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ABSTRACT
Soft gamma-ray repeaters and anomalous X-ray pulsars are extreme manifestations of the
most magnetized neutron stars: magnetars. The phenomenology of their emission and spectral
properties strongly support the idea that the magnetospheres of these astrophysical objects
are tightly twisted in the vicinity of the star. Previous studies on equilibrium configurations
have so far focused on either the internal or the external magnetic field configuration, without
considering a real coupling between the two fields. Here, we investigate numerical equilibrium
models of magnetized neutron stars endowed with a confined twisted magnetosphere, solving
the general relativistic Grad–Shafranov equation both in the interior and in the exterior of the
compact object. A comprehensive study of the parameters space is provided, to investigate the
effects of different current distributions on the overall magnetic field structure.
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1 IN T RO D U C T I O N

Neutron stars (NSs) can manifest themselves as different classes
of astrophysical sources, each one of them characterized by a
peculiar phenomenology. Among these classes, anomalous X-ray
pulsars (AXPs) and soft gamma-ray repeaters (SGRs) are partic-
ularly remarkable because of their extraordinary energetic prop-
erties. Both exhibit a persistent X-ray emission with luminosities
LX ∼ 1033–1036 ergs−1. They are characterized by flaring activity
with X-ray bursts whose duration is ∼0.1–1 s and with peak lu-
minosities ∼1040–1041ergs−1 which are, in some cases, associated
also with a pulsed radio transient emission. SGRs are sources of
violent events, known as giant flares, during which an amount of en-
ergy ∼1044–1046 erg is released (for recent reviews, see Mereghetti
2008; Rea & Esposito 2011; Turolla & Esposito 2013).

There is a general consensus that SGRs and AXPs, on the ground
of their observational properties, are part of a same class of NSs
called magnetars (Duncan & Thompson 1992; Thompson & Dun-
can 1993). These are young (with a typical age of 104 yr), isolated
NSs with rotational period in the range ∼2–12 s, and with a typ-
ical dipole magnetic field, inferred from spin-down, in the range
1014–1015 G (Kouveliotou et al. 1999). Since they are slow rota-
tors, spin-down energy losses cannot power their emission, which
is instead believed to originate in the magnetic energy stored in the
interior. The observed phenomenology would be thus sustained by
the rearrangement and dissipation of their huge magnetic fields.

The simultaneous presence of high density, strong gravity, and
strong magnetic fields makes magnetars a unique environment.
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Unfortunately, it is not yet known how such a strong magnetic field
can form, and even less known are the requirements for its stability.
During the collapse of the progenitor star and the formation of the
compact proto-NS, any fossil field, inherited by the progenitor, can
be either enhanced by the compression of the core (Spruit 2009)
or/and by its differential rotation. It is not clear, however, if this is
enough to achieve the typical magnetar field strengths, or if some
form of dynamo is necessary (Thompson & Duncan 1993; Bonanno,
Rezzolla & Urpin 2003; Rheinhardt & Geppert 2005; Burrows et al.
2007). In this case, protomagnetars should be born as millisecond
rotators, with important consequences for the supernova explosion
itself (Bucciantini et al. 2009; Metzger et al. 2011; Bucciantini et al.
2012).

In any case, there is no reason to expect that the magnetic field,
at the very beginning, is already in a stable configuration, while
it is more likely expected that it will rapidly evolve into a stable
one. This is because the Alfvénic crossing time is much smaller
than the typical Kelvin–Helmholtz time-scale (Pons et al. 1999).
After ∼100 s since the formation of the proto-NS, the neutrino-
driven wind ceases. This is the typical time when an approximatively
force-free magnetosphere can be established outside the star. It
is also the time when a crust begins to form, eventually freezing
the magnetic field on the NS surface. From now on, the magnetic
fields evolve on the much longer diffusive time-scale (Braithwaite
& Spruit 2006; Gourgouliatos et al. 2013; Viganò et al. 2013).

The study of the properties of magnetic configurations inside
NSs is thus an important step towards a complete understanding of
magnetars and their properties. It is well known that either purely
poloidal or purely toroidal magnetic configurations are highly unsta-
ble (Prendergast 1956; Lander & Jones 2011a,b; Ciolfi & Rezzolla
2012). However, given their simplicity, such kind of configurations
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have been extensively investigated in the context of equilibrium
models of magnetized NSs either in the Newtonian regime, from
the earlier studies of Chandrasekhar & Fermi (1953) to the more
recent Yoshida, Yoshida & Eriguchi (2006), or in full General Rel-
ativity (GR) by Bocquet et al. (1995), Kiuchi & Yoshida (2008),
Frieben & Rezzolla (2012) and Pili, Bucciantini & Del Zanna (2014,
hereafter PBD14).

Stability was investigated by Braithwaite & Nordlund (2006) and
Braithwaite (2009) by means of numerical simulations in the New-
tonian magnetohydrodynamic (MHD) regime. The general outcome
of the relaxation of the initial magnetic field is a dynamically sta-
ble Twisted Torus (TT) configuration, where the poloidal field is
roughly axisymmetrically twined with a toroidal field, of compa-
rable strength, into a ring-like region located just underneath the
surface of the star. The exterior field they find is mainly a dipole
with only smaller contributions from higher order multipoles (note
however that they impose a potential field outside the NS surface,
confining any current to the interior).

Given that TT configurations seem in principle to be stable, partic-
ular efforts have been recently aimed at their investigation. Models
have been worked out in the Newtonian regime (Lander & Jones
2009; Fujisawa, Yoshida & Eriguchi 2012; Glampedakis, Ander-
sson & Lander 2012), in GR with a perturbative approach (Ciolfi
et al. 2009; Ciolfi, Ferrari & Gualtieri 2010; Ciolfi & Rezzolla 2013)
and more recently also in the fully non-linear GR regime in PBD14.

The analysis of equilibrium configurations has mainly focused
on understanding the effects of the magnetic field on the struc-
ture of the star. Strong magnetic fields, indeed, could deform the
star, and such deformations, in conjunction with fast rotation, could
lead to emission of gravitational waves (GW) which, in princi-
ple, would be observed by the next generation of ground-based
detectors (Mastrano et al. 2011; Lasky & Melatos 2013). This
makes strongly magnetized NS prime candidates for GW detec-
tion. Moreover, there are some recent claims of a free precession
in 4U 0142+61 suggesting a prolate deformation of the NS, pos-
sibly caused by a toroidal magnetic field of the order of 1016 G
(Makishima et al. 2014).

Until now, NS equilibrium models have been developed assum-
ing that the star is surrounded by a ‘vacuum’. However, since the
seminal work of Goldreich & Julian (1969), it is clear that rotat-
ing NSs are actually surrounded by a magnetosphere filled by a
charge-separated, low-pressure plasma. Since the plasma pressure
and its mass density are negligible with respect to the electromag-
netic energy density, the magnetosphere can be described in the
force-free approximation (Contopoulos, Kazanas & Fendt 1999;
Spitkovsky 2006; Kalapotharakos & Contopoulos 2009; Contopou-
los, Kalapotharakos & Kazanas 2014; Philippov, Tchekhovskoy &
Li 2014).

In the case of magnetars, we expect that their magnetosphere
is endowed with a high twisted magnetic field. This is strongly
suggested by the features of their persistent X-ray spectra, which
are well fitted by a blackbody-like component at kT ∼ 0.5 keV,
joined with a power-law tail that becomes dominant above 10 keV
(Kuiper et al. 2006). The latter can be explained in terms of reso-
nant cyclotron scattering of the thermal photons by magnetospheric
particles as proposed in Thompson, Lyutikov & Kulkarni (2002)
and Beloborodov & Thompson (2007). These authors pointed out
that the dissipation of magnetic energy inside the star could induce a
twist of the emergent magnetic field into a non-potential state which
is sustained by electric currents that, threading the magnetosphere,
might interact with the thermal photons emitted by the surface of
the NSs.

The twisted magnetosphere scenario has been successfully vali-
dated by calculation of synthetic spectra (Lyutikov & Gavriil 2006;
Fernández & Thompson 2007; Nobili, Turolla & Zane 2008; Tav-
erna et al. 2014). These works show that the morphology of the
external magnetic field, and the related charge distributions, highly
affect the spectral shape and the pulse profile of the emitted radia-
tion. This indicates the importance of a correct modelling and under-
standing of global magnetic configurations. Typically, the standard
reference model is the one discussed in Thompson et al. (2002),
where extending previous works on the solar corona (Low & Lou
1990; Wolfson 1995) to NSs, the magnetosphere is described in
terms of a self-similar, globally twisted, dipolar magnetic field.
This model has been refined to account for higher order multipoles
by Pavan et al. (2009), in response to observational indications of a
local, rather than global, twist in the magnetosphere (Woods et al.
2007; Perna & Gotthelf 2008). Recently, this scenario has been
strengthened also by the detection of a proton cyclotron feature in
the X-ray spectrum of the ‘low-field’ magnetar SGR 0418+5729
which is compatible with a strong, but localized, toroidal field of the
order of 1015 G (Tiengo et al. 2013). More general equilibrium mod-
els have been obtained by Viganò, Pons & Miralles (2011) using a
magnetofrictional method, also first developed in the context of the
solar corona studies (Yang, Sturrock & Antiochos 1986; Roume-
liotis, Sturrock & Antiochos 1994), or by Parfrey, Beloborodov &
Hui (2013) who, with time-dependent numerical simulations, in-
vestigated the response of the magnetosphere to different shearing
profiles of the magnetic footpoints.

Given the complexity of the problem, until very recently studies
have focused either on the internal field structure (assuming a pre-
scription for the magnetosphere) or on the external magnetosphere
(assuming an internal current distribution). It is obvious that the
two cannot be worked out independently, and global models are the
necessary step forward. A first attempt in this direction has been
recently made in Glampedakis, Lander & Andersson (2014). Con-
sidering non-rotating stars in Newtonian regime, they show that a
‘Grad–Shafranov (GS) approach’ to the problem can be used to
obtain global equilibrium configurations, with twists and currents
extending from the interior to the magnetosphere. A different ap-
proach was used in Ruiz, Paschalidis & Shapiro (2014), where for
the first time, detailed GR models of pulsar magnetosphere were
developed. In particular, they search for steady state configurations
by evolving in time the NS and by matching the interior field, treated
with ideal MHD equation, to the exterior force-free solution.

In this work we extend previous results, and present for the first
time GR models of NSs endowed with a twisted magnetic field,
threading both the interior and the outer magnetosphere. Models
are derived from the solution of the general relativistic GS equa-
tion, both in the interior and in the exterior of the star. Our results
are a generalization of the TT models presented in PBD14, that
allow electric currents to flow outside the star. We have investigated
several models, varying either the strength of the currents producing
the twist in the magnetosphere, or the extent of the magnetosphere
itself. Extending the work of Glampedakis et al. (2014), where a
couple of typical configurations were presented, we develop a de-
tailed study of the parameter space. We investigate how currents
are distributed and how they affect the topology of the resulting
magnetic field. We show the modifications expected on the shape of
the field at the surface, the magnetic dipole moment, and the energy
stored in the toroidal component of the magnetic field.

The paper is organized as follows. In Section 2, we present the
mathematical framework adopted, and our choice for the currents
defining the magnetosphere. In Section 3, we describe the numerical
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setup. In Section 4, we present and discuss our models, and finally
we conclude in Section5. In the following, we assume a signature
( −, +, +, +) for the space–time metric, employing Latin letters i,
j, k, . . . (running from 1 to 3) for 3D spatial tensor components. We
set c = G = 1 and all

√
4π factors are absorbed in the definition of

the electromagnetic fields.

2 FORMALISM

All our magnetized NS models will be assumed here as non-rotating
(as previously discussed, magnetars have a long rotation period) and
axisymmetric. Ideal, General Relativistic Magnetohydrodynamics
(GRMHD) is supposed to hold in the interior of the star, and it is
also assumed to hold in the external magnetosphere, where plasma
inertia is certainly negligible (this actually corresponds to the so-
called force-free regime). Our formalism follows the notation used
in PBD14, to which the reader is referred for a more complete
discussion.

2.1 The GRMHD Grad–Shafranov equation

When the stress-energy tensor describing the matter distribution
and the magnetic field of a NS is axisymmetric, then the space–
time itself must retain the same symmetry (Carter 1970, 1973). As
we showed in PBD14, NS models in full GR can be conveniently
computed, preserving a high accuracy, in the so-called conformally
flat approximation for the space–time metric (Wilson, Mathews &
Marronetti 1996; Wilson & Mathews 2003). This allows one to
notably simplify Einstein equations recasting them in a numerical
stable form, and yet to derive results that are fully consistent (with
typical relative errors ∼10−4) with more sophisticated approaches to
GR (Cordero-Carrión et al. 2009; Bucciantini & Del Zanna 2011). In
the case of a static non-rotating star the line element of a conformally
flat space–time is written, using spherical like coordinates (t, r, θ ,
φ), as

ds2 = −α2dt2 + ψ4(dr2 + r2dθ2 + r2 sin2θ dφ2), (1)

where α is the lapse function and ψ is the conformal factor, depen-
dent on the position. We note that, since we consider a non-rotating
star, the line element does not contain any mixed term dxidt, corre-
sponding to a vanishing shift vector β i = 0 in the 3 + 1 formalism.
Both the metric functions α and ψ are obtained solving Einstein
equations that, in the specific case of conformal flatness and a static
NS, reduce to a set of two non-linear elliptic partial differential
equations (PDEs; see PBD14 or Bucciantini & Del Zanna 2011).

In an axisymmetric and static space–time the electromagnetic
field can be described uniquely in terms of a magnetic potential,
which coincides with the covariant φ component of the vector po-
tential Aφ , and it is usually referred to as the magnetic flux function.
In particular, the solenoidality condition, together with axisymme-
try, allows one to express the poloidal component of the magnetic
field as a gradient of the magnetic flux function, whereas the toroidal
counterpart is related to Aφ by means of a free scalar current func-
tion I that depends on Aφ alone. Thus, under the assumption of a
conformally flat metric, the components of the magnetic field are
given by

Br = ∂θAφ

ψ6r2 sin θ
, Bθ = − ∂rAφ

ψ6r2 sin θ
, Bφ = I(Aφ)

αψ4r2 sin2 θ
.

(2)

From the static GRMHD system, in the presence of an external
magnetic field and assuming a barotropic equation of state (EoS)
for the fluid, the Euler equation can be written as

∂i ln h + ∂i ln α = dM
dAφ

∂iAφ, (3)

where ρ is the rest mass density, h := (e + p)/ρ is the specific
enthalpy, e and p are the energy density and the thermal pressure,
respectively. Here, we have already related the Lorentz force com-
ponent Li to the gradient of the magnetization function M(Aφ)
through

ρh∂iM = Li = εijkJ
jBk, (4)

in which J i = α−1εijk∂j (αBk) are the conduction currents that can
be expressed, in terms of I and M, with

J r = α−1Br dI
dAφ

, J θ = α−1Bθ dI
dAφ

,

J φ = ρh
dM
dAφ

+ I

 2

dI
dAφ

, (5)

where we have defined 
 := αψ2rsin θ .
Integrating equation (3) one obtains the Bernoulli integral

ln

(
h

hc

)
+ ln

(
α

αc

)
− M = 0, (6)

which, once the functional form of M has been chosen and both
α and Aφ are available, relates the enthalpy at each point to the
conditions set at the centre of the star (labelled c), where we as-
sume Mc = 0. Finally, the magnetic flux function Aφ is related
to the metric terms and the hydrodynamical quantities through the
GRMHD GS equation

�̃3Ãφ + ∂Aφ∂ ln(αψ−2)

r sin θ
+ψ8r sinθ

(
ρh

dM
dAφ

+ I

 2

dI
dAφ

)
= 0.

(7)

This is obtained by working out the derivatives of the magnetic
field in equation (4) introducing, for convenience, the new variable
Ãφ = Aφ/(r sin θ ) and the following differential operators

�̃3 :=� − 1

r2 sin2θ
=∂2

r + 2

r
∂r + 1

r2
∂2

θ + 1

r2 tan θ
∂θ − 1

r2 sin2θ
,

(8)

∂f ∂g := ∂rf ∂rg + 1

r2
∂θf ∂θ g. (9)

The GS equation, which governs the GRMHD equilibrium inside
the star, can be extended also outside if we describe the external
magnetosphere as a low-density plasma where the force-free regime
is valid. Indeed, in the non-rotating case, the force-free condition
reduces to the vanishing of the Lorentz force Li = 0, and one can
again obtain a GS equation that corresponds to equation (7) in the ρ

→ 0 limit. We notice that taking the non-relativistic limit of equation
(7) with ρ → 0 leads to the non-rotating limit of the so-called pulsar
equation (Glampedakis et al. 2014).

Finally, we recall that our choice of expressing all the electromag-
netic quantities as functions of Aφ is not appropriate in the case of
a purely toroidal magnetic field, which instead requires a different
description, see PBD14 or Gourgoulhon et al. (2011) for details.
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2.2 Choice of the free functions

The current and magnetization free functions entering the GS equa-
tion can be easily modified, with respect to the choice made in
PBD14, in order to allow the currents to flow also outside the
star. We can actually retain the same form for the magnetization
function M

M(Aφ) = kpolAφ, (10)

where kpol is the poloidal magnetization constant, while we adopt
here a different functional form for I, namely

I(Aφ) = a

ζ + 1


[
Aφ − Aext

φ

] (
Aφ − Aext

φ

)ζ+1

(
Amax

φ

)ζ+1/2 , (11)

where [.] is the Heaviside function, Amax
φ is the maximum value

that the φ component of the vector potential reaches over the entire
domain, while Aext

φ is the maximum value it reaches at a distance
r = λre from the star (being re the equatorial radius). We further
define a as the toroidal magnetization constant, whereas ζ is the
toroidal magnetization index. Note that these choices are analogous
to the ones made in Glampedakis et al. (2014). The new parameter
λ, that enters in the definition of Aext

φ , allows us to control the size of
the twisted magnetosphere outside the star. The results of PBD14 are
recovered assuming λ = 1. On the other hand, for λ > 1 the toroidal
magnetic field is not confined within the star but extends smoothly
outside the stellar surface, just like the poloidal component.

From the relations (5), given our choice for the free functions M
and I, the components of the conduction currents become

J r = α−1Br a
[
Aφ − Aext

φ

] (
Aφ − Aext

φ

)ζ

(
Amax

φ

)ζ+1/2 , (12)

J θ = α−1Bθ a
[
Aφ − Amax

φ

] (
Aφ − Aext

φ

)ζ

(
Amax

φ

)ζ+1/2 , (13)

J φ = ρh kpol + a2

(ζ + 1)
 2


[
Aφ − Aext

φ

] (
Aφ − Aext

φ

)2ζ+1

(
Amax

φ

)2ζ+1 . (14)

Note that, thanks to the renormalization by Amax
φ , the φ component

of the conduction current is independent from the absolute value of
the magnetic flux function (it does not depend on the field strength),
while it is directly controlled only by the magnetization parameter
kpol and a.

In the low-magnetization limit, when the magnetic energy H is
smaller than the gravitational mass M (H � M), the metric func-
tions α and ψ depend weakly on the magnetic field strength, and
one can safely assume for them the same values of the unmagne-
tized case. We have verified that the low-magnetization limit applies
as long as the magnetic field at the centre is weaker than 1016 G
(corresponding to a magnetic field at the surface smaller than a
few 1015 G). For smaller values, non-linear variations are absent
(changes in the results are well within the overall accuracy of the
scheme), while they become evident at higher values. The reader is
referred to Appendix A for a more detailed discussion on the strong
field regime.

Interestingly, in this limit, it is possible to recast the current
function I in a self-similar way, such that the resulting magnetic
field configuration remains unchanged, modulo its strength. If Jφ

is rescaled with a numerical factor η sending kpol �→ηkpol and a �→√
ηa, the solution of the GS equation itself is rescaled by the same

numerical factor. The self-similar parameter can be thus defined in
terms of the strength of the magnetic field as

â = a

(
Bpole

1014G

)−1/2

, (15)

where Bpole is the magnetic field at the pole, that we have decided to
always normalize against 1014 G. Then the quantity â parametrizes
the magnetic configurations, independently from the strength of the
magnetic field. Notice that in PBD14, since the choice for the current
function I in the TT case had a slightly different normalization, the
role of self-similar parameter was assumed by a. Here, the new
normalization improves the convergence of our scheme preventing
the non-linear term from diverging at the highest value for a and λ.
Moreover, it allows us to obtain also configurations with a complex
magnetospheric field geometry (see Section 4). In this work, we
will focus exclusively on the low-magnetization limit, considering
for simplicity cases with ζ = 0 or ζ = 1.

3 N U M E R I C A L S E T U P

The numerical scheme used to compute our models is fully de-
scribed in Bucciantini & Del Zanna (2013) and in PBD14, to which
the reader is referred for a more complete discussion. Here, we
quickly summarize for convenience the main features and the few
modifications introduced in this work.

The basic idea of the algorithm is to use an expansion in spher-
ical harmonics to solve the non-linear Poisson-like equations, and
reduce them to a set of ordinary second-order PDEs for each coeffi-
cient, that can be solved using a direct tridiagonal matrix inversion.
In the weak-field limit, the metric and matter distributions are as-
sumed to be the same as in the unmagnetized case, so that the we do
not need to solve Einstein equations in the conformally flat condi-
tion (CFC) scheme and the problem is reduced to find the solution
of the GS equation (7) alone, a non-linear vector Poisson equation
for Aφ . Its solution is searched expanding Ãφ by means of vector
spherical harmonics (Barrera, Estevez & Giraldo 1985), that is

Ãφ(r, θ ) :=
∞∑
l=0

[Cl(r)Y ′
l (θ )]. (16)

As already done in PBD14 the solution to the GS equation is
searched over the entire numerical domain, which includes both
the interior of the star and the surrounding magnetosphere, where
the density, for numerical reasons, is set to a very small value (in
principle it could be set to 0). With this approach, there is no need
to match the exterior solution with the interior one (as it is usually
done when the solution of the GS equation is separately computed
over disconnected domains) and the smoothness of the solutions
at the stellar surface is here automatically guaranteed avoiding the
onset of spurious surface currents. The harmonic decomposition
ensures the correct behaviour of the solution on the symmetry axis.
At the centre of the star the radial coefficients Cl(r) go to 0 with
parity ( − 1)l, while a correct asymptotic trend at larger radii (the
outer boundary condition) is achieved by imposing Cl(r) ∝ r−(l + 1).

Being interested only in the study of the properties and geom-
etry of the magnetic field, in all our models we assume the NS
to be described by a simple polytropic EoS p = Kaρ

γa with an
adiabatic index γ a = 2 and a polytropic constant, expressed in ge-
ometrized units, Ka = 110. This is done in analogy with PBD14
and according to common choices in literature (Kiuchi & Yoshida
2008; Lander & Jones 2009). Our fiducial model has a central den-
sity ρc = 8.576 × 1014 g cm−3 a baryonic mass M0 = 1.680 M�,

MNRAS 447, 2821–2835 (2015)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/447/3/2821/2892871 by guest on 10 April 2024



NSs with twisted magnetosphere in GR 2825

Figure 1. Left: strength of the toroidal (left half) and poloidal (right half) magnetic field in units of Bpole. Contours represent magnetic field surfaces. Right:
same as the left-hand panel for the toroidal (left half) and poloidal (right half) current density. The toroidal current density is expressed in units of 1018 G s−1,
the poloidal one in units of 1013 G s−1. In both panels, the blue curves represent the surface of the star. This configuration has λ = 2 and â = 2.5, corresponding
the highest value for the magnetic energy ratio Htor/H = 11.29 × 10−2.

a gravitational mass M = 1.551 M�, and a circumferential radius
Rcirc = 14.19 km. For convenience the magnetic field at the pole is
rescaled to Bpole = 1014 G (recall that results in the weak-field limit
are actually independent from the field strength).

To explore the parameter space, we computed several equilibrium
models for different values of the parameter λ (from λ = 1 to λ = 8)
and for different values of the parameter â.

The numerical solutions we present here are computed using 60
harmonics. Models with λ < 4 are computed over a uniform grid in
spherical coordinates covering the range r = [0, 40] and θ = [0,π]
with 600 grid points in the radial direction and 400 points in the
angular one. Models with λ ≥ 4 have a twisted magnetosphere
extending to larger radii. In order to retain the same accuracy in
the inner region, and to reduce the computational time, we adopt a
geometrically stretched grid in the range r = [40, 150] defined on
200 grid points. The grid spacing �r is chosen such that

�ri = (1 + 5.962 × 10−3)�ri−1. (17)

This permits to capture the entire twisted magnetosphere and to
resolve the star always with the same accuracy, without resorting to
huge numerical grids. The convergence tolerance for the iterative
solution of GS equation has been fixed to ∼10−8, however, we have
verified that the overall accuracy of our solution is � 10−3 because
of the discretizations errors.

4 R ESULTS

In this section, we present the results of the GRMHD calculations.
Since we focus on the low-magnetization limit, as discussed previ-
ously, global physical quantities such as the gravitational mass, the
baryonic mass, and the circumferential radius do not change for the
various sequences but remain equal to those of the fiducial model.
Our discussion will concentrate only on the magnetic properties of
the equilibrium configurations. All models are thus parametrized
just in terms of â, defining the magnetic field geometry, and λ,
defining the extent of the magnetosphere. For convenience, mag-
netic field strengths are expressed in terms of their value at the pole
Bpole, that we arbitrarily assume to be Bpole = 1014 G.

In the following subsections, we will consider only configurations
with ζ = 0 and ζ = 1. However, a detailed investigation about the

effects of more different and general current distribution for both I
and M can be found in Bucciantini et al. 2014.

4.1 Models with ζ = 0

In Fig. 1, we show a typical example of an equilibrium model
with a twisted magnetosphere. This specific configuration corre-
sponds to λ = 2 and â = 2.5. The poloidal magnetic field ex-
tends through the whole domain and reaches its maximum strength
Bmax

pol = 4.422 Bpole at the centre of the star. The toroidal component
of the magnetic field is, by construction, confined inside a closed
region that extends in the radial direction from the interior of the star
up to twice the stellar radius, and in latitude it is contained within a
wedge about ±π/6 around the equator. The maximum value of the
toroidal magnetic field Bmax

pol = 1.256 Bpole is reached inside the star
in correspondence to the neutral line where the poloidal magnetic
field vanishes. The right-hand panel of Fig. 1 shows that the poloidal
current density peaks inside the star, and extends smoothly outside
the stellar surface along the magnetic field surfaces. The toroidal
current, on the other hand, results from the sum of the linear current
term in M, Jφ = ρhkpol, fully confined within the star, and of the
non-linear term in I, that extends outside the star over the same
region where the poloidal currents are confined.

The magnetospheric equilibria of the type shown in Fig. 1, and
discussed above, are qualitatively similar to previous results (Mikic
& Linker 1994; Viganò et al. 2011; Parfrey et al. 2013). However,
in those cases the equilibria were obtained by the relaxation of
an initially sheared dipolar configuration, while here we directly
solve the GS equation. Such configurations, for a moderate shear
of the magnetic footpoints, are expected to be stable. On the other
hand, our approach based on the GS equation allows us to derive
equilibrium models but, of course, it does not provide any hint
about their stability. A more direct comparison can be made with
Glampedakis et al. (2014), in spite of a different value ζ = 0.5
employed, our solutions qualitatively agree with the one presented
in more detail in the cited work.

In Fig. 2, we present sequences of models computed for various
values of the parameters λ and â. The main characteristics of those
configurations are stated in Table 1. The results presented illustrate
the key features and trends of the equilibrium configurations that we
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2826 A. G. Pili, N. Bucciantini and L. Del Zanna

Figure 2. TT magnetosphere configurations: strength of the toroidal (left half of each panel) and poloidal (right half of each panel) magnetic field. The
left-hand column shows models with λ = 2, the central column those with λ = 3, and the right-hand column those with λ = 6. Contours represent magnetic
field surfaces. From top to bottom, each row corresponds to increasing values of â, given in Table 1. For each panel, the colour code is normalized to the
maximum value of the magnetic field components that are listed in Table 1. The blue line represents the surface of the star. The red line locates the boundary
of the region where the toroidal component of the magnetic field is present.
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NSs with twisted magnetosphere in GR 2827

Table 1. Values of the maximum strength of
the toroidal and poloidal components of the
magnetic field for the configuration shown in
Fig. 2. Magnetic fields are expressed in unity
of Bpole.

λ â Bmax
tor Bmax

pol
(10−3)

2 0.4 0.359 5.629
2.5 1.256 4.422
5.6 0.938 4.576
10 1.087 4.373

3 0.4 0.435 5.581
1.5 1.004 4.577
3.3 0.676 4.767
4.2 1.170 4.618

6 0.4 0.491 5.352
0.9 0.782 4.874
1.3 0.822 4.842
2.7 0.753 4.277

were able to obtain. For small values of the parameter â (first row
of Fig. 2), all configurations share the same overall topology and a
similar magnetic field distribution. The toroidal magnetic field fills
a region that smoothly extends from the interior of the star to the
maximum allowed radius λre. As it can be seen also from Fig. 3, the
toroidal field component reaches, in this case, a maximum inside the
star and then decreases monotonically in the magnetosphere. For
small values of â, the non-linear current terms associated with I
outside the star are still too weak to significantly alter the magnetic
field structure below the surface.

As the contribution of the non-linear currents become more im-
portant, with increasing â, the toroidal field increases and its peak
moves towards the stellar surface together with the poloidal neutral
line. This is a typical behaviour of TT configurations, already ob-
served in the case where the toroidal field is fully confined within
the star (Ciolfi et al. 2009; Lander & Jones 2009; PBD14). As the
toroidal magnetic field increases, the ratio of the magnetic energy
associated with the toroidal field Htor with respect to the total mag-
netic energy H increases too, until it reaches a maximum. These
maximal configurations are shown in the second row of Fig. 2. The
structure and topology of the magnetic field is analogous to the
small â cases (see also Fig. 3), however, the presence of stronger
magnetospheric currents now affects the field geometry outside the
star. While the outer magnetic field in the small â regime still

resembles closely a dipole, this is no longer true for the maxi-
mal energy configurations, where magnetic surfaces appear to be
stretched, especially for high values of λ. Note, moreover, that for
higher λ, the configurations of maximum energy ratio are reached
for smaller values of â. This because the energy is an integrated
quantity that depends not just on the strength of the currents but
also on the volume they fill.

However, after the maximum value of Htor/H has been reached,
solutions react differently to a further increase of â, depending on
the value of the parameter λ. This can be seen in the third row in
Fig 2 and in Fig. 3. In the case of λ ≤ 2, the toroidal magnetic field
migrates completely outside the star and the final outcome strictly
resembles that of the TT case with λ = 1 discussed in PBD14: the
toroidal magnetic field strength grows but its support progressively
shrinks towards the maximum allowed radius. Here, the toroidal
magnetic field shows a single maximum. On the other hand, for
λ ≥ 3, as the neutral line approaches the stellar surface, a second
peak in the strength of the toroidal magnetic field develops. This
second peak moves with increasing â at larger radii in the magneto-
sphere, while the first peak remains inside the star, approximatively
at the same position, independently of â. The formation of a second
peak indicates a topological change in the structure of the mag-
netic field, where an X-point arises, usually in the vicinity of the
stellar surface, and where there are magnetic regions (surfaces) in
the magnetosphere disconnected from the star. A further increase in
the value of â leads to solutions that show two completely discon-
nected magnetic regions, one inside the star, and the other outside
(see the fourth row of Fig. 2). Note also that the maximum value
of the strength of the toroidal magnetic field Bmax

tor does not grow
monotonically with â.

These types of equilibria, with disconnected magnetic regions,
are likely to be highly unstable. Indeed, those kind of equilibria
resemble the solutions find in time-dependent numerical simulation
by Mikic & Linker (1994) in the context of magnetic field arcades in
the solar corona, and plasmoid formation. Indeed, our disconnected
regions in the NS magnetosphere could be seen as the equivalent of
the plasmoids in the solar case.

While a full 3D study of the stability and/or evolution, of the
various topological configurations, is beyond the scope of this paper,
it is possible to roughly evaluate the magnetospheric conditions, in
relation to known stability criteria. We need also to recall here that
the physical regime, to which our models apply, is typical of the
late phases of the proto-NS evolution, when a crust begins to form.

In all the obtained configurations, the energy of the external
toroidal magnetic field is, at most, 25 per cent of the total mag-
netic energy in the magnetosphere which is, thus, dominated by

Figure 3. Profiles of the toroidal magnetic field strength (in units of Bpole) for selected models (â is expressed in units of 10−3) along the equilibrium sequences
with λ = 2 (left), λ = 3 (centre) and λ = 6 (right). The dashed lines represent models where the value of Htor/H reaches a maximum.
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2828 A. G. Pili, N. Bucciantini and L. Del Zanna

Figure 4. Profiles of the strength (expressed in units of Bpole) of the poloidal (top panel) and toroidal (bottom panel) magnetic field on the stellar surface for
selected models (â is expressed in units of 10−3) along the equilibrium sequences with λ = 2 (left), λ = 3 (centre) and λ = 6 (right). The dashed lines represent
models where the value of Htor/H reaches a maximum.

the poloidal field. It is important, at this point, to distinguish be-
tween those configurations, where all field lines thread the crust,
and those with disconnected region. In the first case, if the poloidal
component can be stabilized by the crust (which can be the case for
weak fields � 1014G), then it is unlikely that the toroidal one, be-
ing subdominant, could drive major changes in the magnetospheric
structure. It is possible to compare our results to those by Parfrey
et al. (2013), where a study of the magnetospheric stability was done
using a time dependent shearing algorithm. We find in our models
(those with no disconnected regions) that the twist amplitude, de-
fined as the azimuthal angular displacement of the magnetospheric
footpoints, does not exceed 2 rad. This value is below the critical
value of 3.65 rad estimated in Parfrey et al. (2013) as a stability
limit for the magnetosphere.

In the other cases, when a disconnected toroidal current loop de-
velops in the magnetosphere around the neutral line, since some of
the magnetic field lines do not cross the crust, the twist amplitude
is not an indicative parameter for the stability, and one cannot in-
voke for this disconnected region a stabilizing effect of the crust.
However, the stability of this flux rope, can be determined from
the Kruskal–Shafranov condition for the development of kink in-
stability (Shafranov 1956; Kruskal & Tuck 1958). The value of the
safety factor is ∼1 for detached flux ropes contained inside 1.3re

(suggesting a possible marginal stability) but rapidly drops to lower
values as this disconnected region extends further out from the star.
Therefore, small disconnected magnetospheric regions just above
the surface of the star appear more stable than inflated ones at larger
distance.

The reason why the GS equation, for large â, admits solutions
with multiple peaks can be easily understood. The solution of the
GS equation can be seen as an eigenvalue problem for a second-
order non-linear PDE. For small values of â, the source terms in the
currents are dominated byM: they are fully confined within the star
and have a single peak. Thus, the solution reflects the properties of

the source, and only single-peak eigenmodes are selected. However,
for higher values of â, non-linear terms dominate, and other possible
eigenmodes can be selected. Eigenmodes that for a second-order
non-linear PDE, in principle will admit multiple radial nodes (this
is the reason why two peaks develop). Indeed, as can be seen from
Figs 2 and 3, there is some hint that the more extreme case at
λ = 6 might develop into a third peak. Unfortunately, we could not
investigate higher values of â because the convergence of the GS
solver becomes highly oscillatory, and ultimately fails.

In Fig. 4, we show the profiles of the poloidal and toroidal com-
ponents of the magnetic field along the stellar surface. In the small
â regime, the poloidal field at the surface is essentially dipolar.
The toroidal magnetic field extends over a region ±45◦ in latitude
around the equator, slightly bigger for larger values of λ. Trends
are different depending if the structure evolves to a single peak or
double peak. For λ ≤ 2 (single peak), as â increases, the magnetic
field becomes slightly higher in the polar region but decreases sub-
stantially at the equator. As the peak moves outwards, so does the
poloidal neutral line (where the poloidal field vanishes). This is the
reason why the equatorial field drops. The magnetic field at the sur-
face becomes closer to a split monopole: the curvature of magnetic
field surfaces diminishes, the radial component becomes more uni-
form, except very close to the equator. The portion of the surface
where Btor �= 0 instead shrinks, and vanishes completely once the
twisted region gets out of the star. In Fig. 5, we show the harmonic
content Cl/C1 of the surface magnetic field for different models, in
the case λ = 2. As expected the dipole term is always the dominant
one. Multipole terms become more important in correspondence to
configurations with the higher Htor/H, when the toroidal field is
stronger and the neutral line is located just underneath the stellar
surface. Finally, as the twisted magnetospheric torus moves away
from the star, the multipolar content of the surface field drops.

For higher values of λ ≥ 3, the appearance of multiple peaks and
disconnected magnetic regions leads to a more complex behaviour
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NSs with twisted magnetosphere in GR 2829

Figure 5. Harmonic content Cl/C1 of the magnetic field at the surface of
the star in the case λ = 2 for the selected models shown in the upper left-hand
panel of Fig. 4.

of the magnetic field at the surface. In the polar regions at high
latitude >45◦, the value of the poloidal field does not change much
with increasing â. As â increases the value of the poloidal field at
the equator drops, but in this case this is not due to the neutral line
moving outwards, but because an X-point forms in the vicinity of
the surface. Indeed, as can be seen in Figs 4 and 2, in the λ = 3
case the values of â for which the poloidal field vanishes at the
equator is the same at which a second peak forms. For higher values
of â, the equatorial poloidal field rises again. The portion of the
surface where Btor �= 0 shrinks again, though for these cases it never
vanishes completely. In all cases, we find that the strength of the
toroidal component of the magnetic field at the surface tends to
grow becoming comparable to, or even exceeding, the strength of
the poloidal one. Another parameter that is useful to show is the

angle between the magnetic field and the meridional plane, to which
we refer as twist angle �ϕ. For convenience, it can be defined as
the complementary of the angle that the magnetic field forms with
respect to the azimuthal direction

�ϕ = arcsin
[(

BφBφ/BiB
i
)1/2

]
. (18)

The value of �ϕ ranges from 0 to π/2, assuming the latter when
the magnetic field is purely azimuthal, and 0 when the magnetic
field lies in the meridional plane. In Fig. 6, we show this angle,
measured at the equator, as a function of radial distance r. Since our
models are not rotating, all the magnetic field lines are eventually
closed. The location where �ϕ = π/2 corresponds to the location
of either the neutral line (O-point) or the X-point, where the poloidal
component of the magnetic field vanishes. For cases with λ ≤ 2, the
profile of �ϕ shows a unique peak where the θ component of the
poloidal field reverses sign in the twisted region. Again we see that
at higher values of â the toroidal field is completely outside the star.

As expected, in the case λ ≥ 3, the behaviour is more complex.
For the smallest value of â, the trend of �ϕ resembles that of the
analogous configuration at λ = 2: the twist is prominent in the
vicinity of the neutral line and extends outside the star remaining
well below ∼π/4. Moving at higher â, the presence of two peaks
in the toroidal magnetic field strength inside the twisted region
means that �ϕ reaches π/2 in three locations. In particular, the
first and the third of those locations are always associated with O-
points, the second one with an X-point. At the higher value of â, the
formation of two detached twisted regions is also evident. In these
cases, however, the trend of �ϕ reveals only the position of the two
O-point because the φ component of the magnetic field vanishes in
correspondence with the X-point. Here, we note that in the most
extreme case at λ = 6 the trend of �ϕ strengthen the hypothesis
concerning the development of a third peak in the toroidal magnetic

Figure 6. Profiles of the twist angle �ϕ at the equator as a function of distance (normalized to the stellar radius re) (upper panels), and as a function of latitude
on the stellar surface (bottom panels), for selected models (â is expressed in units of 10−3) along the equilibrium sequences with λ = 2 (left), λ = 3 (centre)
and λ = 6 (right). The dashed lines represent models with maximum value of Htor/H along the same sequences.
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2830 A. G. Pili, N. Bucciantini and L. Del Zanna

Figure 7. Maximum value of the toroidal (left) poloidal (right) magnetic field along equilibrium sequences with different values of λ. Dots indicate
configurations where the toroidal magnetic field component is completely outside the star. The squares indicate configurations which show two maxima of the
toroidal magnetic field.

Figure 8. Profiles of the ratio of total magnetic energy of the toroidal component Htor, external one Hext
tor and internal one Hin

tor, with respect to the total
magnetic energy H. The curves show sequences as a function of â for various values of λ. The dots and squares as in Fig. 7.

field strength. Indeed, the second peak in �ϕ corresponds to an
O-point and an unresolved X-point.

The bottom row of Fig. 6 displays the profile of �ϕ along the
stellar surface. As pointed out before, in the limit of small â the
twist at the surface increases. However, for higher values of â the
trend is not uniform, depending on the formation of a second peak,
and the related location of the X-point.

In Fig. 7, we plot the maximum value of the strength of the
toroidal magnetic field Bmax

tor , and the poloidal one Bmax
pol , for different

values of λ, as a function of â. In all our models, the poloidal
field reaches its maximum at the centre. Initially, in the small â

regime, Bmax
tor grows, while Bmax

pol decreases. This happens because
the strength of the magnetic field at the pole is always kept fixed in
all models. As one enhances the contribution to the total current by
increasing I, one must decrease the contribution from M, causing
a drop in the strength of the field at the centre of the star. This effect
depends also on the location of the current, as this term moves to
larger radii the poloidal field begins to grow again. Configurations
with λ ≥ 3 show several inversions of this trend, which again are a
manifestation of the change in the field topology.

All the equilibrium models we obtain are energetically domi-
nated by the poloidal magnetic field. This was found to apply also
for models where the twist is fully confined with the star (Ciolfi et al.
2009; Lander & Jones 2009; PBD14). In Fig. 8, we show the same
equilibrium sequences in terms of the ratio of magnetic energy of
the toroidal magnetic field Htor over the total magnetic energy H.
Generally, the magnetic energy ratio initially grows with â reaching

a first maximum that corresponds to a configuration still character-
ized by a single peak (see the first rows of Fig. 1). Again the trend
for higher values of â depends on the value of λ. While sequences
with λ ≤ 2 show a decreasing monotonic trend, sequences with
λ ≥ 3 reach a minimum and then the magnetic energy ratio begin to
grow again. For configurations with λ � 6, we could reach a second
local maximum. It is possible in principle that other maxima and
minima could be reaches at higher values of â, but we could not
compute those models. The magnetic energy is an integrated quan-
tity, as such it also depends on the size of the twisted region. The
formation of an X-point, followed by the formation of two detached
magnetic twisted domains, is associated with a decrease of the net
volume taken by the toroidal field, and to the drop of Htor after the
first maximum.

In Fig. 8, we also compare the toroidal magnetic energy confined
inside Hin

tor and outside Hext
tor the star. The two are in general com-

parable except for cases with λ ≤ 2 where the interior toroidal field
vanishes at high â. Note also that the ratio Htor/H is at most 8–
10 per cent. The net poloidal and toroidal currents follow a similar
behaviour.

Finally, in Fig. 9, we show the variation of the magnetic dipole
moment μ as a function of â. We see that the magnetic dipole, for
fixed values of â, grows with λ. This is because the total integrated
toroidal current, defined as

J =
∫ √

J φJφψ6r2 sin θdrdθdφ (19)
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NSs with twisted magnetosphere in GR 2831

Figure 9. Left-hand panel: ratio between the toroidal current density outside the star J ext and the toroidal current density inside J in, as a function of â along
equilibrium sequences with different value of λ. Right: magnetic dipole moment μ along the same sequences expressed in units of the magnetic dipole moment
of the fiducial configuration μ = 1.114 × 1032 erg G−1. The dots and squares as in Fig. 7.

Figure 10. The left-hand panel shows the profile of the toroidal magnetic field strength (in units of Bpole) for the configuration with the first maximum value
of the magnetic energy ratio Htor/H along sequences with fixed λ =2, 3 and 6. The solid lines refer to configurations with ζ = 1, while dashed ones refer to
the equivalent configurations with ζ = 0. The thin vertical lines indicate the location of the stellar surface for each λ. The remaining panels show, for the same
configurations, the profile of the magnetic field strength, evaluated at the surface of the star, for the poloidal (centre) and the toroidal component (right) as a
function of latitude.

is bigger for larger magnetospheres with higher values of λ. Very
interestingly, for large values of λ the net magnetic dipole moment
can be even four to five times higher, given the same strength of
the field at the pole. External currents contribute to the net dipole
without affecting too much the strength of the magnetic field at
the surface. This is a known property of twisted magnetospheres
(Thompson et al. 2002).

For all the configurations computed here, the internal linear cur-
rent J in is always greater than the external one J ext, reaching
similar values only for configuration where the energy ratio reaches
a maximum. At first, as expected, the external current, due only to
the term I, grows linearly with â2, while the internal one domi-
nated by M remains more or less constant. For higher values of â,
the ratio decreases exactly for the same volumetric effect that was
discussed for the trend of Htor/H.

4.2 Models with ζ = 1

The toroidal magnetization index ζ controls the shape of the current
distribution inside the torus-like region of the twisted field. With
respect to the ζ = 0 case, choosing higher value for ζ entails stronger
currents mostly concentrated in the proximity of the neutral line.
In this section, we will consider the ζ = 1 case in order to show

which are the possible qualitative and quantitative differences that
can arise if a different value of ζ is chosen.

In order to compare the results with those at ζ = 0, let us focus
to those configurations where Htor/H is maximal. In Fig. 10, we
show the strength of the magnetic field, both at the surface and
along the equator, in the cases λ =2, 3 and 6, compared with that
of the equivalent configurations at ζ = 0. In the ζ = 1 case, the
toroidal magnetic field reaches higher values than in the ζ = 0 case.
However, even though the geometry and shape of the twisted region
remains almost the same, the distribution of the magnetic field is
more concentrated around the peak and the magnetic field decays
more rapidly to zero in the magnetosphere.

Looking at the distribution of the poloidal and toroidal field at
the surface of the star (central and right-hand panel in Fig. 10) it
is evident that the multipolar terms of the magnetic field become
more important in the ζ = 1 cases: while the strength of the poloidal
magnetic field at the equator decreases marginally, it increases in
the neighbouring region where it can also exceed the value of Bpole

within a wedge of about ±π/4 around the equator. While the portion
of the surface where Btor �= 0 remains approximatively the same the
toroidal field is now more concentrated around the equator where
its strength can be a factor of ∼2 higher than for ζ = 0.

The effects of the new current distribution on the twist angle �ϕ

are shown in Fig. 11, where we plot the trend of �φ for the same
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2832 A. G. Pili, N. Bucciantini and L. Del Zanna

Figure 11. Profiles of the twist angle �ϕ in the magnetosphere (left) and at the stellar surface (right) for the same equilibrium configurations whose magnetic
field profiles have been shown in Fig. 10. The solid lines (dashed lines) refer to configurations with ζ = 1 (ζ = 0).

equilibria discussed above. While the growth of the surface �φ is
a direct consequence of the stronger toroidal field obtained for the
ζ = 1 configurations, the analysis of trends in the magnetosphere
deserve more attention. In fact, even though the toroidal field in the
new configurations is stronger in the proximity of the stellar surface,
the twist angle in the magnetosphere decreases monotonically and
it is highly suppressed with respect to that obtained in the ζ = 0
models. This is due, on the one hand, to the fact that Btor goes more
rapidly to zero in the magnetosphere but, on the other hand, also to
the presence of a stronger equatorial poloidal field in the vicinity of
the star.

The structure of the magnetic field is however only slightly af-
fected by the value of the magnetic index ζ . This is also evident
from Fig. 12, where we plot the profile of both the magnetic energy
ratio Htor/H and the current ratio J ext/J in as a function of â for
the various sequences. The trends strictly reflect those obtained in
the ζ = 0 case (see Figs 8 and 9) and it is interesting to notice that
sequences with equal λ behave, from the point of view of the field
topology, in the same way: for sequences with λ � 2 the twisted
region moves outside the star; for sequences with λ � 2.5 the con-
figuration at higher â are characterized by a more complex topology
and part of the toroidal field remain always confined in the star. Also
a more quantitative comparison shows little differences. In the ζ = 1
case, the maximum allowed Htor/H is lower if λ � 2.5 and higher

if λ > 2.5. The major differences regard the sequences with λ = 6
and 8 where the higher value of Btor and a more regular topology
of the solution (i.e. there is no formation of an X-point) allow us
to reach higher value for the magnetic energy ratio. Finally, in both
cases, when J ext ∼ 0.7J in, the system self-regulates inducing a
change in the topology of the distribution of the magnetic field and
the associated external current.

5 C O N C L U S I O N S

There is an ever increasing amount of evidence that magnetars have
a strongly twisted magnetosphere, and that it is this twist more than
the strength of the field itself that defines their phenomenology, and
isolate them as a separate class of NS. Investigating how this twisted
magnetosphere is arranged, and what could be its equilibrium struc-
ture, is thus an important step for a more realistic description of these
astrophysical sources.

We have computed numerically, for the first time, equilibrium
models of general relativistic magnetized NSs with twisted magne-
tospheres, allowing for electric currents extending smoothly from
the interior of the star to the exterior. Our work extends a recent
study by Glampedakis et al. (2012) in the Newtonian regime.

Our models represent a straightforward generalization of typical
TT configurations, where the twist is allowed to extend also outside

Figure 12. Profiles of the toroidal energy ratio Htor/H (left) and of the current ratio J ext/J in as a function of â along equilibrium sequences with constant
λ. The dots and squares as in Fig. 7.
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NSs with twisted magnetosphere in GR 2833

the NS. In particular, we have focused on the low-magnetization
limit, since this limit is appropriate for real physical system such
as AXPs and SGRs. In this case, the morphology of the magnetic
field can be fully parametrized in terms of a single quantity â, inde-
pendently of the strength of the magnetic field. We have shown that
the extent of the magnetosphere (our parameter λ) plays an impor-
tant role and defines the possible existence of different topological
classes of solutions.

In the low â regime, when the non-linear current terms are weak,
the magnetic field lines are inflated outward by the toroidal magnetic
field pressure and the twist of the field lines extends also to higher
latitude. The result is a single magnetically connected region. As
â increases, the effects of the non-linearity of the equation start to
arise. This not only reduces the twist of the near-surface magnetic
field but also leads to the formation of a disconnected magnetic
island, reminiscent of the so-called plasmoids often found in sim-
ulations of the solar corona. This regime and these topologies are
very likely to be unstable.

In this work, we focused on configurations with a magneto-
spheric confined twist exploring the effects of different choices
for the strength and shape of the twist. Even though, as pointed out
in Beloborodov (2011), the observations of shrinking hotspots on
magnetar transient seem to suggest that the twist is more probably
located near the pole, similar magnetospheric geometries have been
recently used to model SGR giant flare as flux rope eruption (Huang
& Yu 2014a,b).

Our approach to NS magnetospheric equilibrium has allowed
us to obtain complex magnetic field morphologies. However, apart
from a rough estimate based on known criteria, it is difficult to
establish their stability, especially with respect to non-azimuthal
perturbations. Moreover, since we treat the magnetosphere as force-
free plasma, the physical regime to which our models apply, is
characteristic of the late phases of a proto-NS, when a crust begins
to form. Therefore, a meaningful modellization of the evolution of
the system cannot disregard the important stabilizing role played
by the crust. This is just indicative of the great complexity of the
physic involved, and correspondingly of the extreme difficulties in
the realistic modelling of NS structure.
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A P P E N D I X A : ST RO N G FI E L D R E G I M E

Newly born magnetars, with their fast rotation (with period of the
order of ∼1 s) and their strong magnetic deformation, can power
a significant emission of GW and, during the first few seconds of
their life, they could be a promising target for the next generation
of ground-based GW interferometers (Mastrano et al. 2011). After
this lapse of time, because of the spin-down induced by the strong
poloidal field (∼1014 G) the strain amplitude reduces considerably
and the GW emission is hardly detectable.

Even though our assumption of a force-free magnetosphere only
applies to the late phases of a proto-NS, when GW emission will be
quenched, it is still interesting to consider the strong field regime
and how a magnetospheric distribution of currents acts on the stel-
lar deformation. In the following, we will limit our discussion to
sequences with λ = 1.5, considering only configurations with a
simple topology with no detached magnetic flux rope outside the
star. As discussed in Section 4, these kind of configurations, whose
properties are weakly affected by λ, are possibly the only stable
ones.

In the strong field regime, the solutions of the GS equation (7)
depend on the specific value of the magnetic field strength and they
do not rescale as in the weak-field limit. This is evident from Fig. A1,
where we show the value of the ratio Bpol

max/Bpole as a function of â

along sequences with constant value of Bpole (from the weak-field
limit to ∼1017 G) and fixed gravitational mass M = 1.551 M�. Just
like in the weak-field regime, along each sequence the trend of Bpol

max

Figure A1. Profiles of the maximum value of the poloidal magnetic field
B

pol
max along sequences with λ = 1.5 and constant value of Bpole. The solid

lines from top to bottom Bpole = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4 × 1017 G.
The black dashed line corresponds to the weak-field limit.

Figure A2. Profiles of the deformation rate ē along sequences with constant
value of kpol, λ = 1.5, and gravitational mass M = 1.551 M� as a function

of the maximum value of the poloidal magnetic field B
pol
max. The black solid

line represents the sequence with â = 0 (purely poloidal configurations).
The dotted lines correspond to sequences with fixed value of â equispaced
from â = 1.0 × 10−3 to 5.0 × 10−3.

is not monotonic. Here, however, the ratio Bpol
max/Bpole is smaller

for stronger magnetic fields. This can be explained in terms of the
deformation of the star: as in the weak-field limit our equilibrium
configurations are energetically dominated by the poloidal field (the
magnetic energy ratio Htor/H depends weakly on the strength of
the field) and they show an oblate deformation. Therefore, if the
star is more magnetized, the deformation is stronger and the pole is
closer to the centre of the star implying a smaller Bpol

max/Bpole.
Fig. A2 shows the deformation rate ē (Kiuchi & Yoshida 2008;

PBD14) as a function of Bpol
max. Here, the black lines trace the config-

urations with constant â. Moving from the purely poloidal case with
â = 0 to higher value of â the toroidal magnetic field strengthen
up to ∼2 × 1017 G and the deformation rate increases by a factor
of ∼2. The presence of a toroidal field to the system, seems to
increase, rather than reduce, the oblate deformation. However, as
discussed in PBD14, neither the maximum strength of the magnetic
field nor the magnetic energy is, in general, good indicator of the
possible deformations of the NS. The distribution of the currents
plays an important role and the effects of magnetic field located in
the outer layers of the star are less important than those of compa-
rable field situated in the core region. Therefore, the trend of ē can
be explained in terms of the strength of the poloidal magnetic field,
which resides deeper inside the star. Moving along sequences with
fixed kpol (without constraints on Bpole) from the purely poloidal
configurations to higher â, both the poloidal and the toroidal field
grow in strength while the neutral line moves towards the surface
of the star. Finally, as soon as the radius of the neutral line reaches
a value of ∼0.8re, the poloidal field begins to drop leading to an
inversion point in the sequences and a reduction of the deformation
rate ē.

The deformation rate ē has the advantage that it can be computed
as an integral over the star, but it is strictly a Newtonian quantity. In
GR, the relevant quantity for the emission of GW is the quadrupolar
ellipticity eq defined as

eq = −3

2

Izz

I
, (A1)

where Izz is the gravitational quadrupole moment and I is the
moment of inertia. The gravitational quadrupole moment cannot
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be computed as an integral over the star but must be derived
from the asymptotic structure of the metric terms (Bonazzola &
Gourgoulhon 1996) in the limit r → ∞. The moment of inertia
can be properly defined only for rotating star as the ratio of the
Komar angular momentum (Kiuchi & Yoshida 2008) over the rota-
tional rate I := J /� (Bonazzola & Gourgoulhon 1996; Frieben
& Rezzolla 2012). For non-rotating stars, it can be evaluated in the
limit � → 0:

I = lim
�→0

J

�
=

∫
(e + p)ψ10α−1r4 sin3 θdrdθdφ. (A2)

We find that in all our models the quadrupolar ellipticity is an almost
constant fraction of the deformation rate: eq/ē = 0.40 ± 0.05 (the
uncertainty is mostly due to the asymptotic extrapolation of the
metric terms). This agrees with what was already found by Frieben
& Rezzolla (2012).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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