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ABSTRACT
New telescopes like the Square Kilometre Array (SKA) will push into a new sensitivity
regime and expose systematics, such as direction-dependent effects, that could previously be
ignored. Current methods for handling such systematics rely on alternating best estimates
of instrumental calibration and models of the underlying sky, which can lead to inadequate
uncertainty estimates and biased results because any correlations between parameters are
ignored. These deconvolution algorithms produce a single image that is assumed to be a true
representation of the sky, when in fact it is just one realization of an infinite ensemble of images
compatible with the noise in the data. In contrast, here we report a Bayesian formalism that
simultaneously infers both systematics and science. Our technique, Bayesian Inference for
Radio Observations (BIRO), determines all parameters directly from the raw data, bypassing
image-making entirely, by sampling from the joint posterior probability distribution. This
enables it to derive both correlations and accurate uncertainties, making use of the flexible
software MEQTREES to model the sky and telescope simultaneously. We demonstrate BIRO with
two simulated sets of Westerbork Synthesis Radio Telescope data sets. In the first, we perform
joint estimates of 103 scientific (flux densities of sources) and instrumental (pointing errors,
beamwidth and noise) parameters. In the second example, we perform source separation with
BIRO. Using the Bayesian evidence, we can accurately select between a single point source,
two point sources and an extended Gaussian source, allowing for ‘super-resolution’ on scales
much smaller than the synthesized beam.

Key words: methods: data analysis – methods: statistical – techniques: interferometric.

1 IN T RO D U C T I O N

The high sensitivity of the Square Kilometre Array (SKA) (up
to 50 times more sensitive than current instruments; Carilli &
Rawlings 2004) combined with a relatively cheap antenna design
means a far more careful and detailed treatment of systematics will
be required to fully exploit this telescope (Noordam 2000). The
current approach to this calibration problem iteratively applies de-
convolution methods such as CLEAN (Högbom 1974), alternating
with sky and instrumental modelling to determine the best-fitting
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calibrated image (Pearson & Readhead 1984; Bhatnagar et al. 2008;
Kazemi et al. 2011; Kazemi & Yatawatta 2013). This provides only
a point estimate of the model parameters which will in general differ
from the true parameters due to random noise (Enßlin et al. 2014).

A more rigorous approach is to infer the science and instrumen-
tal parameters simultaneously, deriving accurate uncertainties and
correlations between them. Work in this direction includes improve-
ments on the self-calibration algorithm (Pearson & Readhead 1984;
Enßlin 2014; Enßlin et al. 2014; Dorn et al. 2015) and some exten-
sions to the RESOLVE algorithm (Junklewitz et al. 2013; Junklewitz,
Bell & Enßlin 2014). There has also been considerable effort in
this direction in producing a maximum posterior image for the data
and dealing with certain calibration parameters (Sutton & Wandelt
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2006; Sutter et al. 2014). These works each solve specific aspects of
the calibration and deconvolution problem, but so far do not explore
the full posterior distribution, giving an inaccurate estimation of the
uncertainties and correlations, and still rely on producing a single
image (i.e. a point estimate).

We propose instead a new technique, called Bayesian Inference
for Radio Observations (BIRO), which is able to: include any source
of instrumental uncertainty, such as ionospheric effects, pointing
errors and primary beam uncertainties, jointly determine the science
and instrumental parameters and provide reliable estimates of the
uncertainties and correlations on these parameters, in a holistic and
mathematically rigorous manner.

A simultaneous analysis requires the full posterior probability
distribution of the parameters, which can naturally be sampled in
the Bayesian formalism by using (for example) MCMC (Metropolis
et al. 1953; Hastings 1970) or nested sampling (Skilling 2004). Our
new technique, BIRO, fits models including both instrumental and
science parameters directly to the raw visibility data. We use the
MEQTREES (Noordam & Smirnov 2010) software, which implements
the Radio Interferometry Measurement Equation (RIME; Hamaker,
Bregman & Sault 1996), for the modelling of the sky and instru-
mental effects. This technique thus obviates the need for interme-
diate imaging and map-making. The rigorous statistical use of all
available information allows this technique to open new discovery
windows, solving previously intractable problems, and is applicable
to all interferometers and problems in radio interferometry.

This paper is arranged as follows: in Section 2, we provide an
introduction to Bayesian statistics and illustrate the use of the RIME
for modelling in the BIRO algorithm in Section 3. We then apply
BIRO to two key simulated data sets to demonstrate its power: In
Section 4, we jointly fit all scientific (source flux densities) and
instrumental parameters (pointing errors, primary beam parameters
and receiver noise) to a data set suffering from direction-dependent
instrumental effects. In Section 5, we focus on the problem of
reliably distinguishing between an extended source, point source
and a pair of close point sources, for sources on sub-synthesized-
beam scales. We conclude in Section 6.

2 BAY ESIAN STATISTICS

The problem of obtaining the most information possible from an
incomplete data set, such as obtained by an interferometer, is per-
fectly suited to the application of Bayesian statistics. These allow
the fitting of arbitrarily complex models to data, providing reliable
uncertainty estimates for the parameters. Bayes’ theorem allows
the use of a familiar quantity, the likelihood, to answer the question
one is really interested in: What is the probability of a hypothesis,
given the data in hand? This probability is known as the posterior
and indicates by how much our degree of belief in the hypothesis
has been updated by the new data. Simple application of Bayes’
theorem also allows a robust and intuitive way to compare models,
which we will require for the second example problem in this paper.
What follows here is a brief overview of Bayesian theory, see Trotta
(2008) for a more in-depth review.

From Bayes’ theorem, the probability distribution, P (�|D, H ),
of the values of parameters �, the quantity that is actually sought,
given the data D that are in-hand and a model H (hypothesis plus
any assumptions), is

P (�|D, H ) = L (D|�, H ) � (�|H )

Z (D|H )
. (1)

This is known as the posterior probability distribution. The likeli-
hood L (D|�, H ), which encodes any constraints imposed by ob-
servations, is the probability distribution of the data given parameter
values and a model.

The prior � (�|H ) includes any prior knowledge of or prej-
udices about the parameter values. Z (D|H ) is the integral of
L (D|�, H ) � (�|H ) over all �, not simply normalizing the pos-
terior P (�|D, H ), but also allowing selection of different models
by comparing their values quantitatively. This so-called evidence,
Z (D|H ), automatically includes an Occam’s razor effect, penaliz-
ing models with a large number of parameters that are not preferred
by the data. By computing the evidence for a range of models, we
can select the best model by maximizing the evidence.

For this work, the likelihood function is

L (D|�, H ) = 1

(2πσ 2)N/2
exp

[
−

(
N∑

i=1

(Vi(�) − Ṽi)
2

)
/2σ 2

]
,

(2)

where Vi(�) are the model visibilities produced by MEQTREES (see
Section 3), with the parameters � as input, Ṽi are the data visibil-
ities, N is the number of data points. Here we assume the uncer-
tainties on the visibilities are Gaussian and have the same value, σ ,
for all data points. The best-fitting model corresponds to maximum
posterior.

The inferred posterior distributions are full probability distri-
butions rather than a summary mean/median value and a (per-
haps covariant) uncertainty, since this represents the total inference
about the problem at hand. These distributions may be highly non-
Gaussian, making such summary parameters inaccurate.

The application of Bayesian statistics allows one to marginalize
out the effects of nuisance parameters, which are parameters such as
the beam shape and pointing errors that are not of primary interest,
but are unknown and can affect the estimates of the parameters of
interest (i.e. science parameters) because of correlations and degen-
eracies. The marginalized posterior can be written as a function of
the parameters of interest, �, the nuisance parameters, �, and the
data, D:

P (�|D, H ) =
∫

P (�, �|D, H )d�, (3)

where the integral is performed over the parameter space of �.
The posterior is, thanks to advances in modern computing, fairly

easily determined using numerical techniques. In this paper, we
use the Markov Chain Monte Carlo (MCMC) Metropolis–Hastings
(Metropolis et al. 1953; Hastings 1970) algorithm for the joint sci-
entific and instrumental parameter inference example. We chose
MCMC due to its simplicity and the ease with which it handles
large numbers of parameters (we have 103 parameters for the first
example problem). For our second example, that of model selec-
tion related to source separation and extended structure, we require
efficient calculation of the Bayesian evidence, something provided
naturally by the nested sampling algorithm. We utilize the public
code MULTINEST (Feroz & Hobson 2008; Feroz, Hobson & Bridges
2009) to determine both the parameters and the evidence for model
comparison (Jeffreys 1998; Trotta 2008), but for a smaller set of
parameters as nested sampling grows rapidly in complexity with
increasing number of parameters.
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3 U S I N G T H E R I M E FO R M O D E L L I N G

Previous Bayesian visibility analyses (Lancaster et al. 2005; Feroz
et al. 2009; Zwart et al. 2011; AMI Consortium 2012; Sutter, Wan-
delt & Malu 2012) focused on the sky model and were not gener-
alized to include arbitrary instrumental effects (or were attempting
to solve for a much more general sky model resulting in many
more parameters, thus needing to fix instrumental parameters). The
RIME (Hamaker et al. 1996; Smirnov 2011a,b) provides a powerful
framework to easily describe exactly what happens to a signal as it
travels from source to telescope, where it is converted into voltages.
The RIME is a natural way to model the instrumental and scientific
effects that we are inferring through our Bayesian technique. For
example, the RIME for a single point source is given by

Vpq = JpBJH
q , (4)

where B is the brightness matrix, which describes the sky flux
distribution, Jp is the Jones matrix (Jones 1941) for antenna p,
containing all instrumental and atmospheric effects that interfere
with the signal, Jq is the Jones matrix for antenna q, H indicates the
Hermitian of a matrix and Vpq are the visibilities, the outputs of the
telescope correlator for baseline pq.

The effects that interfere with the signal on its route to the output
of the telescope can each be described by a Jones matrix, with each
effect adding a pair of Jones matrices in the ‘onion’ form of the
RIME:

Vpq = Jpn

(
. . .

(
Jp2

(
Jp1BJH

q1

)
JH

q2

)
. . .

)
JH

qm. (5)

We can go a few steps further and consider the full-sky RIME by
integrating over the direction cosines, l and m:

Vpq = Gp

(∫ ∫
lm

EpKpBKH
q EH

q dldm

)
GH

q . (6)

Here, Kp and Kq are the Jones matrices describing the geomet-
ric delay between antennas p and q, Gp represents the direction-
independent gains for antenna p, which we set to unity for all
antennas, and Ep is the Jones matrix containing all the direction-
dependent effects for antenna p. We focus in this paper on the more
difficult to handle direction-dependent effects, but direction inde-
pendent can also be handled with our technique. As with all other
Jones matrices, Ep can be written as a product of Jones matrices,
each describing a different effect. In Section 4, we consider both
primary beam effects and pointing errors as examples of direction-
dependent effects each with their own Jones matrix.

The RIME is implemented in the general, flexible software
MEQTREES (Noordam & Smirnov 2010; Smirnov & de Bruyn 2011;
Smirnov 2011c), which allows us to apply it to any sky model and
for any telescope. MEQTREES has been useful for predicting the capa-
bilities of future experiments and for understanding the intricacies
of current telescopes. Here, we go a step further and use MEQTREES

as the modelling step in our Bayesian analysis. In order to test BIRO
and compare it with the standard deconvolution approach, we use
data sets simulated with MEQTREES over which we have complete
control and thus would know if we were correctly recovering the
true input parameters.

MEQTREES takes from the user a sky model (such as the number and
distribution of sources, their fluxes, shapes, etc.) as well as instru-
mental details (such as the telescope configuration, primary beam
pattern, pointing errors, noise, atmospheric effects, ionospheric ef-
fects, etc.) and uses the measurement equation to produce realistic
simulated visibilities that such a telescope would observe.

Figure 1. The BIRO algorithm. Fixed or initialized inputs are shown in
yellow, while the sampling loop is represented by the pink boxes. Data
products are in blue. The main iteration loop occurs within either the MCMC
or MULTINEST algorithm (depending on the problem), where new parameters
are used in each iteration to compute the likelihood. The initial parameters
are drawn from the prior, which generally restricts the parameter ranges.
In the final step, the ensemble of sky realisations can be generated with
MEQTREES using the parameter samples in the posterior, if required.

In order to test the validity of our technique, we only work with
simulations in this paper. We use MEQTREES to simulate the data and
also to model the sky, to test if we recover the input parameters.
MEQTREES can be used to model any telescope configuration and any
sky and instrumental effects that can be described with the RIME.
While we only concentrate on primary beam and pointing error
effects in Section 4, in principle, a wide variety of source types and
instrumental corruptions can be added in MEQTREES.

Fig. 1 shows a schematic overview of the BIRO approach. At
each step in the chain of MCMC or MULTINEST, MEQTREES is called
with new values for the parameters. MEQTREES then returns a visi-
bility set that can be compared directly with the simulated data, to
determine how well the parameters fit. This iterative process allows
the determination of the full posterior for the parameters. We do not
as yet have a public release of the BIRO code, but plan to in the
future where we will integrate MontBlanc, a GPU implementation
of the RIME (Perkins et al. 2015) with BIRO. MontBlanc is already
publicly available meaning it can be combined with any sampler to
allow the user to implement BIRO for themselves.

4 E X A M P L E 1 : J O I N T I N F E R E N C E O F
SCI ENTI FI C AND I NSTRU MENTA L
PA R A M E T E R S

In this example, we use BIRO to jointly estimate the scientific pa-
rameters and nuisance instrumental parameters. Below we describe
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Bayesian inference for radio observations 1311

the model and simulated data set used, and details of the MCMC
analysis, and show that the instrumental parameters studied are
tightly correlated with the scientific parameters, a fact that cannot
be ignored when determining these parameters.

4.1 Simulated data and parameters of the model

4.1.1 Telescope configuration

We use MEQTREES to simulate observations with the Westerbork
Synthesis Radio Telescope (WSRT; Högbom & Brouw 1974), a 14-
element east–west array with 25 m diameter dishes. All our WSRT
simulations use an integration time of 30 s and a total observation
time of 12 h at a frequency of 1.4 GHz. We use a narrow bandwidth
of 125 kHz, a single channel (for simplicity) and include noise with
a standard deviation of 0.1 Jy/visibility. At this frequency, WSRT
has a field of view of 0.◦5–0.◦6 and a synthesized beamwidth of
around 13 arcsec FWHM (full width at half-maximum).1

4.1.2 Scientific parameters

The simulated field consists of 17 unpolarized, point sources with
known positions. The science goal was to determine the flux densi-
ties of these sources. We based the simulation on an existing field
observed by WSRT, consisting of sources with a range of fluxes
(from 0.03to3.13 Jy). This is a very simple sky model, consisting
only of point sources, whereas in the second example of the paper,
we address modelling of extended sources. We do not explore the
possibility of extended sources of arbitrary shapes, as this is out of
the scope of this paper, but this should be possible using shapelets,
such as employed in the existing PYBDSM software.2 The brightness
matrix in equation (6) for an unpolarized point source is written as

BPOINT =
(

I 0

0 I

)
, (7)

where I is the intensity.
Fig. 2 shows an image of the true input model without any in-

strumental effects, while Fig. 3 shows the dirty image of the sky.

4.1.3 Instrumental parameters

Beamwidth
Knowing the primary beam pattern is critical for any astronomical

survey. Current practice is to determine the primary beam pattern
using a technique such as holography (Scott & Ryle 1977), then fix a
beam model, without propagating any uncertainty information into
the estimates of the science parameters. Since the primary beam
directly attenuates the flux distribution of the sky, even a small
error in the beam model can lead to large biases. We thus include
beam parameters in our analysis. WSRT commonly adopts a simple
model for the primary beam, 1 namely: cos3(cνθ ), where ν is the
observing frequency (in GHz), θ is the distance from the pointing
centre in degrees and c is the beam factor (in 1/GHz). The beam
factor (or beamwidth) is known to vary slightly with frequency. As
a proof of concept, we assume it is unknown, and include it as a

1 WSRT Guide to Observations, http://www.astron.nl/radio-observatory/
astronomers/wsrt-guide-observations/5-technical-information/5-technical-
informatio.
2 Python Blob Detection and Source Measurement software, www.lofar.
org/wiki/doku.php?id=public:user_software:pybdsm.

Figure 2. The simulated, noise-free sky model with 17 sources with flux
densities varying between 0.03 and 3.13 Jy.

Figure 3. The dirty data set for the model of Fig. 2, as the telescope would
see it (the colours are histogram-equalized to improve contrast). The image
is produced directly from the visibilities and shows the typical ring structure
around bright sources that is seen in interferometric data, due to the missing
angular-scale information in the data set. The rms noise in flux density is
about 0.28 mJy.

further instrumental parameter. One could provide a more complex
model for the primary beam and easily fit those parameters with
this technique as well, comparing the models with the Bayesian
evidence. The model for the beam enters the RIME of equation (6)
as a direction-dependent Jones matrix:

EBEAM(l, m) = cos3(cν
√

l2 + m2) I, (8)

where I is the identity matrix.

Pointing errors
Pointing errors can substantially corrupt radio observations and are
known to be a limiting factor in deep observations with WSRT
(Smirnov & de Bruyn 2011) and other telescopes. The greatest
effect is on sources on the flank of the primary beam, where the
gradient of the beam pattern is steep, and a small pointing error
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produces a larger error in apparent flux (compared to the centre of
the beam). Since the errors can be different from antenna to an-
tenna, this produces errors on the observed visibility amplitudes,
which translates into artefacts in the image. Essentially, each source
is ‘defocused’ in a complicated way. Thus, we can immediately sus-
pect that there will be a correlation between the pointing errors and
source flux densities. Two prior approaches to inferring pointing
errors directly from the data have hinged on maximum-likelihood
estimates. These are the pointing self-cal algorithm (Bhatnagar,
Cornwell & Golap 2004) and direct fitting with MEQTREES (Smirnov
2011c3). Neither approach estimates the correlation between point-
ing errors and source parameters, which the Bayesian approach
naturally provides. We inject time-varying polynomial pointing er-
rors for each of the 14 WSRT antennas. We use a second-order
polynomial for each pointing error and fit for the coefficients. A
polynomial pointing error in each orthogonal direction for each an-
tenna results in a total of 84 pointing-error parameters. The pointing
errors are written as a Jones matrix in equation (6):

EPE
p (l, m) = EBEAM(l + δlp, m + δmp), (9)

where δlp and δmp are the pointing errors in the right ascension
and declination direction, respectively, for antenna p. The pointing
errors are taken to be time-varying polynomials, written as

δlp = c2t
2 + c1t + c0, (10)

and similarly for δmp, where t is time (rescaled over the observation)
and ck are the coefficients we determine with MCMC.

Noise
The noise on the visibilities is expected to be Gaussian, stationary
and uncorrelated. Noise level can be estimated with some precision
from the known system temperature, here however we show than
it can also be inferred accurately directly from the data. We thus
included one final parameter for the standard deviation of the noise
on the visibilities.

4.1.4 Resulting measurement equation

The RIME for this example problem is thus

Vpq =
∑

s

(
EBEAM(ls + δlp,ms + δmp)K(s)

p BPOINT
s K(s),H

q (EBEAM)H

× (ls + δlq , ms + δmq )
)
, (11)

where s runs from 1 to 17 over all the sources. This brings the total to
103 parameters: 17 scientific (the flux densities of the sources) and
86 instrumental (84 pointing error parameters, the beamwidth and
the noise). The full model can be visualized in the Bayesian factor
graph of Fig. 4 and a more detailed description of factor graphs is
given in Appendix A.

4.2 Using MCMC for joint parameter inference

The initial step of our analysis was to choose an appropriate sky
model in MEQTREES (specifying the brightness matrix in equation 6)
and select the telescope configuration corresponding to the data
set including all known sources of interference and instrumental
errors (the Jones matrices in equation 6). We vary all the parameters
within the model – the flux densities, pointing errors, beamwidth and

3 https://indico.skatelescope.org/getFile.py/access?contribId=20&sessionId
=9&resId=0&materialId=0&confId=171

Figure 4. Bayesian factor graph (see Appendix A) of the model for
the first simulated data set. All parameters we estimate with MCMC
are the constants, without any circles around them, coloured blue. The Vpq

are the observed visibilities, which are drawn from a normal distribution of
mean Ṽpq (the unobserved, true visibilities) and standard deviation σ , which
is one of the parameters we estimate with MCMC. These ‘true’ visibilities
are governed by the RIME, which is here simplified graphically to two com-
ponents, the brightness matrix, B, and the Jones’ matrices of the antennas,
Jp, Jq . The flux densities of the 17 sources are represented by fi, which form
components of B. The coefficients of the polynomial time-varying pointing
errors, ljck and mjck (where j represents the antenna number and k is the
number of polynomial coefficient) enter the Jones matrices, along with the
beam width, bw.

noise – using MCMC. Fig. 1 illustrates how the sampling algorithm
repeatedly calls MEQTREES with new parameter values and evaluates
the likelihood. MCMC uses the likelihood (equation 2) to determine
the best-fitting parameter values and to explore the surrounding
parameter space, thus determining the uncertainties and correlations
for all parameters.

4.3 Technical details and priors

Due to the large volume of the parameter space, we use a standard,
gradient-based optimization algorithm to get close to the best-fitting
parameter values and provide a good starting point for the MCMC.
We run several chains in parallel, each of around 500 000 steps,
repeatedly computing and diagonalizing the covariance matrix to
improve convergence, and we test convergence using the Gelman–
Rubin statistic (Gelman & Rubin 1992). The estimated parameters
and their uncertainties are determined by finding the mean and
standard deviation (using percentiles) from the marginalized one-
dimensional posterior for each parameter. For this particular setup,
MEQTREES takes about 0.4 s for one likelihood calculation, paral-
lelized using four cores of 2.2 GHz each. As 10 chains were run, 40
cores in total were used resulting in approximately 55 CPU hours
for convergence per data set.

We apply a uniform prior to the pointing error parameters, re-
stricting them to the broad range of ±200 arcsec. We also restrict
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the beamwidth to be positive, and vary the noise on the visibilities
in logarithmic space (with an infinitely broad prior in log-space).
We do not restrict the ranges of the flux densities.

4.4 Comparison with CLEAN plus Source Extraction

To compare our technique with the standard approach, we apply
CLEAN followed by a Source Extraction algorithm to determine the
flux densities of the sources (we call this combination CLEAN+SE),
without any instrumental calibration. We do not use any calibration
algorithms such as self-cal, because it would have no benefit: our
data set only has direction-dependent instrumental effects, whereas
self-cal can only correct for direction-independent effects. Current
approaches to direction-dependent calibration are of no help here
because:

(i) Direction-dependent solutions (such as peeling, or differen-
tial gains) can in principle solve for the variable gains induced by
pointing error, given a prior source model. However, this destroys
information on the source, since deviations between the true sky and
the prior model are completely absorbed by such gain solutions.

(ii) Pointing self-cal should in principle improve the CLEAN maps
and thus produce better source model estimates. However, imple-
mentations of this remain unavailable to the public.

(iii) MEQTREES should in principle be able to do a maximum-
likelihood solution for the source parameters and pointing er-
rors simultaneously. However, only solutions for the latter has
been demonstrated to work in practice and as we have argued, a
maximum-likelihood solution produces a point estimate for the pa-
rameters which may be biased due to correlations.

Instead, we apply a naı̈ve CLEAN algorithm, followed by Source
Extraction, to compare with BIRO as a worst case scenario in the
case of time-varying pointing errors. Note that we do provide prior
information on the positions of the sources to CLEAN, in the form of
CLEAN boxes.

We use the CLEAN implementation (specifically the Cotton–
Schwab algorithm) in the software package CASA4 to image the
simulated data sets. The images were made with robust weighting
with a robustness parameter of −1.0. We did 1000 iterations of
CLEAN with a loop gain of 0.1. Interactive cleaning was performed
on the visibility data twice, once with masks defined around known
source positions and then with masks defined around only those
sources that were found during the cleaning procedure. The source
extraction was performed interactively using PYBDSM to ensure that
the artefacts were not wrongly identified as sources.

4.5 Results

To illustrate fitting a model to the raw data, we plot a subset of the
visibilities in Fig. 5 with the best-fitting visibilities as obtained by
BIRO. Fig. 6 (with numerical details in Table 1) shows the compar-
ison between the flux densities obtained by CLEAN+SE and those
by BIRO. The flux densities of CLEAN+SE are on average biased
due to undealt-with correlations with the pointing errors and under-
estimated uncertainties. Additionally, because of the time-varying
pointing errors corrupting the data, CLEAN+SE only manages to find
5 of the 17 sources. With polynomial pointing errors included in
the simulations, bright artefacts dominated the final image resulting
in the weaker sources being swamped. In contrast, because these

4 Common Astronomy Software Applications, http://casa.nrao.edu/.

Figure 5. Example of fitting a model to the raw data. Plotted are the real
component of the visibilities for a single baseline (between antenna 0 and 1)
and for the single channel of the data, in black. The best-fitting model line
is overplotted in dark blue, with a band of uncertainty of 0.1 Jy (the original
noise added to the simulation) in pale blue.

Figure 6. Estimated versus true flux densities of the sources with error
bars as estimated by BIRO (blue circles) and by a CLEAN+SE algorithm
(red triangles). Note that CLEAN+SE only detects 5 out of 17 sources. The
BIRO error bars are the standard deviation of marginalized one-dimensional
posterior for each flux parameter. While the BIRO results are unbiased,
CLEAN+SE has two problems: it underestimates the error bars and yields
biased estimates of the flux densities of up to 44σ . The reader is reminded
that this data set contains no direction-independent effects that may normally
cause biases in a CLEAN analysis; these biases are instead due entirely to
the complexities in the data set introduced by the time-varying pointing
errors.
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Table 1. Comparison between the CLEAN+SE results (shortened to C+SE) and the BIRO results for the flux
densities (in Jy) of the sources in the data set. The bias in terms of number of standard deviations away from
the true flux density is given in brackets. For the five sources CLEAN+SE found, the error on the position was
less than 10−4 deg.

Name RA (◦) Dec (◦) True flux density (Jy) C+SE flux density (Jy) BIRO flux density (Jy)

F1 15.216 68.139 3.1285 11.9723 ± 0.2240 (39.5σ ) 3.1410+0.0828
−0.0710 (0.2σ )

F2 15.017 66.849 1.6030 61.4220 ± 1.3557 (44.1σ ) 1.5834+0.0185
−0.0185 (1.1σ )

F3 16.583 67.662 0.6719 0.9345 ± 0.0415 (6.3σ ) 0.6476+0.0478
−0.0410 (0.5σ )

F4 14.578 67.815 0.6170 0.3942 ± 0.0191 (11.7σ ) 0.6114+0.0249
−0.0249 (0.2σ )

F5 16.315 67.853 0.5648 0.6579 ± 0.0372 (2.5σ ) 0.5635+0.0272
−0.0227 (0.0σ )

F6 14.943 68.061 0.4115 Not found 0.4127+0.0135
−0.0112 (0.1σ )

F7 16.075 68.010 0.2640 Not found 0.2671+0.0093
−0.0093 (0.3σ )

F8 14.822 67.676 0.1293 Not found 0.1295+0.0031
−0.0031 (0.1σ )

F9 16.546 67.396 0.0919 Not found 0.0805+0.0071
−0.0059 (1.6σ )

F10 16.207 67.138 0.0742 Not found 0.0629+0.0064
−0.0064 (1.8σ )

F11 16.001 67.323 0.0645 Not found 0.0599+0.0029
−0.0023 (1.6σ )

F12 14.541 67.175 0.0524 Not found 0.0413+0.0041
−0.0031 (2.7σ )

F13 16.598 67.370 0.0487 Not found 0.0419+0.0040
−0.0040 (1.7σ )

F14 14.186 67.579 0.0451 Not found 0.0430+0.0031
−0.0031 (0.7σ )

F15 14.496 67.680 0.0357 Not found 0.0354+0.0017
−0.0015 (0.2σ )

F16 14.085 67.566 0.0306 Not found 0.0289+0.0026
−0.0026 (0.6σ )

F17 14.891 67.188 0.0301 Not found 0.0259+0.0017
−0.0013 (2.5σ )

correlations are taken into account, the Bayesian approach is able
to recover the true flux densities for all sources and to determine
error bars that include the effects of all nuisance parameters. With-
out the instrumental errors, BIRO achieves similar flux estimates to
CLEAN+SE.

Fig. 7 shows a subset of the covariance matrix between parame-
ters and Fig. 8 shows an example 1σ and 2σ contour plot between
pairs of parameters. The key result of Fig. 7 is that it highlights the
significant and complex correlations between the pointing errors and
flux densities, i.e. the instrumental and science parameters, which
therefore need to be estimated jointly allowing for the correlations.

The (anti)correlations between pointing errors and flux densities
are easy to understand qualitatively. Consider a source on the flank
of the main lobe of the primary beam, e.g. on the half-power point.
If a given antenna mispoints towards the source, the source will
be subject to a higher primary beam gain, in other words, it will
be perceived as brighter by all baselines involving that antenna.
Mispointing away from the source has the opposite effect. The
nature of the correlation will also strongly depend on the posi-
tion of the source with respect to the pointing centre. For ex-
ample, a source near the centre of the main lobe (i.e. on a ‘flat’
part of the primary beam pattern) will correlate very weakly with
pointing error, while a source on the inner flank of the first side-
lobe will correlate with mispointing away rather than towards.
Since different baselines contribute to different Fourier mode mea-
surements, pointing error will also have a complicated interac-
tion with perceived source structure. Similar arguments apply to
beamwidth.

Deriving the exact quantitative nature of this correlation analyt-
ically is highly impractical, which is why a technique like BIRO
proves so powerful. This covariance matrix could be used to assist
in calibration, study calibration parameters or as input to future
MCMC analyses on similar data sets.

5 E X A M P L E 2 : MO D E L C O M PA R I S O N

In this example problem, we show that BIRO is able, using model
selection (Jeffreys 1998; Trotta 2008), to choose the correct model
in each of three different cases, distinguishing between an extended
source, an unresolved point source and two close (sub-synthesized-
beam) sources. The sources recovered are all smaller than the
synthesized beam. This is known as super-resolution and has re-
cently been shown to be possible with compressive sensing (Wiaux
et al. 2009; Li, Cornwell & de Hoog 2011; Carrillo, McEwen &
Wiaux 2012, 2014; Honma et al. 2014, and to some extent Martı́-
Vidal, Pérez-Torres & Lobanov 2012). Here we use the Bayesian
evidence to determine the correct model of these sub-synthesized-
beam sources, with statistical significance. Although in this example
problem we exclude instrumental effects, they can, in general, be
included as in example 1.

5.1 Simulated data sets and models

The data sets for this example use the same frequency, bandwidth,
integration time and noise characteristics as the data set simulated in
Section 4. We simulate three data sets with three different sky mod-
els with all the sources away from the phase centre: a point source, a
sub-synthesized-beam extended source modelled as a Gaussian and
two point sources separated by the distance the size of that Gaussian.
No instrumental effects were included in the model-selection sim-
ulations and the beamwidth and noise were assumed to be known.
Fig. 10 shows the input model for all three cases in the left-hand
column.

The point sources are parametrized by the Stokes I flux density
and the position as the distance from the phase centre, along two
mutually perpendicular axes, l and m. The extended Gaussian source
has three more parameters in the form of the projections of the major
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Figure 7. Covariance matrix between a subset of parameters illustrating the strong correlations between the science and instrumental parameters that must be
accounted for to achieve unbiased results. The parameters are listed on each axis with the correlations between them represented by a coloured ellipse, either
positive (red ellipse angled to right) or negative (blue ellipse angled to left). The leading diagonal shows the one-dimensional marginalized posterior for each
parameter. For the pointing errors, ljck refers to the kth coefficient of the polynomial time-varying pointing error in the right ascension direction for the jth
antenna and mjck is the same for the declination direction. The flux densities of the 17 sources are given by fi, ordered from brightest to faintest, and bw and
sigma represent the beamwidth and noise on the visibilities, respectively.

axis on the l and m axes and the ratio of the minor to major axis,
defined as

l⊥ = emaj sin(α) (12)

m⊥ = emaj cos(α) (13)

r = emin/emaj, (14)

where emaj and emin are the major and minor axes of the Gaussian
source and α is the position angle (the angle of rotation of the ex-
tended source). See Fig. 9 for a visual description. The brightness
matrix of equation (6) for an extended Gaussian is simply the prod-
uct of a Gaussian and the brightness matrix for a point source. The
RIME is simple in this example, since there are no instrumental
effects apart from the usual phase shift between antennas:

Vpq =
∑

s

(∫ ∫
lm

K(s)
p f (l, m)BPOINT

s K(s),H
q dldm

)
, (15)

where f(l, m) is a Gaussian in l and m for the extended source case
and f is a delta function for the one- and two-source models. Also
in the one- and two-source models, l and m reduce to single points
ls and ms, as in equation (11).

5.2 Using MULTINEST for model selection

We use MULTINEST for calculating the Bayesian evidence (see
Section 2) and MEQTREES for predicting the model visibilities from
the sampled source parameters from which the likelihood is com-
puted iteratively. The likelihood is computed according to equation
(2). The posterior probability distributions are obtained as a by-
product along with the uncertainties in the best-fitting parameter
values and the Bayesian evidence.

For the single-point-source model, we vary three parameters: the
flux density and relative source position, l and m. We similarly vary
the flux densities and positions of the two sources in the two-source
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Figure 8. Credible interval contour plots between a subset of parameters.
The 1σ and 2σ probability densities are shown in dark and light colours,
respectively. The true (input) parameters are marked with a black star. The
pairs of parameters are as follows. Upper left: the two highest order co-
efficients of the pointing error in the right ascension direction for antenna
9. Upper right: flux densities of two of the sources. Lower left: the flux
density of the 17th source versus the beamwidth. Lower right: the constant
term from the polynomial pointing error in the right ascension direction for
antenna 10 versus the flux density of the 15th source.

Figure 9. The parametrization of a Gaussian extended source in MEQTREES.
Here, emaj and emin are the major and minor axes of the Gaussian and α is the
position angle. MEQTREES uses l⊥, m⊥ and r = emin/emaj in its parametrization
of a Gaussian.

model. The Gaussian extended source model has six parameters:
the flux density, position coordinates and the shape parameters (l⊥,
m⊥, r).

We generate a unique, simulated data set for each of the three
cases and then fit each of the three models to them, to see if the
correct model is selected in each case. MULTINEST fits for the param-
eters, their uncertainties and correlations (just as MCMC does in
example 1), but also returns the evidence, Z (D|H ) (the probability
of the data, given the hypothesis). By taking the ratio of evidences,
one can determine whether one model is favoured over another, and
by how much. The Jeffrey scale (Jeffreys 1998; Trotta 2008) pro-
vides an intuitive way of deciding whether the evidence is strong

Table 2. Relative evidences for each model in each
simulated data set. A is the two-source model, B is
the extended source model and C is the one-source
model. The pieces of evidence are relative to the
model used to generate the data set (so, for exam-
ple, for the two-point-source data set, the evidence
for each model is compared to the two-point-source
model). The maximum error in log-evidence is 1.5.
High odds indicate that the input model is favoured
(as it is in all three cases), showing that nested sam-
pling selects the correct model at high significance
(at an SNR of 1000).

Hypothesis
Simulation A B C

A 1: 1 10593: 1 107200: 1
B 10993: 1 1: 1 105079: 1
C 62: 1 857: 1 1: 1

enough to select a model, based on odds derived directly from the
evidence.

5.3 Technical details and priors

We use uniform priors for all the source parameters. The flux den-
sity is restricted to the range 0 to 2 Jy. The position parameters
are allowed to be both positive and negative in the range −25 to
25 arcsec since the position is measured relative to the phase centre.
For the shape parameters of the extended source, (l⊥ and m⊥), we al-
low the prior ranges to be big enough to encompass the point spread
function of the interferometer and no more, since we are dealing
with sub-synthesized-beam sources. This translates to a range of
0–20 arcsec for l⊥ and −20 to 20 arcsec for m⊥. Finally, we restrict
the minor-to-major axis ratio (r) to be positive, but less than unity
to be physically meaningful. We found that using 1000 live points
achieved good results from MULTINEST.

5.4 Results

The relative logarithmic evidences are computed for each model
giving the relative confidence with which one model is preferred
over another (see Table 2). We find that the correct hypothesis is
selected in all cases, at odds of 10593:1, 10993:1 and 62:1, for the
two-point-source, extended-source and single-point-source models,
respectively. Using model selection, BIRO is able to select the cor-
rect model in all three cases (the model with the highest evidence),
showing it can perform source separation even on sub-synthesized-
beam scales.

We computed a ‘best-fitting’ image by running MEQTREES with
the maximum posterior model and parameters in each of the three
cases, to compare with the CLEANed image (see Fig. 10). We use the
same CLEAN parameters as in Section 4.4. The CLEANed images (at
least in this case, without an enforced smaller beam size) are unable
to reach the sub-synthesized-beam scales achievable by BIRO.

In Fig. 11, we determine the point at which model selection fails
to distinguish an extended source from a point source for differ-
ent source sizes and signal-to-noise ratios (SNRs). Any evidence
lower than ‘strong’ is not usually considered high enough to say
either way which model is correct. Perhaps obviously, at high SNR
extremely small sources can be detected (around 1.0 arcsec) and
sources become more difficult to distinguish as the SNR is reduced.

Video 1 in the online-only content shows visually how MULTINEST

converges to the correct model, exploring the posterior as it goes,

MNRAS 450, 1308–1319 (2015)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/450/2/1308/981750 by guest on 04 April 2024



Bayesian inference for radio observations 1317

Figure 10. Left-hand column: the true sky for the extended Gaussian,
single-point-source and two-point-source models (from top to bottom). Mid-
dle column: the CLEANed image for the three models. Right-hand column:
the maximum posterior BIRO image for the three models. The purple con-
tour in each image indicates the size of the synthesized beam, as returned
by CLEAN (note that the sources are all much smaller than the synthesized
beam). BIRO recovers the correct input model each time while CLEAN is
unable to distinguish between the models at the same SNR (in this case the
SNR was 1000).

for the extended source model. Each frame is an image generated
using the parameters from every 40th step of the chain.

6 D I S C U S S I O N A N D C O N C L U S I O N S

We have introduced the technique BIRO, a Bayesian approach to the
deconvolution problem of radio interferometry. Instead of making
an image and then performing source extraction, BIRO uses MCMC
or nested sampling to fit models directly to the visibility data and
obtain the posterior for the parameters of interest, as well as nuisance
parameters.

In the first example problem, we focused on the relationship
between scientific and instrumental parameters. It was found that
all parameter estimates from BIRO were consistent within their error
bars with the true values. As well as determining the uncertainties
of the parameters, BIRO also returns the covariance matrix between
them, as a by-product of the full posterior. Our work shows that these
correlations are complicated and non-negligible. BIRO effortlessly
incorporates the effects of the correlations in the estimates of the
marginalized uncertainties on the individual parameters, as well
as providing a way to study these correlations in the form of the
covariance matrix. We compared our results to a standard CLEAN

algorithm, without calibration (since our simulated data contains
only direction-dependent effects and publicly available calibration
algorithms only deal with direction-independent effects). Because
of the time-varying pointing errors we introduce to the data set,
CLEAN is only able to find 5 out of the 17 sources and returns
biased flux densities for them, while BIRO returns unbiased flux
densities for all sources. BIRO is also able to correctly determine
the coefficients of the time-varying pointing errors, the primary
beamwidth and the noise on the visibilities.

In the second example problem, we addressed the issue of how
to determine the best sky model for the data. We worked with three
models: a single point source, a Gaussian extended source and
two point sources. We simulated data for each of the three models
and then, for each data set, ran MULTINEST to fit each of the three

Figure 11. Relative natural log-evidence (i.e. the natural logarithm of the ratio of the Bayesian evidence for the true model to that of a single point source)
as a function of Gaussian source size, for the extended source input model, showing the evidence-crossover points for different source sizes and SNRs (peak
flux to background noise). The horizontal axis gives the size of the circular Gaussian source in the input model (the reader is reminded that the FWHM of the
synthesized beam is around 13 arcsec). The vertical axis gives the odds in favour of the Gaussian source model when model comparison is performed for the
Gaussian model against a point source model. The more positive the relative log-evidence is, the more strongly is the Gaussian model favoured. Each curve on
the graph is for a different noise level with the approximate (map) SNRs shown in the legend.
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models and determine the Bayesian evidence. The evidence then
determines the selection of the correct model. All of the sources
detected were several times smaller than the synthesized beam,
hence we successfully achieved super-resolution as well as source
separation.

This paper constitutes a proof of concept but more work is re-
quired before the technique can be easily applied to interferometric
data set.

(i) First, while using a WSRT simulation has relevance to the
SKA due to the similar instrumental setup, the SKA will have many
more antennas (of the order of a thousand) which will of course
result in many more instrumental parameters (and indirectly more
science parameters as the source count increases with sensitivity).
Fortunately, while the number of instrumental parameters scales as
the number of antennas, N, the number of data points scales as the
number of baselines, i.e. O(N2), meaning it is plausible that one
could simultaneously determine the sky and instrumental param-
eters for large N. While the precedent for sampling an extremely
large parameter space exists (Jasche & Wandelt 2012), new and
sophisticated sampling techniques (Duane et al. 1987; Neal 2012;
Goodman & Weare 2010; Foreman-Mackey et al. 2013) (which are
also easily parallelized) will be required to improve convergence in
the thousand-parameter regime, especially as the non-linear nature
of the modelling makes sampling inefficient (as addressed in Jasche
& Wandelt 2012).

(ii) Secondly, the Bayesian approach is far more computation-
ally intensive than standard deconvolution, taking hours (55 CPU
hours in the case of example 1) to converge to the correct posterior
distribution. The complexity of the likelihood computation scales
as the number of antennas squared (i.e. the number of baselines),
making an SKA-like computation difficult with the current setup.
However, the RIME is intrinsically highly parallelizable allowing an
efficient implementation of MEQTREES on GPUs. Preliminary work
on a GPU implementation indicates a speed-up of the likelihood
computation of about 250 times (Perkins et al. 2015). This means
this technique can be applied to data from existing telescopes such
as ALMA (Hills & Beasley 2008) and LOFAR (van Haarlem et al.
2013), using current computer clusters.

(iii) Thirdly, we need to address the problem of not knowing the
sky model beforehand, which is a common difficulty when dealing
with calibration but is particularly important here, as a Bayesian
analysis relies on a good model. There are a number of ways to
tackle this issue which we hope to address in future publications.
A simple, but computationally intensive, solution would be to run
several different models (with increasing numbers of sources) and
select between them using the Bayesian evidence. Another possible
approach is to use a deconvolution algorithm, like CLEAN or RESOLVE,
to get an initial set of sources and then iterate between deconvolution
and the best fit of BIRO to get a subsequently better model. A
more rigorous solution would be to use an algorithm such as birth–
death (Stephens 2000) or reversible jump (Green 1995) MCMC,
which is able to determine both the number of parameters required
and the posterior for them simultaneously. A further possibility is
to combine the more general approach proposed in Sutter et al.
(2014) and Junklewitz et al. (2013), which divides up the field into
many ‘pixels’ that are then allowed to vary, with the calibration
capabilities of BIRO to produce estimates of the sky model. This is
even more computationally challenging however, but would provide
a more general and robust solution.

BIRO is not only useful for dealing with systematics, which will
become more important as telescopes become more sensitive, but it

is also a powerful technique for lending statistical strength to topi-
cal scientific questions. Potential applications include structures of
black hole systems, jet emission in active galaxies, time variability
of objects and radio weak lensing. BIRO allows a holistic way to
include instrumental effects while at the same time returning the
science we are interested in. By leveraging the power of Bayesian
statistics, BIRO uses all information available to get the most out
of interferometric data sets.

Video 1: Online only (also available at https://vimeo.com/
117391380). Images generated from the MULTINEST chain for the
extended Gaussian source data set and model. At every 40th step in
the chain, that step’s parameters were used to generate an image of
the field. The parameters are at first quite variable but soon converge
to the correct shape, position and flux density for the source. The
sample probability, which is the normalized posterior for that point,
improves as the chain converges to the correct parameter values.
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A P P E N D I X A : BAY E S I A N FAC TO R G R A P H S

Here we introduce Bayesian factor graphs, useful tools for visu-
alizing Bayesian models, which we use to describe the model of

Table A1. Factor graph node types (adapted from Dietz 2010). The concept
of a plate is worth an extra mention. Frequently in models variables are
repeated, such as the 17 flux densities or 14 sets of pointing errors in our
model in example 1. A plate in a factor graph allows one to easily show
these variables are repeated, but each can have a unique value. So in the case
of the source flux densities, m would range from 1 to 17, the value of M.

Figure A1. A simple example factor graph. In this model, the data are
represented by a vector xi, which we suspect is normally distributed. This
is modelled by a normal distribution (represented by the factor labelled N )
which is governed by the parameters μ and σ . These constants would be
the parameters we would want to estimate with an MCMC or MULTINEST

analysis.

Section 4. We make use of the directed factor graph notation, devel-
oped in Dietz (2010), to visualize how the parameters in our models
depend on one another. Table A1 defines the graphical primitives
of a factor graph. Fig. A1 demonstrates the use of the factor graph
notation in a simple example.
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Additional Supporting Information may be found in the online ver-
sion of this article:
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