of pixel frequencies, even if the bandwidth is fixed. This is
an appealing feature, since it does not require to modify electronic
components. Furthermore, the proposed method performs better
than the averaging filter for any given bandwidth.
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Figure 8. RMS noise versus pixel rate for both CCDs. The standard averag-
ing filter (flat) is compared with the optimal filter computed by the proposed
method (opt). The results were generated with a 40 MSPS ADC. For each
setup and pixel rate, the bandwidth that produced the lowest noise was se-
lected in order to make a fair comparison of the achievable performance of
both methods.

The overall optimal setup is reached by selecting the best band-
width at each pixel rate, which is a result of the semi-exhaustive
search depicted in Section 4. Fig. 8 shows the RMS noise for both
CCDs read out with an averaging filter and with an optimal filter,
where the optimal bandwidth was selected independently for both
setups in order to make a fair comparison of the achievable perfor-
mance. The optimal filter noise is always lower, and a significant
noise reduction is achieved at high pixel rates due to the use of low
bandwidths and the settling period of the CCD. When white and
low-frequency noise contributions are commensurable, the optimal
coefficients are successful in lowering the noise floor, particularly
at low pixel rates.

7 C O N C L U S I O N

A detailed and thorough mathematical model to describe a DCDS
system was presented. Based on this model, the noise statistics at
the system output were computed as a function of the CCD pa-
rameters and the system design variables. An optimization model
to maximize the SNR was developed, thus providing a systematic
design methodology for an optimal DCDS readout system. Theo-
retical results were compared with realistic simulations to validate
the theory and show the potential of the optimization method. As a
result, the trade-offs involved in the design of a DCDS system were
analysed and previous experimental disagreements were explained.
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APPENDI X A : PULSE SHAPE D ERI VATI O N

An arbitrary two-sided noise power spectrum given by

Sm(iω) = Am|ω|αm (A1)

can be expressed as

Sm(iω) = Am

(
(iω)αm/2(−iω)αm/2

)
(A2)

= (
A1/2

m (iω)αm/2
) (

A1/2
m (iω)αm/2

)∗
. (A3)

Following the same procedure shown in Pullia & Riboldi (2004),
the frequency core pulse is given by

H (iω) = A1/2
m (iω)αm/2 (A4)
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and the frequency core pulse after a system G(iω) can be computed
as

Ym(iω) = A1/2
m (iω)αm/2G(iω), (A5)

which is a hermitian function. The time-domain core pulse can be
computed in terms of the system impulse response g(t) and the
Fourier derivative property as

ym(t) =
√

Am
dαm/2

dtαm/2
g(t), (A6)

which is a real function. The core pulse is finally scaled in amplitude
to make the noise energy consistent with the arrival rate

ỹm(t) =
√

Am

ν

dαm/2

dtαm/2
g(t). (A7)

A P P E N D I X B: AU TO C O R R E L AT I O N ,
PSD AND STATIONARITY

Consider the Fourier transform pair from Appendix A

ym(t) → Ym(iω). (B1)

The autocorrelation function of ym(t), defined as

Ry(t1, t2) =
∫ ∞

−∞
ym(τ − t1)ym(τ − t2)dτ

=
∫ ∞

−∞
ym(τ ′)ym(τ ′ − (t2 − t1))dτ ′, (B2)

can be expressed only as a function of t = t2 − t1

Ry(t) =
∫ ∞

−∞
ym(τ )ym(τ − t)dτ. (B3)

If Ry(t) is absolutely integrable, its Fourier transform can be com-
puted as

Sy(iω) = Ym(iω)Ym(iω)∗

= (
A1/2(iω)α/2G(iω)

) (
A1/2(iω)α/2G(iω)

)∗

= A |ω|α |G(iω)|2 , (B4)

which is the noise spectrum of Sm(iω) referred to the ADC input,
whereas the full spectrum Sc(iω) can be computed from superpo-
sition. Therefore, Sc(iω) is a wide sense stationary (WSS) process
if

1

2π

∫ ∞

−∞
Sm(iω) |G(iω)|2 dω < ∞. (B5)

for all m. This means that even if Sm(iω) is not WSS, like flicker
noise components, the noise at the ADC input can behave as a
WSS process if the signal conditioning stage has a high-pass filter.
Furthermore, even in the absence of a high-pass filter, the limited-
bandwidth approximation of flicker noise produces the same result.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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