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ABSTRACT
We describe a new iterative approach for the realization of equilibrium N-body systems for
given density distributions. Our method uses elements of Schwarzschild’s technique and
of the made-to-measure method, but is based on a different principle. Starting with some
initial assignment of particle velocities, the difference of the time-averaged density response
produced by the particle orbits with respect to the initial density configuration is characterized
through a merit function, and a stationary solution of the collisionless Boltzmann equation is
found by minimizing this merit function directly by iteratively adjusting the initial velocities.
Because the distribution function is in general not unique for a given density structure, we
augment the merit function with additional constraints that single out a desired target solution.
The velocity adjustment is carried out with a stochastic process in which new velocities are
randomly drawn from an approximate solution of the distribution function, but are kept only
when they improve the fit. Our method converges rapidly and is flexible enough to allow the
construction of solutions with third integrals of motion, including disc galaxies in which radial
and vertical dispersions are different. A parallel code for the calculation of compound galaxy
models with this new method is made publicly available.

Key words: methods: numerical – stars: kinematics and dynamics – galaxies: haloes –
galaxies: kinematics and dynamics – galaxies: structure.

1 IN T RO D U C T I O N

The large number of stars and dark matter particles in galaxies and
galaxy clusters makes them essentially perfect collisionless sys-
tems. Their dynamics is hence described by the collisionless Boltz-
mann equation, coupled to self-gravity through Poisson’s equation.
Relaxed systems correspond to stationary solutions of these equa-
tions, and much of the field of galactic dynamics is concerned with
understanding different aspects of these solutions (see Binney &
Tremaine 2008, for an excellent exposition). This is particularly
important for using observational probes of kinematics to infer, for
example, something about the underlying density distribution.

Numerical N-body simulations have become a primary work-
horse to study collisionless systems, both in stationary and dynamic
situations. Prominent examples include the study of bar instabilities
(e.g. Athanassoula & Misiriotis 2002), the formation of spiral waves
(e.g. D’Onghia, Vogelsberger & Hernquist 2013), or major and
minor mergers of galaxies (e.g. Barnes & Hernquist 1992; Hernquist
& Mihos 1995). They are also actively used to study the response of
discs to the bombardment by dark matter clumps (e.g. Kazantzidis
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et al. 2008; D’Onghia et al. 2010), or the radial migration of stars
caused by resonance scattering (e.g. Sellwood & Binney 2002), and
many more.

In carrying out numerical experiments targeting these questions,
a recurrent challenge is to construct suitable initial conditions (ICs).
One usually requires them to be in a reasonably stable, approximate
equilibrium in the beginning, otherwise any subsequent dynamics
may be dominated or heavily contaminated by the specific out-of-
equilibrium state one started out with. Often, one has a relatively
clear notion of the density structure one wants to realize, but ini-
tializing the particle velocities appropriately is a quite non-trivial
problem. This is because doing this perfectly requires knowledge of
the full distribution function (DF) of the system, or in other words,
availability of a stationary solution of the collisionless Boltzmann
equation. However, such solutions are analytically known only for
a very limited number of density distributions.

There is hence significant demand to construct equilibrium solu-
tions numerically, not only for realizing N-body initial conditions
but also in the context of modelling observational data sets. In
the latter case, finding such models is a main component of the
reverse-engineering process aimed at constructing self-consistent
three-dimensional systems that reproduce the observations. They
can then be examined in great detail, allowing insights into
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properties that are not directly observable (Cretton et al. 1999; van
den Bosch et al. 2012).

To our knowledge, there are presently mainly five different meth-
ods in use for constructing such equilibrium models:

(i) DF-based: for certain mass distributions, the DF can be ana-
lytically calculated or accurately approximated. Unfortunately, this
ideal case is not generally available for arbitrary density distribu-
tions. The main problem is that we do not know the analytical form
of the third integral of motion. In some cases it may be reason-
ably approximated, but this leads at best to nearly self-consistent
solutions (Kuijken & Dubinski 1995; Widrow & Dubinski 2005).
Nevertheless, there are some useful classes of solutions known, for
example for spherical galaxies (Osipkov 1979; Jaffe 1983; Merritt
1985; Hernquist 1990). However, because many real systems are not
particularly close to any of these parametrized classes of systems,
the approach is rather restrictive in practice.

(ii) Moment-based: moments of the velocity distribution can
be calculated or estimated with the hierarchy of Jeans equations.
If one neglects higher order moments and assumes a functional
form for the velocity distribution (often taken to be Gaussian; e.g.
Hernquist 1993; Springel & White 1999) that reproduces the esti-
mated moments, one obtains an approximate DF. This method is
quite general and can be applied to all mass distributions. Since the
true velocity DF is usually close to a triaxial Gaussian for much of
the mass of a system, the method typically produces systems that
are roughly in equilibrium. But the crux is that this equilibrium is
by no means perfect, and that it is hard to overcome this limitation
within this method. Especially difficult are the central regions of
galaxies; when the constructed ICs are evolved in time, one here
typically finds density ripples propagating through the system while
it relaxes to a true equilibrium state. This can interfere with the in-
terpretation of numerical experiments, especially when they require
particularly quiet ICs.

(iii) Orbit-based method: Schwarzschild (1979) introduced a rad-
ically different approach to solve the problem. He suggested to in-
tegrate a wide variety of orbits in a given potential, and then to
distribute the mass of the system over this orbit library such that the
time-averaged density of the system becomes as close as possible to
the one corresponding to the potential. Finding the weights of each
of these orbits defines a linear optimization problem with positive
coefficients, which can be solved iteratively. The resulting weights
then effectively define the velocity DF. A practical problem with
this method is that the size of the orbit library is severely constrained
by the available memory. Moreover, the method is ill-conditioned
in its basic form, something that needs to be cured by adding ad hoc
assumptions such as smoothness constraints or maximum entropy
measures for the weights. Also, the velocity DFs constructed with
this method are typically very noisy and may feature large jumps.
One needs to smooth them, but the required level of smoothing is
hard to define. Many attempts have been made to overcome these
difficulties (e.g. Vandervoort 1984; Jalali & Tremaine 2011).

(iv) Made-to-measure: attempts to improve on Schwarzschild’s
method have resulted in a new technique where the orbit integra-
tion process and the mass/weight redistribution are combined. This
‘made-to-measure’ technique makes the storage of a full orbit li-
brary unnecessary and therefore removes the memory barrier. But
it still requires a smoothing procedure for the velocity distributions
(Syer & Tremaine 1996; Dehnen 2009).

(v) Guided-relaxation: another class of methods exploits the fact
that any isolated system left to itself tends to an equilibrium state.
Knowing the target mass distribution we may try to directly relax

to it by steering a system appropriately in the process. This guiding
can be done by introducing an additional force, e.g. adiabatic drag
on the vertical components of the particle velocities in order to
squeeze the system (Holley-Bockelmann et al. 2001), or we may
restrict particle mobility such that the target density distribution
is maintained and the systems evolves towards a self-consistent
equilibrium state (Rodionov, Athanassoula & Sotnikova 2009). A
disadvantage of this approach is that it involves one of the other
methods to create an initial state for the further relaxation. Also,
there is only limited control on the outcome, making it, e.g. difficult
to construct systems with a prescribed velocity anisotropy.

The purpose of this article is to introduce a new, flexible approach
for the construction of compound N-body models of axisymmetric
galaxies in an essentially perfect equilibrium state. The method
only requires the specification of the density profiles of the differ-
ent components and a selection of the desired bulk properties of
the velocity structure, such as the degree of rotational support or
the ratio between radial and vertical velocity dispersion in the disc
plane. Our code then constructs an N-body system that is in equilib-
rium and fulfils the imposed constraints on the velocity structure.
Implicitly, it hence also provides a solution for the full 3D DF. This
is achieved for essentially arbitrary axisymmetric density structure
and by taking the mutual influence of different mass components
(if present) fully into account. We argue that the resulting flexibility
and accuracy makes our approach an attractive alternative compared
with other IC generation methods in the literature.

This paper is structured as follows. In Section 2, we describe the
basic methodology adopted in our method, which consists of an it-
erative procedure to adjust the velocities of an N-body realization of
a galaxy model until the prescribed density structure is maintained
self-consistently under time evolution, and the imposed velocity
constraints are fulfilled. In Section 3, we highlight how we spec-
ify velocity constraints for different structural choices. They take
the form of second velocity moments which we determine through
solutions of the Jeans equations. We then specify in Section 4 var-
ious implementation details of our numerical methods as realized
in the GALIC code introduced here. Section 5 is concerned with a
brief description of the specific density profile models currently
implemented in this code; these are employed for a suite of tests
presented in Section 6. Finally, we conclude with a summary of our
findings in Section 7.

2 M E T H O D O L O G Y

If density profiles for all collisionless mass components of a galaxy
model are given, a random N-body realization of particle positions
can be easily created by interpreting the density distribution as a
probability field for a Poisson point process. But assigning suit-
able velocities to the particles is the difficult step. Our idea is to
do this iteratively: starting from some guess for the particle veloc-
ities, we try to correct them such that the system becomes closer
to the desired equilibrium state. This is in some sense similar to
Schwarzschild’s method, where one models the DF from which
the velocities are drawn through a set of weights, which are then
iteratively adjusted until a global merit function is extremized. Dif-
ferently from this technique, we however optimize the velocities of
each particle directly. This eliminates the explicit orbit library of the
Schwarzschild method, and all the restrictions that come with it. In-
stead, the particles of our N-body model themselves define the orbit
set that is optimized. Importantly, this set is free of any discreteness
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restrictions or potential biases due to incompleteness of the
Schwarzschild orbit library.

As basic merit function that is optimized we consider the differ-
ence between the target density field and the actual density response
created by our N-body realization with the currently assigned initial
velocities. The density response is here defined as the time-averaged
density field of the N-body orbits, calculated in the static potential
of the target density distribution. For a steady-state system, this
density response is supposed to be time invariant, and equal to
the initial density field. We can readily imagine several different
optimization schemes that adjust individual particle velocities iter-
atively such that this difference becomes as small as possible, for
example multidimensional steepest decent.

Before discussing the details of our specific solution for this, it
is however prudent to consider two apparent conceptual problems
with the basic approach as outlined thus far. One is that the den-
sity structure does not uniquely specify the velocity structure of an
equilibrium model, or in other words, there can be more than one
steady-state solution of the collisionless Boltzmann equation for a
given density structure. For example, for a spherically symmetric
mass distribution, one can have solutions where the velocity distri-
bution is isotropic everywhere, and the DF depends only on energy
(the ‘ergodic’ case). But there are also solutions with an anisotropy
between radial and tangential motions. Furthermore, one can also
have many different axisymmetric solutions that feature different
degrees of net rotation.

It is hence not clear to which equilibrium solution our adjustment
scheme would converge when only the density response is opti-
mized. This ambiguity can be lifted by making a selection for the
desired type of solution one wants to obtain, and to suitably incor-
porate this constraint in the merit function. For example, one may
request to obtain an anisotropic solution with a certain prescribed
ratio of radial and tangential velocity dispersions. We can then aug-
ment our density based merit function with further conditions that
enforce this velocity structure.

A second problem, of perhaps somewhat lesser importance, is
the possibility of overfitting individual particle velocities. In the
continuum limit of a collisionless system, individual particles are
completed uncorrelated from each other. An iterative optimization
approach will however always adjust a particle’s velocity given the
current realization for positions and velocities of all other particles.
This can in principle introduce undesired correlations between par-
ticles. Related to this, one may easily end up in an unfavourable
local minimum of the merit function. We largely eliminate this ef-
fect by using a special optimization strategy in which new values for
the velocity of a given particle are not searched in the vicinity of the
current velocity, but rather globally in a random fashion, completely
independent of the particle’s current velocity.

In the following, we first discuss our formalism for determining
the density response of a particular realization and for measuring
its goodness of fit through a merit function. We then extend the
discussion to merit functions for the velocity moments, and present
our approach for optimizing both of them concurrently.

2.1 Density merit function

Consider a collisionless N-body system with N particles, initial co-
ordinates x̂i , and initial velocities v̂i . We assume that an initial
density distribution ρ0(x) is given, which can be used to create a
realization of the coordinates x̂i by random sampling. Determining
the v̂i is more complicated; however, we want to initialize them such
that a stationary solution of the collisionless Boltzmann equation

is obtained where the particles move in a given, stationary gravi-
tational potential �(x). In other words, the collection of particles
should move such that the density field they create is time invariant
and identical to the initial density distribution. If this is achieved, the
gravitational field can then also be chosen self-consistently as the
one created by the mass distribution itself (plus additional contribu-
tions by other mass distributions, if desired), such that one obtains
a stationary self-gravitating solution of the Poisson–Vlasov system.

The density field created by the particles of our system can be for-
mally expressed through a superposition of Dirac delta functions:

ρ(x, t, v̂1, . . . , v̂N ) =
N∑

i=1

mpδ(xorbit(x̂i , v̂i , t) − x), (1)

where the function xorbit(x̂′, v̂′, t) describes the time-dependent or-
bit of a particle starting in the phase-space point (x̂′, v̂′). Note that
in the expression for the density field we have explicitly retained the
dependence on the initial values of the particles velocities (which we
have yet to determine), whereas the initial positions can be viewed
as fixed parameters.

Next, we define the time-averaged density response for the chosen
initial velocities as

ρ̄(x, v̂1, . . . , v̂N ) = lim
T →∞

1

T

∫ T

0
ρ(x, t, v̂1, . . . , v̂N ) dt . (2)

The best steady-state for the system can be defined as the smallest
possible difference between the time-averaged density and the initial
density field. To this end, we introduce an objective function

S(v̂1, . . . , v̂N ) =
∫

| ρ̄(x, v̂1, . . . , v̂N ) − ρ0(x) | dx, (3)

which measures the L1-norm of the difference between the two
fields. The linear weighting of the mass difference at a given location
is motivated by the source term in Poisson’s equation, which is
ultimately what we want to keep constant as much as possible in a
steady state to avoid potential fluctuations that can modify particle
energies.

Therefore, the task to construct a best possible steady-state that
has a given density distribution is primarily about finding the v̂i such
that the difference S defined by equation (3) reaches a minimum.
Note that this can in principle be viewed as a high-dimensional
minimization problem with respect to the initial velocities. This
could, for example, be tackled with the method of steepest decent.
A direct adjustment of the velocities to minimize the function S is
indeed the central idea we pursue in this paper, yielding a novel
scheme for constructing equilibrium solutions. There are however
a number of obstacles that make such a minimization non-trivial.

First of all, the problem needs to be somehow discretized, oth-
erwise we cannot meaningfully define a density field for a finite
number of particles. We will deal with this aspect in the remain-
der of this subsection. A further conceptual problem, namely the
non-uniqueness of the obtained solutions, needs to be addressed as
well.

Let us assume that we discretize the space covered by our system
in terms of cells of volume Vj, indexed by j. The cells cover the
volume but they do not need to be of the same size (e.g. we may
choose to use adaptive logarithmic grids, as we do in practice). The
merit function (3) can now be written as

S(v̂1, . . . , v̂N ) =
∑

j

∣∣ Mj (v̂1, . . . , v̂N ) − M0
j

∣∣ , (4)

where Mj and M0
j give the masses of the time-averaged and the ini-

tial density field that fall into cell j, respectively. To determine Mj ,
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we add the time-averaged contributions of the orbits of all particles
to this spatial cell. Since the trajectories of different points require
different times to saturate their impact on the common averaged
density, it is computationally more efficient to follow their orbits
over individually chosen time-scales Ti. We can then write

Mj =
N∑

i=1

∫
cell j

dx
∫

dt

Ti

mpδ(xorbit(x̂i , v̂i , t) − x). (5)

This reduces to

Mj =
N∑

i=1

mpτ
orbit
j (x̂i , v̂i), (6)

where τ orbit
j (x̂i , v̂i) gives the fraction of time an orbit starting in the

given phase-space point spends in cell j. The expected mass in the
cell, M0

j , is simply given by

M0
j =

∫
cell j

ρ0(x) dx. (7)

We note that the above equations correspond to so-called near-
est grid point assignment of the current position of a particle to
the mesh. One can replace this with a higher order assignment
scheme if desired, with the simplest possibility being clouds-in-cell
assignment.1

A more important question concerns the choice of the spatial
binning scheme. There should be enough bins to resolve all relevant
detail of the density distribution, but the Poisson noise affecting
Mj due to the finite number of particles we use clearly limits the
minimum size of a bin that is reasonable. In order to make the noise
in each bin comparable, it is advantageous to choose the bins sizes
such that they contain roughly equal mass. We follow this strategy
by adopting a hierarchical adaptive binning scheme combined with
a logarithmic grid. We will describe this approach in full detail in
Section 4.1.

2.2 Velocity dispersion merit functions

As we discussed earlier, the requirement of a stationary density field
does not in general imply a unique solution for the DF. For example,
in an axisymmetric system, it would always be possible to flip the
signs of the azimuthal velocities to generate, e.g. a system where all
particles orbit around the z-axis with positive Lz, or with negative Lz,
or with any desired mixture of the two. It is hence unclear in which
minimum one ends up when one would try to directly minimize S
with respect to the v̂i .

In order to lift this ambiguity and make the solution more well
defined, we need to add additional constraints that drastically reduce
the acceptable solution space. We do this by invoking symmetry
assumptions about the velocity structure of the system. This then
allows solving the Jeans equations for the second velocity moments,
which we impose as a further optimization constraint.

In general, there are three first moments and three second (re-
duced) moments of the velocity DF at every point. We will here
focus on axisymmetric systems and employ cylindrical coordinates
(R, φ, z). In a stationary system, we always have 〈vR〉 = 0 and
〈vz〉 = 0. We shall now assume that as part of specifying our de-
sired target system, we provide enough assumptions such that the
three dispersions and the azimuthal streaming can be calculated

1 We actually use the latter in our implementation, even though the improve-
ment relative to nearest grid point assignment is here minor.

everywhere, i.e. σ 2
R = 〈v2

R〉, σ 2
φ = 〈(vφ − vφ)2〉, σ 2

z = 〈v2
z 〉, and the

mean azimuthal streaming vφ = 〈vφ〉 can be considered to be known
as a function of (R, z). How we compute these quantities in practice
for different cases will be discussed in Section 3.

In order to impose these velocity moments as additional con-
straints on the initial velocities v̂i , we again consider spatial bins
indexed by j, allowing us to estimate the actual (initial) velocity
dispersions of our particular realization. For example, the average
radial dispersion in bin j is given by[
σ 2

R

]actual

j
= 1

Mj

∑
x̂i in cell j

mp

(
v̂i · e(i)

R

)2
. (8)

The normalization factor

Mj =
∑

x̂i in cell j

mp (9)

is simply equal to the mass of the initial realization that falls into
the spatial bin. The vector e(i)

R is the radial unit vector at the position
of particle i. The expected target velocity dispersion in the bin is
given by[
σ 2

R

]target

j
= 1

M0
j

∫
cell j

ρ0(x) σ 2(x) dx, (10)

where M0
j is the mass expected in the continuum in the cell. We

may then define a merit function that measures the deviation of the
actually realized velocity dispersion relative to the target value. To
this end, we adopt

QR =
∑

j

∣∣∣[σ 2
R

]actual

j
− [

σ 2
R

]target

j

∣∣∣[
σ 2

R

]target

j

. (11)

Similarly, we define merit functions Qz and Qφ for the dispersions
in the z-direction and the azimuthal φ-direction, respectively. In
the azimuthal direction, we actually measure and constrain both
the full second moment

〈
v2

φ

〉
and the dispersion relative to the

mean streaming σ 2
φ . Combined, this then also constrains the mean

streaming itself.
As for the density case, we need to adopt a suitable discretization

for the spatial bins. In order to avoid biases due to different noise
levels in the bins, we adopt bins in which the mass per bin (or,
equivalently, the number of particles) is roughly constant, a situation
we realize with the help of a hierarchical adaptive binning scheme.
We note that it is possible to employ the same spatial bins as used for
the density merit function, but if desired the corresponding target
value for the mass per bin can also be chosen differently.

2.3 Optimization procedure

Our goal is to iteratively adjust the v̂i such that S, QR, Qφ and
Qz are simultaneously minimized. We do this by combining these
quantities into a single goodness-of-fit parameter,

Sglobal = S + χ (QR + Qφ + Qz), (12)

where the constant χ is adjusted such that S and QR + Qφ + Qz are
of the same magnitude and have the same units. In other words, we
give equal weight to the density and velocity constraints.

The function Sglobal(v̂1, . . . , v̂N ) depends only on the initial par-
ticle velocities. Hence, we are formally charged with the task to
find its minimum in the high-dimensional space of all the 3N veloc-
ity components. Trying to find this minimum is a computationally
rather tricky problem, because the function will feature a large num-
ber of local minima in which a direct search may easily get stuck.
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Also, the function is non-linear and expensive to evaluate – calculat-
ing S involves orbit integrations of a large number of particles over
a long time interval. Even if a single force calculation is compara-
tively cheap due to the static potential, the cumulative CPU cost can
become demanding, especially since we are not dealing just with
a single particle but rather with a (potentially quite large) particle
collection of size N.

Nevertheless, it is still possible to estimate the local gradient of
Sglobal with respect to the v̂i and then to move in the direction of
steepest decent by simultaneously modifying all velocities in the
direction opposite to the gradient. But finding a local minimum in
this way will still be very hard (we have tried); typically, one will
instead overshoot in at least one of the many dimensions of the
problem.

Another consideration also argues against this brute force ap-
proach. Physically, we expect that the particles should be completely
uncorrelated in proper collisionless initial conditions. Directly min-
imizing Sglobal simultaneously with respect to all velocities invokes
the danger of ‘overfitting’, where a low value of the merit function
is obtained through the introduction of velocity correlations in the
specific N-body realization of the system.

Our solution to these problems involves two components. First,
we serialize the minimization procedure, i.e. we always pick only
one particle randomly, and then optimize its velocity such that Sglobal

is reduced. Secondly, we do not actually try to adjust the velocity
of the single particle such that Sglobal is necessarily minimized, as
may be done by using the result of a line search along a single
parameter. Rather, we simply randomly pick a new guess for the
particle’s velocity and (re)evaluate the merit function for this choice.
If the proposed velocity improves the fit, we retain it as the new
velocity of the particle, otherwise we simply keep the particle’s old
velocity and proceed with the next particle. This is simply repeated
until the fit cannot be improved significantly any more. We note
that this approach bears some resemblance to Monte Carlo Markov
Chain (MCMC) techniques, except that we are here trying to find
a global optimum rather than exploring a likelihood surface where
one also moves occasionally away from the optimum with a certain
probability.

The distribution from which one draws the trial velocities is in
principle arbitrary, provided it is broad enough to sample all al-
lowed velocities. However, it is highly advantageous to make it
close to the target DF, because in this case the convergence speed
can be expected to be particularly rapid (just as in MCMC). In our
case, we can simply use Gaussians for that, as we already have
the second moments in hand based on our Jeans solutions and the
DF will in most cases resemble a Gaussian locally, so this should
facilitate rapid convergence. Note that every new trial velocity we
pick is completely independent of the previous value, as well as of
the velocities of all other particles. This helps to minimize corre-
lations between different particles in the created initial conditions,
and it prevents to get easily stuck in a local minimum. Nevertheless,
velocity correlations are not completely absent, because the accep-
tance decision for the velocity of a particular particle still depends
on the discrete spectrum of velocities realized at this instant for all
the other particles. But as our results show, any present residual cor-
relations do not seem to negatively impact the quality of the created
initial conditions.

In practice, we choose to process all particles in a random order.
In each pass over the particles, we pick for a given particle one
of its three principal coordinate directions and draw a random trial
value for the corresponding velocity component. We note that the
evaluation of Sglobal can be significantly accelerated if only one

particle is varied. In this case, only the summed orbital response
of all particles needs to stored, without requiring storage of all the
responses individually. Evaluating Sglobal for a changed velocity of
one particle then boils down to calculating the orbit response for this
particle twice, both for the old and new velocities. The differential
between the two results can then be appropriately added to the
global response to assess the change in Sglobal.

3 V E L O C I T Y C O N S T R A I N T S

As discussed above, a problematic aspect of optimizing only a
density merit function is that it is ambiguous to which solution
this will converge. Recall that for a given density distribution there
will in general be a vast number of possible DFs. The iterative
optimization will yield a particular realization of one of these DFs,
and this solution might depend on the initial velocity guesses one has
used at the beginning. In order to make the solution well defined,
we need to impose additional constraints that reflect the desired
properties of the specific solution one is looking for. We do this in
terms of second moments of the velocity distribution and by forcing
the system to converge to a solution that features these moments.
The moments themselves are calculated from the Jeans equations.
Different possibilities for a specification of the desired properties
of the target system exist.

3.1 Spherically symmetric DFs

If the density structure is spherically symmetric and the velocity DF
depends at most on the magnitude of the angular momentum, we
can make use of the spherically symmetric Jeans equation for the
second radial velocity moment,

∂(ρσ 2
r )

∂r
+ 2

βρσ 2
r

r
+ ρ

∂�

∂r
= 0. (13)

Here, σ 2
r = 〈v2

r 〉 is the radial dispersion. The velocity DFs in the
transverse directions at any given position need not be equal to that
in the radial direction, but we have σ θ = σφ due to the assumed
symmetry. The degree of radial–tangential anisotropy is usually
measured in terms of

β = 1 − σ 2
t

2σ 2
r

= 1 − σ 2
φ

σ 2
r

, (14)

where σ 2
t = σ 2

θ + σ 2
φ = 2σ 2

θ measures the total tangential disper-
sion, and due to spherical symmetry we have σ θ = σφ . If the
distribution is isotropic, we have β = 0. If the orbits are biased
towards radial motions we have β > 0, while for β < 0 they are
preferentially tangential.

For given ρ(r) and prescribed β(r), and thanks to the purely
radial dependence, equation (13) becomes an ordinary differential
equation for ρσ 2

r which can be readily integrated using the boundary
condition ρσ 2

r = 0 for large radii. Dividing the solution by the
density then yields the dispersion σ 2

r (r) as a function of radius, and
from it we also obtain σ 2

θ (r) = (1 − β)σ 2
r (r).

We note that we may choose β to be a function of radius, as
suggested by the structure measured for cosmological dark matter
haloes. Hansen & Moore (2006) found that the local anisotropy of
dark matter haloes correlates well with the logarithmic slope

α = d ln ρ

d ln r
(15)
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of the density profile. Their numerical results are well fitted by the
relation

β(r) = −0.15 − 0.2α, (16)

which we adopt as an additional option in our IC code. This implies
nearly isotropic orbits in the centre of a Hernquist or NFW halo,
and a growing preference for more radial dispersion as a function
of distance.

A particularly simple choice for β(r) is the isotropic case, β = 0,
where the velocity DF is independent of direction at every point.
In this ergodic case, the DF depends only on energy. Hernquist
(1990) constructed such a solution for a density profile of the form
ρ(r) ∝ r−1(r + a)−3, which is cosmologically particularly relevant
as it has a shape similar to the NFW density profile (Navarro,
Frenk & White 1997) measured for relaxed haloes in cold dark
matter structure formation simulations. This makes the isotropic
Hernquist model a particularly useful analytic distribution, and we
will also use it here to verify our procedures. We note however that
a yet more realistic model would be one with a radially varying
anisotropy β(r). No analytic DFs are known for this case, but such
models can be readily constructed with our new method.

3.2 Axisymmetric systems with two integrals of motion

For axisymmetric systems, the angular momentum Lz around the
z-axis is a conserved quantity for all orbits, hence we expect the
DF to depend on Lz besides energy E. In general, there can be a
third integral of motion, I3, which is however often not easy to
identify and therefore considered ‘non-classical’. If one disregards
I3 and assumes that the DF is only a function of E and Lz, then the
situation simplifies considerably, as one can then infer that all mixed
moments of the velocity distribution vanish (i.e. 〈σ Rσ z〉 = 0). In
this case, the axisymmetric Jeans equations simplify considerably
and can be comparatively easily solved.

With two integrals of motion, the non-trivial axisymmetric Jeans
equations become

∂(ρσ 2
z )

∂z
+ ρ

∂�

∂z
= 0, (17)

and〈
v2

φ

〉 = σ 2
R + R

ρ

∂(ρσ 2
R)

∂R
+ R

∂�

∂R
. (18)

The mean streaming motions in the radial and vertical directions
vanish, 〈vR〉 = 〈vz〉 = 0 (but not necessarily in the azimuthal direc-
tion), and importantly, the radial and vertical dispersions are equal
everywhere, σ 2

R = σ 2
z .

This in particular means that the density distribution fully spec-
ifies the vertical and radial dispersions in the meridional plane
(R, z). They can be explicitly calculated as

σ 2
R = σ 2

z (R, z) = 1

ρ(R, z)

∫ ∞

z

ρ(z′, R)
∂�

∂z
(R, z′) dz′. (19)

Once these dispersions are known, we can now determine the
second moment 〈v2

φ〉 of the azimuthal motion from the radial Jeans
equation (18). However, the mean streaming 〈vφ〉 in the azimuthal
direction is not specified by the Jeans equations. Indeed, 〈vφ〉 does
not have to be zero if there is net rotation. For any given solution
with non-zero 〈vφ〉, one can readily construct new, equally valid
equilibrium solutions, for example by reversing all or a fraction of
the particles’ φ-motions. It is hence clear that the requirement of
axisymmetry does not specify 〈vφ〉. In fact, we are (within limits)
free to set this.

We adopt the parametrization〈
vφ

〉2 = k2
[〈

v2
φ

〉 − σ 2
R

]
(20)

suggested by Satoh (1980) to specify the mean streaming. For the
interesting choice k = 1, we obtain for the azimuthal dispersion

σ 2
φ ≡ 〈

v2
φ

〉 − 〈
vφ

〉2 = σ 2
R = σ 2

z , (21)

i.e. σ 2
φ is then equal to the radial and vertical dispersions. This

defines the case of an isotropic rotator. But we may also adopt a
lower or higher value for k, or even one with a spatial dependence,
up to the maximum allowed local value of

k2
max =

〈
v2

φ

〉
〈
v2

φ

〉 − σ 2
R

. (22)

In k climbs up to this value, the azimuthal dispersion vanishes and we
have 〈vφ〉2 = 〈v2

φ〉, corresponding to a system with the maximum
possible angular momentum for a given density structure. In our
GALIC code, we either choose a constant k or specify k in units of
kmax when the case of a f (E, Lz) DF is selected.

3.3 General systems with three integrals of motion

While simple disc models can be constructed as isotropic rotators,
observations in the Milky Way at the solar circle suggest that σ R

is not equal to σ z. Rather, the two dispersions are related approx-
imately by σ z 
 0.5 σ R (Binney & Merrifield 1998). Even if the
Milky Way can still be described well as an axisymmetric system,
this already means that the DF is not only dependent on (E, Lz),
instead a third integral of motion must play an important role. In the
outer parts of the disc, this is approximately given by the energy of
the vertical motion in the discs potential, but in the inner parts of the
disc this identification presumably becomes a poor approximation.

Another interesting observational fact is that the velocity ellipsoid
above the disc mid-plane is not aligned with the coordinate plane;
instead, it appears tilted (i.e. 〈vRvz〉 �= 0) towards the centre of the
system. Using RAVE velocity data, Siebert et al. (2008) and Binney
et al. (2014) quantified the tilt at 1 kpc above the disc to be around
α = 7o (see the sketch of Fig. 1). We are hence forced to apply the
general axisymmetric Jeans equations, which take the form

∂(ρσ 2
z )

∂z
+ ρ

∂�

∂z
+ 1

R

∂(Rρ 〈vRvz〉)
∂R

= 0, (23)

Figure 1. Sketch of the geometry adopted to describe the assumed tilt of
the velocity ellipsoid in the f (E, Lz, I3) case.
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〈
v2

φ

〉 = σ 2
R + R

ρ

∂(ρσ 2
R)

∂R
+ R

∂�

∂R
+ R

ρ

∂(ρ 〈vRvz〉)
∂R

, (24)

∂(ρ〈vzvφ〉)
∂z

+ 1

R2

∂(R2ρ〈vRvφ〉)
∂R

= 0. (25)

This system of equations is significantly underspecified and ad-
ditional assumptions are needed for closure. We shall assume
that the velocity ellipsoid is not tilted in the φ-direction, hence
〈vzvφ〉 = 〈vRvφ〉 = 0. This eliminates the third equation. However,
we need to retain a tilt in the meriodonal plane, as encoded by
〈vRvz〉. If α is the local angle between the velocity ellipsoid and the
R-axis, this mixed moment can be expressed in terms of the radial
and vertical moments, i.e. we have

〈vRvz〉 = 1

2
tan(2α)

[
σ 2

R − σ 2
z

]
. (26)

For reference, the dispersions in the rotated coordinate frame
(R′, z′) are given by〈
v2

R′
〉 = σ 2

R cos2(α) + 〈vRvz〉 sin(2α) + σ 2
z sin2(α), (27)

〈
v2

z′
〉 = σ 2

R sin2(α) − 〈vRvz〉 sin(2α) + σ 2
z cos2(α). (28)

The tilt angle is the one for which 〈vR′vz′ 〉 = 0, by construction.
Interestingly, the tilt observed for the Galaxy at the solar circle is

consistent with the velocity ellipsoid pointing approximately to the
centre of the Galaxy; the most recent determination by Binney et al.
(2014) gives α ∼ 0.8 arctan(z/R). We here assume for definiteness
that this alignment is perfect and holds throughout the system, in
which case the angle α is simply given by

tan α = z

R
. (29)

Specifying the orientation of the velocity ellipsoid in this way has
the nice property of naturally producing a spherically symmetric
orientation close to the galactic centre, i.e. the ‘disc regime’ seam-
lessly transitions to a ‘bulge regime’. Far out in a thin disc, the
velocity ellipsoid will align with the coordinate axes, while near
to the centre the situation becomes closer to that in a spherically
symmetric case with a radial alignment, which seems plausible.

Prescribing the tilt angle is not yet enough to solve equations
(23) and (24), because they involve four unknowns. An additional
assumption is required. To this end, we adopt a prescribed relation
between the radial and vertical dispersions in the tilted velocity
ellipsoids, namely〈
v2

R′
〉 = fR

〈
v2

z′
〉
, (30)

where fR is a factor specifying the anisotropy between radial and
transverse motions. For the disc of a Milky Way like galaxy, we
would expect fR 
 2 at the solar circle, but little is own about
a potential radial variation of this value. We also note in passing
that the Toomre stability criterion depends sensitively on σ R, so
invoking values fR > 1 is one way of stabilizing a stellar disc of
given thickness against axisymmetric perturbations. For simplicity,
we shall assume a spatially constant value for fR in the disc, but note
that our techniques could be easily generalized to include a radial
or vertical variation of this factor.

Given the above model for the dispersions, we can now express
the mixed moment 〈vRvz〉 through the vertical dispersion, namely

〈vRvz〉 = h σ 2
z , (31)

where the function h = h(R, z) is given by

h = (f − 1) tan(2α)

2 cos2(α) − 2f sin2(α) + (1 + f ) sin(2α) tan(2α)
, (32)

and the shortcut f = fR is understood. The Jeans equation (23) now
becomes an inhomogeneous first-order partial differential equation
(PDE) for σ 2

z . Defining q ≡ ρσ 2
z , the relevant equation takes the

form

∂q

∂z
+ ∂(hq)

∂R
+ hq

R
+ ρ

∂�

∂z
= 0. (33)

We can solve this PDE numerically with the methods of lines by
discretizing in R and replacing the spatial R-derivative with a finite
difference approximation. We can then integrate the resulting sys-
tem of coupled ordinary differential equations along the z-direction,
starting at z 
 ∞ and ending up at z = 0. The initial condition is
q(R, z = ∞) = 0, augmented with the boundary condition q(R = ∞,
z) = 0. For numerical stability, one needs to take care that an upwind
finite difference estimate for the R-derivative is used. Note also that
the hq/R term is not singular for R = 0, because h/R → (f − 1)/f
for R → 0.

Having obtained a solution for q(R, z), we then readily have σ z,
σ 2

R, 〈vRvz〉, as well as 〈v2
R′ 〉 and 〈v2

z′ 〉 throughout the meridional
plane. Similar as with the axisymmetric f (E, Lz) case, we still have
the freedom to choose a streaming velocity in the φ-direction, except
that now we have to use equation (24) to infer the corresponding
dispersion available in the azimuthal direction. We continue to use
the parametrization of equation (21) for the azimuthal streaming.
For the case k = 1, we then get σ 2

φ = σ 2
R in the mid-plane.

We note that one can also obtain from epicycle theory a statement
about the relation between 〈(vφ − vc)2〉 and σ 2

R, valid for small radial
dispersions σ R, namely

〈
(vφ − vc)2

〉
σ 2

R


 1

γ 2
, (34)

where γ = 2�/κ . �2 = 1
R

∂�
∂R

is the circular orbit frequency, and

κ2 = R
d�2

dR
+ 4�2 (35)

is the epicycle frequency. Typically, we have 1/γ 2 
 0.5. We note
that equation (34) is only reliable for very cold thin discs, with
σ R 
 vc (see Binney & Tremaine 2008). Interestingly, combined
with equation (24), the epicycle approximation gives the azimuthal
streaming (and hence also the axisymmetric drift) in the equatorial
plane as

〈
vφ

〉 = vc + σ 2
R

2vc

(
∂ ln(ρσ 2

R)

∂ ln R
+ γ 2 − 1

γ 2

)
. (36)

On the other hand, we obtain from equation (20) the following
expression for the streaming velocity to leading order in σ R/vc:

〈
vφ

〉 = k vc + k σ 2
R

2vc

(
∂ ln(ρσ 2

R)

∂ ln R

)
. (37)

Consistency with the epicycle approximation hence requires k = 1
for thin cold discs. The residual difference grows for large σ R/vc,
but note that in this limit the epicycle approximation becomes
inaccurate anyway.
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4 IM P L E M E N TAT I O N D E TA I L S

4.1 Adaptive logarithmic binning

To account for the typical power-law growth of the density towards
the centre in self-gravitating systems, we generally employ loga-
rithmic grids. For the sake of simplicity, we restrict ourselves to
axisymmetric systems in this paper, and also assume mirror sym-
metry with respect to the z = 0 plane. Adopting cylindrical coordi-
nates, this means we only have to cover the positive quadrant in the
(R, z)-plane. We assume that the mass distribution is fully contained
inside a cube of side-length 2dmax, i.e. our mesh needs to cover the
region 0 ≤ R < dmax and 0 ≤ z < dmax. If we use Nbin = 2l bins
per dimension, and require that the width of the bins grows by a
constant factor f from bin to bin, the borders of the bins can be
written as

Ri = dbase(f i − 1), (38)

zj = dbase(f j − 1), (39)

with i, j ∈ [0, 1, . . . , Nbin]. The bin (i, j) (with 0 ≤ i, j < Nbin) then
covers [Ri, Ri + 1] × [zj, zj + 1] in the (R, z)-plane and has volume

Vij = 2π
(
R2

i+1 − R2
i

)
(zj+1 − zj ). (40)

To cover the full volume, dbase and f need to be chosen such that

dmax = dbase(f Nbin − 1). (41)

This still leaves room for one additional constraint to fully specify
the quantities dbase and f. We typically address this by requiring

that the first bin, bounded by R1 = dbase(f − 1), encloses a small
prescribed fraction of the total mass of the system (e.g. 10−6), such
that the central region is still well resolved by the grid.

As we discussed earlier, the objective functions assessing the
density response and the initial velocity distribution work best if
the spatial bins are chosen such that they contain approximately
constant mass. We realize such a scheme by first constructing the
mass response on a relatively fine grid, given by the level lmax.
We then recursively construct a set of coarsened meshes on levels
lmax − 1, lmax − 2, . . . , 1, 0, until there is only one cell left covering
the whole quadrant. Computing the mass response of one of the
grid cells of a coarsened mesh is done recursively by summing
over the corresponding four cells in the finer mesh one level higher.
Similarly for the velocity dispersion fields.

Evaluating the objective functions then proceeds with a recursive
algorithm that walks the tree of nested mesh cells. Beginning at the
‘root node’, a mesh cell is included in the sum if it contains less
than a certain threshold mass or if it is already a cell of the finest
level. Otherwise, the mesh cell is ‘opened’, and its four daughter
cells are considered in turn as candidates for being included in the
sum. This procedure automatically selects a close to optimum set
of cells of different sizes. Note that the union of the cells that enter
the sum form a space-covering tessellation, i.e. each point in the (R,
z)-plane is accounted for exactly once.

In Fig. 2, we show an example for the mass response grid of a
set of orbits in the (R, z)-plane for a mesh with Nbin = 28 cells per
dimension, together with the hierarchy of the next four coarsened
representations at higher levels. The final panel on the bottom right
shows a mixed image of variable resolution, indicating what is

Figure 2. Density response of our hierarchical binning scheme. The top-left panel shows the average orbit response as recorded on the finest grid used (which
is a logarithmic grid with 2562 pixels). The next four panels show coarsened representations of this field, with resolutions of 642–82 pixels (this continues to
even coarser meshes that are not shown). Finally, the bottom-right panel shows the variable resolution response that is actually used to compare with the target
density distribution, based on bins containing roughly equal mass.
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effectively used in the adaptively calculated sum that defines the
merit function.

4.2 Orbit integration

In order to efficiently and accurately compute orbits of particles
for arbitrary mass distributions, we produce a look-up table of the
gravitational potential and its derivatives ∂�/∂R and ∂�/∂z in
the positive quadrant of the (R, z)-plane. Due to the axisymmetry
we assume, this is sufficient to obtain the forces and the potential
everywhere through a table look-up. We use a fine logarithmic grid
in R and z and bilinear interpolation for the look-up table.

In order to allow a computation of the forces for arbitrary den-
sity distributions without analytic solutions of Poisson’s equation,
we numerically evaluate the potential and forces on the fine grid
based on randomly sampling the density distribution with a very
large number of fiducial particles combined with a calculation of
the forces and potentials with a gravitational tree algorithm. This
procedure is very flexible and accurate. In order to help reducing
noise effects from the sampling to a negligible level, a large number
of fiducial points is used, and additionally, we evaluate and average
the field at a set of different azimuthal angles.

For the orbit integration of particles, which gives us
xorbit(x̂i , v̂i , t), we use the leapfrog scheme with adaptive timestep
based on the kick–drift–kick formulation. If (x(n), v(n)) denote po-
sition and velocity after step n, then the update to the next step is
obtained through

v(n+1/2) = v(n) + a(n)�tn/2, (42)

x(n+1) = x(n) + v(n+1/2)�tn, (43)

v(n+1) = v(n+1/2) + a(n+1)�tn/2. (44)

We set the size �tn of the timestep of step n as

�tn = min

(
ηorbit

V200

|a(n)| , ηmesh
d

(n)
cell

|v(n)|

)
, (45)

where V200 is the circular velocity of the halo of the constructed
galaxy and d

(n)
cell is the dimension of the mesh cell at the particle’s

current location. The dimensionless coefficients ηorbit and ηmesh are
meant to ensure an accurate integration of the orbit and a precise
accounting of the time spent by the orbit in each of the bins used
for recording the density response.

We select the integrated timespan Ti for each particle individually.
To this end we use the circular velocity at the particle’s initial
position, and introduce a dimensionless factor ηtimespan for scaling
the circular orbital time at the local distance. Explicitly, we set

Ti = ηtimespan
2π|x̂i |
vcirc(x̂i)

, (46)

where vcirc(x̂i) ≡ (|x̂i | |âi(x̂i)|)1/2. We typically found
ηtimespan = 10.0 to be sufficient, yielding an average number
of about 15 orbits for the particles of a typical halo.

4.3 Optimization procedure

As discussed earlier, we in principle would like to optimize the par-
ticles sequentially. Unfortunately, this immediately poses a serious
problem for any efficient parallelization. If we enforce strictly se-
quential iterative adjustments of the particle velocities (such that a

subsequent evaluation of the merit function already takes the effects
of a potential change of the previous particle’s velocity fully into ac-
count), then the optimization can evidently not be done concurrently
for several different particles.

However, we have found that in practice we still obtain good
results if we allow a small fraction of all particles to be treated
simultaneously, each remaining unaware of the changes in the other
particles until these are ‘committed’ at the end of the concurrent
phase. With this approach, we can exploit massive parallelism in
the optimization procedure (as implemented in our GALIC code).

For definiteness, this practical aspect of our optimization scheme
is controlled by a parameter fopt which gives the fraction of particle
orbits that can be set to new starting velocities without taking note
of each other. Our default values for this parameter is fopt = 0.001,
meaning that our code will process the particles in batches of size
foptNpart particles from a randomly shuffled list of all particles. In
each batch, all the trial velocities are drawn and evaluated indepen-
dently (hence this can be done in parallel), and only at the end the
velocity updates are committed to the new global response of the
system, affecting the next batch.

When a particle is selected for optimization, we first randomly
select one of the three primary coordinate directions, and then re-
place the corresponding velocity component with one drawn from
the corresponding Gaussian distribution. In this way, each of the op-
timizations effectively couples only to one of the velocity dispersion
measures. We found this advantageous also for the following rea-
son. To exclude any possibility that systematic binning effects might
prefer orbits that start, for example, with positive vR as opposed to
negative vR, we actually assess orbits by averaging the merit func-
tions for orbits both with vR and −vR velocities, and likewise for
the vz velocities. This guarantees symmetry of the resulting veloc-
ity DFs in these two directions, and in particular, 〈vR〉 = 〈vz〉 = 0.
However, in the φ-direction, this reversal trick is not indicated, both
because here the symmetry of the binning procedure excludes the
possibility of any such effects by construction (unlike for the R- and
z-directions), and because in the φ-direction orbits with a reversed
φ-velocity are not necessarily equally probable. We note that to
ensure that all particles remain bound, we reject any trial velocity
that is larger than ηmaxvesc, where vesc is the local escape velocity
and ηmax = 0.9999 is a parameter very close to 1.

In Fig. 3, we show the decline of the value of the merit function
as a function of the number of velocity optimizations that have been
attempted by the code, in units of the total particle number, for a
typical initial conditions model where the initial velocity guess were
computed with the moment-based method. We see that after ∼3 op-
timization attempts for each particle, the initial convergence speed
slows down significantly, and a stationary state in which no fur-
ther improvement appears possible is reached after approximately
∼5 optimizations. We find this is a quite typical behaviour in all
of our models. Conservatively, we usually run our models to ∼10
optimizations per particle.

4.4 Determination of the initial realization

There are only two functions that need to be provided for any
desired density distribution that should be treated with our scheme.
For each component of the system (i.e. halo, disc and/or bulge), one
function needs to return the density of the component at a given
point, the other must return a randomly sampled coordinate from
the density field, i.e. the probability density of the corresponding
point process must be proportional to the density field. Having these
functions in hand, we can create the x̂i simply by randomly sampling
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Figure 3. Decline of the merit function in a typical optimization run (actu-
ally the model D1 from Table 1) as a function of the number of attempted
velocity adjustments in units of the particle number of the corresponding
component. The solid line shows the result for the dark matter particles,
while the dashed lines is for the disc particles.

each density component present in the target system. Also, we can
create a (large) fiducial set of points for evaluating the force field
to arbitrary precision with a tree algorithm. Finally, we can make
use of the function returning the continuum density in solving the
Jeans equations.

Since in our approach we anyway compute the second moments
with the Jeans equations, we may as well initialize initial guesses
for the particle velocities v̂i by drawing randomly from Gaussian
distributions with the correct local dispersions. This corresponds to
the frequently invoked approximation of adopting triaxial Gaussians
for the local velocity DF, and since this is in most cases reasonably
close to the correct distribution, it accelerates convergence. The
iteration method is then in essence only responsible for determining
the higher order moments of the velocity DF.

4.5 Parallelization approach

Our C-code for creating stable initial conditions with the scheme
described here, GALIC, has been fully parallelized for distributed
memory machines using the message passing interface (MPI). For
calculating the gravitational field in the (R, z)-plane, we let each
MPI-task sample particles independently. The resulting particle set
is then subjected to a domain decomposition, and a parallel dis-
tributed tree algorithm derived from the well-known GADGET sim-
ulation code (Springel, Yoshida & White 2001; Springel 2005) is
invoked to compute the force field.

For creating the particles of the actual initial conditions, we again
let each MPI-task create a random, disjoint subset of the target par-
ticle set for each mass component. Then we let each MPI-task work
independently and in parallel on the orbit optimizations associated
with one batch of size foptNpart. The results are then interchanged
and the sums over the orbit responses are updated accordingly,
allowing the next cycle of optimizations to proceed. As a result,
the scalability of our code is essentially perfect provided foptNpart

is substantially larger than NCPU, otherwise work-load imbalances
may become substantial as not all tasks could then be expected to
have roughly equal amounts of work in each batch.

We have also made use of some of the I/O code from GADGET

when writing the final initial conditions to disc. They can be stored

in any of the three file formats supported by GADGET (including one
in HDF5-format), thereby simplifying the subsequent use of the ICs
with this simulation code, or the application of existing file format
conversion tools from GADGET’s format to other simulation codes.
Finally, our use of parallel I/O routines also facilitates the creation
of extremely large galaxy models, if desired.

5 G A L A X Y M O D E L S

The approach outlined above is quite general and can be used with
nearly arbitrary axisymmetric density profiles. For definiteness, we
describe in this section a specific set of parameterizations for dark
matter haloes, stellar discs and stellar bulges, which we shall use
in our test galaxy models. These parameterizations follow models
widely employed in the literature.

We usually model the dark matter density profile as a spherically
symmetric halo with density

ρdm(r) = Mdm

2π

a

r(r + a)3
, (47)

where a is the scale factor. Following Springel, Di Matteo & Hern-
quist (2005), we can relate a to the concentration c of a correspond-
ing NFW halo of mass M200 = Mdm such that the shape of the density
profile in the inner regions is identical. The relation between a and
c is then given by

a = r200

c

√
2[ln(1 + c) − c/(1 + c)], (48)

where r200 and M200 are the virial radius and virial mass of the NFW
halo, respectively.

We may also consider axisymmetric dark matter haloes with ei-
ther prolate or oblate distortions. For simplicity, we assume that the
isodensity contours of the distorted shape are ellipses, effectively
created by linearly distorting the spherical shape along the symme-
try axis. If s = a/c is the (radially constant) stretch factor, and a = b
and c are the axes of some isodensity ellipsoid, then a prolate halo
has c/a > 1 (and hence s < 1), while an oblate halo has c/a < 1
(with s > 1). We can then define the density profile of the distorted
halo as

ρ̃dm(R, z) ≡ s ρdm(
√

R2 + s2z2), (49)

which leaves the total mass invariant.
For the disc, we adopt in general a model with exponential ra-

dial scalelength, and a sech2-profile in the vertical direction. More
specifically, the 3D disc density profile2 is described by

ρ�(R, z) = M�

4πz0 h2
sech2

(
z

z0

)
exp

(
−R

h

)
. (50)

The disc scalelength h can either be set to a prescribed value, or
calculated by assuming that the disc contains a certain fraction of the
specific angular momentum of the halo (see e.g. Mo, Mao & White
1998). We assume a radially constant scale height z0 of the disc, but
this could be easily modified if desired. Usually, we parametrize z0

in terms of the disc scalelength, with typical discs lying in the range
z0/h ∼ 0.1 − 0.3.

2 We note that equation 10 of Springel et al. (2005) contains a typo in
the form of an extraneous factor 1/2 in the argument of the sech-function.
All model calculations in that paper have however been done correctly,
based on equation 28 of Springel & White (1999), which is what we adopt
here too.
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72 D. Yurin and V. Springel

Table 1. Set of basic galaxy models constructed for testing purposes with the methods outlined in this paper. Unless stated otherwise, we have used 106

particles for each model component. The models labelled ‘H1’, ‘H2’, etc., contain only a dark matter halo but differ in the halo shape or the assumptions
made for the velocity structure. The models denoted ‘B1’, ‘B2’, and so on, contain a bulge in addition to the halo, and the modes with ‘D1’, ‘D2’, etc.,
feature a disc in addition to the halo. Finally, the models ‘M1’, ‘M2’, etc., contain both a stellar bulge and a stellar disc, next to a dark matter halo.

Model Components and their shape Imposed velocity structure

H1 Spherical dark halo Ergodic (i.e. isotropic Hernquist model)
H2 Spherical dark halo Spherical anisotropy, radial orbits dominating, β = 0.5
H3 Spherical dark halo Spherical anisotropy, tangential orbits dominating, β = −1.0
H4 Spherical dark halo Radially varying anisotropy, β(r) = −0.15 − 0.20 d log ρ

d log r

H5 Spherical dark halo Axisymmetric velocity structure, isotropic rotator with k = 1
H6 Prolate dark halo with s = 0.85 Axisymmetric velocity structure, no net rotation
H7 Oblate dark halo with s = 1.15 Axisymmetric velocity structure, no net rotation

B1 Spherical dark halo, spherical bulge Ergodic
B2 Spherical dark halo, spherical bulge Different anisotropies for bulge and halo, βhalo = 0.5, βbulge = −1.0
B3 Prolate dark halo s = 0.85, spherical bulge Axisymmetric velocity structure, no net rotation
B4 Oblate dark halo s = 1.15, prolate bulge s = 0.85 Axisymmetric velocity structure, no net rotation

D1 Spherical dark halo, thin disc Axisymmetric velocity structure for halo and disc, disc isotropic rotator
D2 Prolate dark halo with s = 0.85, thin disc Axisymmetric velocity structure for halo and disc, disc isotropic rotator
D3 Spherical dark halo, thin disc Disc with f (E, Lz, I3) structure and fR = 2.0, halo axisymmetric with k = 0
D4 Spherical dark halo, thin disc Disc with f (E, Lz, I3) and fR, disc = 4.0, halo axisymmetric with k = 0.5
D5 Prolate dark halo with s = 0.85, thin disc Disc with f (E, Lz, I3) and fR, disc = 2.0, halo axisymmetric isotropic rotator

M1 Spherical dark halo, spherical bulge, thin disc Axisymmetric structure for halo and bulge (no rotation), disc isotropic rotator
M2 Spherical dark halo, spherical bulge, thin disc Axisymmetric velocities for halo/bulge, disc with f (E, Lz, I3), fR, disc = 2.0
M3 Spherical dark halo, spherical bulge, thin disc Disc with f (E, Lz, I3) and fR = 4.0, bulge no rotation, halo with k = 0.1
M4 Prolate dark halo s = 0.85, oblate bulge s = 1.15, thin disc Disc with f (E, Lz, I3), fR = 2.0, halo and bulge both isotropic rotators

Finally, we model a stellar bulge (if present) with a Hernquist
halo as well, using the profile

ρb(r) = Mb

2π

b

r(r + b)3
. (51)

The bulge scalelength b is prescribed through a parameter that gives
its size in units of the halo’s scalelength.

We specify both the bulge and disc masses as fractions md and
mb of the total mass, i.e. Md = mdMtot and Mb = mbMtot. This
parametrization has previously been adopted in the study of Mo
et al. (1998) on disc structure, as well as in some earlier work
on compound disc galaxy models (e.g. Springel & White 1999;
Springel et al. 2005).

All the many reasonable combinations of the above components,
together with the various velocity structures possible for them, pro-
duce a fairly large number of possibilities our code GALIC has to deal
with. In particular, requiring that a galaxy model always needs to
have a dark matter halo (either of spherical or oblate/prolate shape),
that a disc can either be present or absent, and that a bulge is op-
tional but may have different shapes if present (spherical, oblate,
or prolate), we already arrive at 12 possible combinations of these
three components. Of the corresponding models, only two have
spherically symmetric potentials (namely either the model with just
a spherical halo, or the model with spherical halo and a spherical
bulge), allowing ergodic f (E) DFs or f (E, |L|) models for them
(besides axisymmetric f (E, Lz) or f (E, Lz, I3) DFs possible for all
the models). Allowing just for different combinations of these extra
velocity structures, this means that the two density models really
correspond to 6 possible variants. Similarly, the other 10 possible
density models give rise to 54 possible velocity variants, so that we
have of order 60 valid combinations of density model and associated
velocity structures. Of course, many of these models really corre-
spond to a continuum of further possibilities once the additional

free parameters describing, for example, the degree of net rotation
or the radial velocity anisotropy are used.

It is clear that we cannot present exhaustive tests of all these pos-
sibilities in this work. Rather, we instead focus on a representative
selection of models which we list in Table 1. This sample of models
covers a good fraction of the space of possible model variants of
interest, hence our tests should give a good assessment of how well
our techniques work in practice. We consider, in particular, models
that contain only a dark matter halo (denoted as ‘H1’, ‘H2’, etc.),
that feature a pure disc embedded in a halo (labelled ‘D1’, ‘D2’,
etc.), that contain a bulge but no disc inside a halo (‘B1’, etc.), and fi-
nally, models that feature both a disc and a bulge (‘M1’, ‘M2’, etc.).
In each of these four groups, we consider models with a variety of
velocity structures, and/or different halo or bulge shapes. Detailed
test results for the produced initial conditions will be discussed in
the next section.

6 TEST R ESULTS

6.1 Models with a single halo component

The simplest of our models is ‘H1’, featuring a Hernquist dark
matter halo with an isotropic velocity distribution. For definiteness,
we adopt v200 = 200 km s−1 and c = 10 to set the total mass and
concentration of the halo, and we use N = 106 particles in order
to have enough sampling points for a reliable measurement of the
produced velocity DF.

In Fig. 4, we show radial and azimuthal velocity DFs measured
from the ICs produced by our code for this classic Hernquist model,
where the analytic DF is known analytically. We measure the DF in
a set of six radial shells, as labelled in the different panels. In each
panel, we show the analytic DF in blue, and the one produced by
the GALIC code in red (azimuthal direction) and green (radial direc-
tion), respectively. We can nicely see from the figure that the model
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Figure 4. Radial and azimuthal velocity DFs in different radial shells for the isotropic Hernquist sphere. The blue line show the exact analytic solution. The
red and green lines show the constructed solution with our method, separately for azimuthal and radial velocity components. The numbers at the top of each
panel indicate the radial range of the measurement.

Figure 5. DF of the radial velocities in a Hernquist model within a thick
radial shell. The black line gives the result of our code for the H1 model,
while the red curve is a normal distribution with the same dispersion. The
correct platykurtic shape of the DF (which is missed in moment-based
approaches) is reproduced by our method.

calculated by GALIC reproduces the expected DF rather well in all
radial shells, without any significant difference. In particular, note
that the model produces the platykurtic nature of the velocity distri-
bution of the Hernquist sphere, which directly shows the presence
of higher order moments that are missed by simpler moment-based
methods but are capture by our new approach. This is seen explic-
itly in Fig. 5, where we compare the shape of the produced radial
velocity DF to a Gaussian with the same dispersion.

The most important critical test of a method’s ability to create
initial conditions in equilibrium is however to check the stability of
the ICs in a self-consistent simulation under its own self-gravity. To
this end, we use the GADGET N-body code, with force accuracy and
time integration parameters set conservatively such that energy con-
servation is excellent. To control discreteness effects in the potential
we set the gravitational softening length to a value of 0.05 kpc. In

this way we make sure that any secular evolution that is seen really
reflects imperfections of the ICs rather than being influenced also
by N-body integration errors or two-body relaxation.

Fig. 6 shows the relative deviation of the spherically averaged
density profile from the initial values at different radii and different
simulation times, for our H-models. Different line colours mark the
different times, as labelled. We have here restricted the simulation
time to 1 Gyr, but note that nothing qualitatively changes if this
is expanded to 10 Gyr, significantly longer than the dynamical
time of the galaxy model. Let us first focus on a comparison of
runs for three different initial conditions constructed for H1, the
isotropic Hernquist model. The simulation starting from ICs created
with the analytic DF is shown in the top-left panel, the top-right
panel shows our GALIC technique, and the top-middle panel gives
the moment-based method (here realized with the MAKENEWDISK

code described in Springel et al. 2005). As can be seen, our result
(top-right panel) is nearly indistinguishable from the analytic initial
conditions. There is a hint of some small deviations standing out
of the noise compared with the analytic solution, but this is very
small if real at all. In contrast, for the moment-based method we
see a prominent perturbation propagating outwards, irreversibly
changing the mass distribution of the system as it relaxes to a new
equilibrium state.

Another view of this difference in the dynamical evolutions of
these three simulations is given in Fig. 7, where we compare the
relative changes of the kinetic and potential energies of the three
runs as a function of time. We can see that both the N-body real-
ization drawn from the analytic Hernquist DF and the GALIC result
show essentially stationary energies over the simulation, as expected
from a virialized system in equilibrium. In contrast, the moment-
based approach shows a rapid evolution in the energies in the first
∼300 Myr, and only then settles into a stationary state. Note that in
this initial phase, the central potential fluctuates, allowing individ-
ual particles to change their energies and the system to relax to a
new equilibrium.

We now turn to considerably more demanding models that have
an anisotropic, but still spherically symmetric velocity structure.
These are models H2, H3, and H4, characterized by asymmetry
parameters β = −1 (for H2) and β = 0.5 (for H3), corresponding
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74 D. Yurin and V. Springel

Figure 6. Density profile changes of different realizations of our halo-only H-models when evolved in time. The panels show the relative deviation of the
spherically averaged density profile from the initial values at different radii and different simulation times. Different line colours mark the different times, as
labelled. The top-left panel corresponds to initial conditions for the isotropic H1-model realized with the analytic DF, while the top-middle panel is for the
moment-based approach, for comparison. All other results (H1–H7) are for our new method as implemented in the GALIC code.

Figure 7. Time evolution of the relative change of kinetic and potential
energies in the H1 model, for initial conditions realized either through the
analytic DF (red), through the GALIC code (green), or with a moments based
approach (blue).

to the cases σ 2
r = σ 2

θ /2 and σ 2
r = 2σ 2

θ , respectively. The model H4
adopts a radially varying profile β(r) as suggested by cosmological
simulations.

In Fig. 8, we show radial profiles of the radial and azimuthal
velocity dispersion profiles for initial conditions produced by GALIC

for these four cases (and for completeness also for all other
H-models), both at the initial time and after different times of evolu-
tion. For reference, we also include in the figure panels the result for
H1 (top-left panel) as a grey line, which is the isotropic β = 0 case.
We see that the initial conditions code manages to accurately im-
pose the desired velocity anisotropy at the initial time. Upon time
evolution, these velocity dispersion profiles are quite well main-
tained, but not perfectly in the very central regions for models H2,
and to lesser extent, H3. While these two models still manage to
maintain a directional difference in the velocity dispersions in the
innermost halo even after 1 Gyr of evolution, the initial profile is
not fully retained in the very central region. Overall, we consider
these results however still to be quite good.

We note however that the density profiles of these anisotropic
models are accurately retained even in the centres in these
anisotropic cases. Some of the panels of Fig. 6 report the density
variations of the anisotropic models H2–H4 upon time evolving
their ICs. The relative fluctuations of the density profiles are very
small, consistent with the findings for the simple H1 model. Note
that in Fig. 6 we also include results for the models H5, H6, and H7.
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Figure 8. Radial and azimuthal velocity dispersion profiles for our models H1–H7. In each panel, we show the initial conditions produced by GALIC, and the
evolved states after different times. The expected profiles based on the Jeans equations are shown underneath. The grey line reproduced the dispersion profile
expected for the H1 model, for comparison. In the top row, we also show results for H1 obtained with the analytic DF (top left), and with the moment-based
method (top, middle).

These latter three models now feature an axisymmetric assumption
for their velocity structure. H5 is actually slowly rotating, whereas
H6 and H7 have prolate or oblate shape distortions, respectively.
The absence of any significant time evolution in the spherically av-
eraged density profiles shown in Fig. 6 indicates that these models
are also rather robust and in good equilibrium.

This is also confirmed by a look at their velocity dispersion
profiles shown in Fig. 8, and a direct analysis of the haloes shapes
of models H6 and H7 at the final times. Simple measurements of
the eigenvalues of their moment of inertia tensors as a function of
time (see Fig. 9) confirm that the imposed halo shapes are accurately
retained over time. We also note that the time evolution of the kinetic
and potential energies (not shown) confirms that the models are in
good equilibrium.

6.2 Systems with a bulge and a halo

Next, we consider models that are slightly more complicated and
feature two different mass components of very different spatial
extent, a Hernquist halo with an embedded, much small stellar
bulge, also modelled with a Hernquist profile. Our model B1 simply
consists of two ergodic systems nested into each other. B2 varies
that by invoking different velocity anisotropies for halo and bulge,
with a preference for radial orbits in the halo and tangential ones
in the bulge. Finally, B3 and B4 test different shape distortions for

Figure 9. Halo shapes of models H6 and H7 as a function of evolution time.
We show the ratios of the principal eigenvalues of the moment-of-inertia
tensor at two different radii as a function of time. The values reproduce the
intended shapes according to Table 1, and are constant in time.

halo and bulge, under the assumption of an axisymmetric velocity
structure and no net rotation.

Fig. 10 shows the changes in the radially averaged density profiles
of these systems when they are evolved in time, separately for the
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Figure 10. Density profiles changes of different bulge models (B-models in Table 1) when evolved in time. For each of the four models, two panels are given
that show the relative deviation of the spherically averaged density profile of halo and bulge components relative to the initial values, as a function of radius
and for different simulation times. Different line colours mark the different times, as labelled.

stellar bulge and the dark matter components. The stability appears
to be excellent in most cases, something that is also confirmed by
other measures, such as the time evolution of kinetic and potential
energies. Only the B2 model performs slightly worse, an outcome
that we blame on the dominance of radial orbits in the dark matter
component of this model even in the very centre (similar as in H2),
and some of these orbits can be affected by the radial orbit instability
(Buyle et al. 2007).

6.3 Systems with a halo, a disc, and an (optional) bulge

We now turn to the much more challenging case of models contain-
ing a thin stellar disc. In Fig. 11, we show the rotation curves of
our models containing just a halo and a disc (D-models, top panel),
and those of our models containing in addition a bulge as well
(M-models, bottom panel). In the innermost regions, the disc domi-
nates slightly over the spheroidal halo in the D-models. The specific
parameters chosen for the D-models are md = 0.035 and λ = 0.035,
and the M-models contain additionally a bulge with mb = 0.05 and
a scalelength set to a tenth of that of the halo. We note that these
choices are somewhat arbitrary and not meant to represent a spe-
cific system such as the Milky Way; our methods work with similar
quality when the parameters are varied over a plausible range.

Interestingly, depending on what assumptions we make about
the velocity structure of the disc systems, the expected stability
with respect to axisymmetric perturbations can be quite different.
In Fig. 12, we show Toomre’s Q-parameter for the disc models

D1–D4, as well as for our M-models. As we see, D1 actually nearly
straddles the stability boundary at Q = 1, and can hence be expected
to be somewhat more prone to axisymmetric perturbations than D3,
were Q is boosted thanks to a higher radial velocity dispersion.

In Fig. 13, we show the time evolution of the azimuthally averaged
projected disc surface density profiles, for models D1–D4, and for
M1–M4. We can see that all models are reassuringly stable. The
improvement compared with moment-based methods such as that
implemented the MAKENEWDISK code can perhaps be best appreciated
by comparing to the results for this method, which are given in the
leftmost panels of Fig. 13 for models D1 and M1.

Finally, a complementary view of the disc stability is obtained by
considering the time evolution of the vertical density structure of
the discs, which is shown in Fig. 14. Again, the models D1-D4 and
M1-M4 are seen to retain their disc density structure accurately,
relatively independent of the different variants of halo and bulge
shapes, and the different degrees of rotation that we tried. Only
M3 performs noticeably worse than the other models in the outer
disc. When we compare the D1 and M1 models to corresponding
realizations obtained with the moment based approach (leftmost
panels in the figure), there is a clear improvement.

6.4 Dependence on nuisance parameters

Our iterative method for finding equilibrium galaxy models with
the GALIC code involves several free parameters, for example the
fraction of particles that is allowed to be concurrently optimized,

MNRAS 444, 62–79 (2014)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/444/1/62/1014053 by guest on 09 April 2024



Constructing equilibrium N-body galaxy models 77

Figure 11. Rotation curves of the different mass components in our
D-models (top panel) which contain only a dark matter halo and a stel-
lar disc, and our M-models (bottom panel) which in addition contain a
central bulge.

Figure 12. Stability against axisymmetric perturbations as expressed
through the Toomre Q-parameter, for different D- and M-models.

the number of optimization cycles before a randomization is carried
out, the resolution of the density response grid, the length of time
over which orbits are integrated, and a few more minor ones.

We have carefully tested whether our results depend significantly
on the settings of any of these parameters. This is fortunately not
the case. We find that our results are rather robust when any of these
nuisance parameters is changed around our default settings. As a
case in point, we show in Fig. 15 an explicit test for the number
of orbits that are integrated, comparing results produced for the
M1 model where this parameter has been lowered by a factor of
2, or increased by a factor of 2, compared with our default choice.
Reassuringly, we see that the density deviations occurring in time
evolutions of the produced ICs are of very similar magnitude, i.e.
their quality appears indistinguishable.

We also find that that the grid resolution used for recording den-
sity and velocity dispersion responses plays only a negligible role
for the results, provided the finest possible level is not overly coarse.
This can be understood as a result of our adaptive binning prescrip-
tion. Potentially more important may be the value of the number of
particles required in a cell before it may be split up in finer cells.
But we have also found here that varying this parameter over a sig-
nificant range does not change the results appreciably. Finally, the
last free parameter that we have extensively tested is the integration
accuracy of the orbits. Here, our typical relative energy errors for the
integration of individual orbits are below 10−3, already suggesting
that this should be good enough and not introduce any significant
errors into the results. Indeed, investing more computational effort
and lowering the integration errors through finder timestepping does
not change our results in any significant way.

7 D I S C U S S I O N A N D C O N C L U S I O N S

In this paper, we introduced a new iterative method for construct-
ing equilibrium N-body galaxy models. The principle advantage of
our method is that it can produce N-body systems that are essen-
tially in exact equilibrium for rather general density distributions,
making the method ideal for studies of galaxy dynamics and numer-
ical experiments with isolated or colliding galaxies. Compared to
alternative schemes like the Schwarzschild method, our approach
eliminates restrictions arising from a finite orbit library or from
required regularization schemes. Also, our method allows a natu-
ral inclusion of simulation aspects like the need for a gravitational
softening.

The test results we have analysed show a considerable improve-
ment of the quality of the created initial conditions compared to
existing codes such as the moment-based MAKENEWDISK, a technique
that has been used in numerous studies over recent years. This is
possible thanks to the absence of any assumptions in our approach
with respect to the importance of higher order moments of the ve-
locity DF. The main disadvantage of our method lies in its higher
computational cost compared to moment-based approaches. How-
ever, thanks to the scalable parallelization implemented of our code,
this should not be a serious restriction in practice. For example it
took about 5 h on 96 AMD-6174 cores (2.2 GHz) to compute high-
quality solutions for our most complicated models M1–4, while for
the one component models it took only 1 h. And since poor ICs may
also impact any further scientific investigation, the additional CPU
effort invested for better ICs should in many cases be well worth
the effort.

Finally, we also note that numerous optimizations in our code
could well be made to reduce its CPU time consumption. For
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Figure 13. Radial surface density profiles of the stellar disc component under time evolution, for D1–D4 (top row), and M1–M4 (bottom row). The left column
shows the D1 and M1 models again, but this time for initial conditions produced with the moment-based approach implemented in MAKENEWDISK.

Figure 14. Vertical disc height as a function of radius at different times when our disc models are evolved in time, for the D1–D4 models (top row), and the
M1–M4 models (bottom row). In the left column, we show for comparison the corresponding results when the initial conditions for D1 and M1 are constructed
with a moment-based approach.

example, the time to full convergence for a system with large N
may be reduced considerably by first treating a smaller subsam-
ple of the particles with correspondingly higher mass. Once this
system has fully converged, one could then create the large target
realization from it through bootstrap sampling, followed by briefly
relaxing the big system to the final equilibrium.

In future work, it might be interesting to extend our approach
to genuinely triaxial systems, which are of course considerably
more challenging than the axisymmetric case considered here. One
could even include additional phenomena such as figure rotation.
An important challenge is here to suitably store the density re-
sponse grid. Here, our approach, which only requires essentially
one such response grid should be considerably less restrictive than

Schwarzschild’s method because the requirement to store a huge
orbit library is avoided. In the meantime, we publicly release our
GALIC code (http://www.h-its.org/tap/galic), hoping that it proves
useful for future N-body studies in galactic dynamics.
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Figure 15. Test of the dependence of our results on the integration time of
particle orbits. We show the relative changes in potential and kinetic energies
when evolving initial conditions constructed with integration times lowered
or increased by factors of two relative to our default value. The particular
system used here is M1, but similar results are found for other models and
other changes of numerical parameters in our code.
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