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ABSTRACT
The general model for incoherent synchrotron radiation has long been known, with the first
theory being published by Westfold in 1959 and continued by Westfold and Legg in 1968.
When this model was first developed, it was applied to radiation from Jupiter, with a magnetic
field of ≈1G. Pulsars have a magnetic field of ≈1012 G. The Westfold and Legg model
predict a circular polarization which is proportional to the square root of the magnetic field,
and consequently predicts greater than 100 per cent circular polarization at high magnetic
fields. Here a new model is derived based upon a more detailed analysis of the pitch angle
distribution. This model is concerned with the frequency range fB0/γ � f � fB0 , noting that
fB0 = 2.7 × 107B, which for a relatively high magnetic field (∼106–108 G) leaves emission in
the optical range. This is much lower than the expected frequency peak for a mono-energetic
particle of 0.29 3eB

4πmec
γ 2. We predict the circular polarization peaks around 107G in the optical

regime with the radiation almost 15 per cent circularly polarized. The linear polarization
changes from about 60 to 80 per cent in the same regime. We examine implications of this for
pulsar studies.

Key words: radiation mechanisms: non-thermal – pulsars: general.

1 IN T RO D U C T I O N

Pulsar emission in the optical regime is generally accepted to be
incoherent synchrotron radiation and consequently it should be po-
larized. To date most attention has been on linear polarization, in part
due to instrumental limitations of most polarimeters (Słowikowska
et al. 2009; Smith et al. 1988). Optical instrumentation, such as
the Galway Astronomical Stokes Polarimeter (GASP; Collins et al.
2013), are now in a position to measure all of the Stokes parame-
ters from pulsars on time-scales from milliseconds to hours. Hence
the requirement for a fully self-consistent model for synchrotron
radiation in a high magnetic fields.

The original model for synchrotron emission was published in
1959 by Westfold (1959), with other authors coming to the same
conclusions (Le Roux 1961; Ginzburg, Sazoonov & Syrovatskiĭ
1968; Ginzburg & Syrovatskiĭ 1969), albeit generally with slightly
different derivation methods. This model was then further developed
in 1968 (Legg & Westfold 1968), and corrections to the model were
applied in 1974 (Gleeson, Legg & Westfold 1974). These correc-
tions do not significantly alter the circular polarization calculations.
An error in the derivation used was found (Singal 1986), but this
did not change the model predictions.

The motivation behind the Westfold and Legg (hereafter WL)
model of synchrotron radiation was to study the emission from
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Jupiter, with a magnetic field of approximately 1 G. As such, the
behaviour of the model was never tested at high magnetic fields.
As pulsars have extremely high magnetic fields (∼1012 G), it is
important to test the model in high magnetic fields before applying
it to pulsar emission. When the incoherent synchrotron emission is
calculated at high magnetic fields (∼106 G), the WL formulation
predicts a circular polarization greater than 100 per cent. As this
is in clear contradiction of reality, a new model for the incoherent
synchrotron emission is required. The most likely reason was in the
expansion of the particle pitch angle distribution. In this paper, this
is expanded to the next order of magnitude.

Section 2 of this paper states the predictions of the previous
model (Legg & Westfold 1968), and gives the problems inherent
in that model. Section 3 goes through the expansion of the particle
pitch angle distribution and the differences that this makes to the
intensity, linear polarization and circular polarization. Finally, the
overall effects of each of the different parameters on the intensity are
investigated, and some of the possible implications are discussed,
particularly in relation to pulsar emission.

2 TH E W L M O D E L O F SY N C H ROT RO N
EMI SSI ON

The WL model that is of interest here gives the Stokes parameters
for a power-law distribution of electrons with

N (E) = E−p E1 < E < E2 (1)

C© 2015 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/450/1/533/1000047 by guest on 09 April 2024

mailto:diarmaiddeburca@gmail.com
mailto:andy.shearer@nuigalway.ie
mailto:andy.shearer@nuigalway.ie
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and N(E) = 0 otherwise as

I = kμe2c
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where f is the frequency, μ is the permeability constant, p is the
power-law index, e is the charge of the particle, θ is the particle
pitch angle, fB0 = eB(2πmc)−1 is the fundamental gyrofrequency,
�(θ ) is the pitch angle distribution function, and
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The circular polarization (defined as VI−1) is then given by

V

I
= 2
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]
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(7)

As the circular polarization is proportional to the root of the mag-
netic field, it is clear that at some point the degree of circular polar-
ization will exceed 1. This is clearly unrealistic. However, all models
will only have a certain range of validity, and if the magnetic field
at which the circular polarization occurs at extremely high mag-
netic fields, then the model can still be used for smaller magnetic
fields. The polarization was found to be greater than 100 per cent at
approximately 105 to 107 G (Fig. 1) and above, below the surface
magnetic field strength of pulsars, but above planetary magnetic
fields.

3 EX PA N D I N G T H E W L MO D E L

As the model fails at high magnetic fields, a new model is needed
to describe the polarization of synchrotron radiation in those fields.
When the derivation used in the WL model is looked at, the main
assumptions are (1) that the velocity of the particle is close to
the speed of light (2) the expansion of the velocity in the frame

chosen (3) for a power-law index, the expansion of the distribution
of electrons.

In this work, we will examine the results when the distribution
of electrons is expanded to a higher order.

3.1 Electric field

As synchrotron radiation comes from a source moving in a cyclic
fashion, emission will consist of harmonics of the fundamental
gyrofrequency fB0 . Following the same formulation as WL, the
emission from each harmonic can be shown to be

En = μce( ωB
b )

8π2r

∫ ( ωB
b )/2π

0

[
n×

(
(n×β)× dβ

dt

)
(1−n·β)3

]
exp

[
in
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ωB

b

)
t
]

dt, (8)

where the expression in brackets is evaluated at the retarded time

t ′ = t − R(t ′)
c

R(t ′) = r − r(t ′) ≈ |r| − n · r, (9)

where b = β′sin αsin (α − θ ) (Le Roux 1961; Legg & Westfold
1968). Changing the integration to an integration over t′, and sim-
plifying, gives
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(10)

3.2 Coordinate system

In order to solve equation (10), it is necessary to choose a system of
coordinates. In this case, the system will be constructed as follows:
the particle is spiralling around a magnetic field at an angular fre-
quency of ωB = qB(γ mc)−1, where q is the charge, B is the strength
of the magnetic field and γ is the Lorentz factor of the particle.
The particle maintains a constant pitch angle of α with respect to
the magnetic field direction. At any particular time, the orbit has a
radius of curvature of a. Now, let the x– y plane be the instantaneous
plane of the orbit of the particle. Now, take the origin of the x-axis
to be the point where the velocity vector and the observer are in the
x–z plane, and let the y-coordinate be in the direction of the radial
vector a, with the x-coordinate being defined as perpendicular to
the y and z-coordinates.

Now, define a new set of coordinates (n, ε‖, ε⊥) such that the
origin is at the same point as the (x, y,z) coordinate system origin,
n is pointing towards the observer, ε⊥ is pointing along y, and
ε‖ =n×ε⊥. This then gives a natural coordinate system in which to
consider the polarization of the emission, as ε⊥ is perpendicular to
the magnetic field and ε‖ is parallel to the magnetic field direction,
as seen in projection by an observer, as can be seen in Fig. 2. Here
a stands for the radius of curvature of the particle.

Finally, in this coordinate system the velocity and acceleration
are Longair (2011)

r0(t ′) = 2a sin
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)
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)
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⎤
⎦ (11)
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Synchrotron radiation – circular polarization 535

Figure 1. The WL model predicts that the percentage circular polarization will increase linearly with the magnetic field, regardless of the power-law index
of the electrons used. At some point this model fails and predicts clearly non-physical results. This is dependent on the pitch angle, the frequency and the
power-law index, but in the area of interest the WL model fails long before the predicted surface magnetic field of a pulsar (≈1012 G).
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This then gives the electric field (splitting it into its component
parts parallel and perpendicular to the projection of the magnetic
field), and dropping the subscript,
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3.3 Emission-polarization tensor

The emission-polarization tensor is defined as

ρ = 2πr2

μ

(
E⊥E∗

⊥ E⊥E∗
‖

E‖E∗
⊥ E‖E∗

‖

)
. (19)

This is equivalent to getting the Stokes parameters for each har-
monic, as

I = ρ11 + ρ22 (20)
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Figure 2. The geometry used in order to calculate the synchrotron emission.
First, define the x– y plane as the instantaneous plane of orbit of the particle.
Then define the origin as the point at which the velocity v and the vector to
the observer n are both in the x–z plane. Define ε⊥ to be along the x-axis,
and ε‖ as n×ε⊥. This gives a natural frame of reference for the polarization
of the emission.

Q = ρ11 − ρ22 (21)

U = ρ12 + ρ21 (22)

V = 1
i

(ρ12 − ρ21) . (23)

3.4 Airy functions

It is possible to convert the electric field exponential into Bessel
functions (see supplementary materials). This gives

ρ11 = μe2c

24π4

(ωB

b

)4
n2 a2

c2

θ4
γ

γ 4
K2

2/3 (η) (24)

ρ12 = μe2c

24π4

(ωB

b

)4
n2 θθγ

γ 3

a2

c2
K1/3 (η) K2/3 (η) (25)

ρ22 = μe2c

24π4

(ωB

b

)4
n2θ2 a2

c2
K2

1/3 (η) . (26)

This then gives the polarization tensor for a particular harmonic of
the emission.

3.5 Converting to frequency domain

For large-order harmonics, the radiation becomes quasi-continuous
(Legg & Westfold 1968) and it is possible to convert the polarization
tensor for a single harmonic to the frequency polarization tensor
using

ρf = ρnb

fB

, (27)

where fB = fB0/γ , b = β′sin αsin (α − θ ), ρn is the polarization
tensor for a single harmonic and ρ f is the polarization-emission
tensor at a particular frequency, and

f = nfBb−1. (28)

This gives the polarization tensor at a particular frequency. It
is convenient to convert from the frequency into a dimensionless
parameter x such that
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3.6 Power-law polarization-emission tensor

When there is a power law of particles, the polarization-emission
tensor for that population of particles is

nx(n) = 2π

∫ ∞

0
N (E)
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φ(α) sin αbPx(n)d�(n)dE. (34)

In order to solve this it is possible to represent α as α + θ . Then
the solid angle is represented as d�(n) as 2π sin αdθ . This can be
written as α = α′ + θ and substituted into equation (34). To third
order, the particle pitch angle distribution can be written as

φ(α′ + θ ) sin
(
α′ + θ

) = f (α′) + g(α′)θ + h(α′)θ2, (35)

where

f (α′) = φ(α′) sin α′ (36)

g(α′) = φ′(α′) sin α′ + φ(α′) cos α′ (37)

h(α) = φ′′(α′) sin α′ + 2φ′(α′) cos α′ − φ(α′) sin α′ (38)

and φ(α) is the pitch angle distribution of the particles itself. This
gives the polarization-emission tensor as (writing α′ as α, see sup-
plementary materials)
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Figure 3. The circular polarization for a power-law distribution of particles with a power-law index of 1.42, at a frequency of 5.212 × 1014 Hz. Here WL
stands for Westfold and Legg, the original emission theory, and theta stands for the particle pitch angle.
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where

Qn =
∫ ∞

0
xn−1K4/3 (x) dx (42)

and the other parameters are as before.

4 D I SCUSSI ON

This formulation predicts that the circular polarization will not ex-
ceed 100 per cent. For a particle power-law index of 1.42, the
circular polarization remains less than 15 per cent for all mag-
netic field values in the optical regime (Fig. 3), while the lin-
ear polarization changes value at high magnetic fields (Fig. 4)
but remains at a steady value except in the intermediate range
of magnetic fields (106–1010 G). One result is that the level of
circular polarization is directly dependent on the magnetic field.
As such, measurements of the circular polarization give some po-
tential constraints to the magnetic field strength of the emission
volume.

There is one major constraint to this emission model. In or-
der to obtain emission at high magnetic fields, the h(α) term has
to be positive. In general, for small values of θ , this can be ob-
tained by considering particle pitch angle distributions with posi-
tive first derivatives. So, in this paper the particle pitch angle dis-
tribution used φ(α) = sin (α)sin(αmax)−1. However, this particle
pitch angle distribution does not in general agree with the par-
ticle pitch angle distributions that are predicted (e.g. Gaussian).
Physically, this type of distribution would result from particles
which lose more energy the closer they are to the magnetic field
line.
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Figure 4. The linear polarization change with regard to the magnetic field for a particle power-law index of 1.42 and frequency 5.212 × 1014 Hz and theta
for the particle pitch angle. As can be seen, the linear polarization is steady at low magnetic fields and at high magnetic fields, with the linear polarization
changing smoothly between the two values in intermediate range of magnetic field values.

Another area of interest would be in pulsar studies. There
are currently a number of different theories about pulsar high-
energy/optical emission (Cheng, Ho & Ruderman 1986; Takata,
Want & Cheng 2010; Pétri 2012; Du et al. 2011; Harding 2013)
which agree on the process of emission, pair production creating
a plasma which then emits using synchrotron radiation, but which
disagree on the location of the pulsar emission zone. As the mag-
netic field strength can be correlated with the position in the pulsar
magnetosphere, this provides a test to constrain the pulsar emission
location. One method to constrain the pulsar emission locations
would be to use an inverse mapping approach, McDonald et al.
(2011). They considered emission from all parts of the magneto-
sphere, and compared that emission to optical observations. They
found that the majority of the emission came from approximately
300 km from the pulsar surface, where the magnetic field strength is
in the range of 107–108 G. Future work would involve incorporating
our model into the code and checking if the emission areas change
significantly.

The linear polarization predicted by our method is not depen-
dent on the particle pitch angle except in intermediate magnetic
fields, and in certain regimes is not dependent on the magnetic field

strength. However, it is very sensitive to the particle power-law in-
dex. As such, it could be possible to constrain the particle power-law
index from measurements of the linear polarization. A combined
measure of linear and circular polarization is therefore an important
diagnostic tool for determining the geometry of pulsar emission
zones.

The relationship between the observed power-law index, and
the particle power-law index, is different at high magnetic fields.
This relationship has been accepted as p = 2α + 1 (Longair
2011; Rybicki & Lightman 1979); however, at high magnetic
fields, this relationship changes to p = 2α − 1 in this formulation
(Fig. 5).

There is still a number of issues to be addressed. The frequencies
of interest here are far from the maximal spectral frequency of a
single shape. Therefore, it is worthwhile to note that there could
be errors introduced due to the integration going between 0 and ∞
rather than over a realistic energy range. Investigating the error is
beyond the scope of this work. To first order we can state that the
polarization measurements are correct, as calculating the formula
for Ln and Jn (Gleeson et al. 1974) gives a ratio of 0.644 for the
integration over 0 to ∞, and a slowly varying ratio between 0.644

MNRAS 450, 533–540 (2015)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/450/1/533/1000047 by guest on 09 April 2024



Synchrotron radiation – circular polarization 539

Figure 5. A comparison of the intensities predicted by both models. The frequency is 5.212 × 1014 Hz, the pitch angle distribution is �(α) = sin (α) sin (αmax),
the particle power-law index is 1.42, and theta stands for the pitch angle. As can be seen, at approximately 104–106 G, the slope of the intensity changes from
α = 0.5(p − 1) to 0.5(p + 1).

and 0.500 (as the magnetic field is increases from 105 to 1011) for
the ratio from the exactly calculated values. Lifetime effects also
limit the effective energy range – if the energy is below a minimum
of γ = fB0/(f sin2 θ ) then there can be no radiation Gleeson et al.
(1974). At high magnetic fields this can be of the order of γ = 103.

Measurements of the linear and circular polarization from pulsars
with apparent magnitudes less than 25 is possible with instruments
like GASP on 4-m class telescopes. Our predictions can therefore be
tested on normal pulsars such as the Crab pulsar and on magnetars
such as 4U0142+61. We also develop our inverse mapping approach
(McDonald et al. 2011) to include circular polarization.

We note that for the Crab pulsar the maximum linear polariza-
tion is 15 per cent (Słowikowska et al. 2009), whereas we predict
higher values (>60 per cent), consistent with the WL formulation.
This discrepancy requires further investigation and could be due
to either the impact of different pitch angle distribution or a more
astrophysical explanation. Future work should clarify this.
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