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ABSTRACT
An analytical framework is presented to understand the effects of a fluctuating intensity of
the cosmic ionizing background on the correlations of the Lyα forest transmission fraction
measured in quasar spectra. In the absence of intensity fluctuations, the Lyα power spectrum
should have the expected cold dark matter power spectrum with redshift distortions in the linear
regime, with a bias factor bδ and a redshift distortion parameter β that depend on redshift but are
independent of scale. The intensity fluctuations introduce a scale dependence in both bδ and β,
but keeping their product bδβ fixed. Observations of the Lyα correlations and cross-correlations
with radiation sources like those being done at present in the Baryon Oscillation Spectroscopic
Survey of Sloan Digital Sky Survey third generation have the potential to measure this scale
dependence, which reflects the biasing properties of the sources and absorbers of the ionizing
background. We also compute a second term affecting the Lyα spectrum, due to shot noise in
the sources of radiation. This term is very large if luminous quasars are assumed to produce
the ionizing background and to emit isotropically with a constant luminosity, but should be
reduced by a contribution from galaxies, and by the finite lifetime and anisotropic emission of
quasars.

Key words: intergalactic medium – quasars: absorption lines – diffuse radiation – large-scale
structure of Universe.

1 IN T RO D U C T I O N

The Lyα forest absorption measured in spectra of high-redshift
quasars has now been established as a powerful tracer of large-
scale structure. Assuming that the intrinsic continuum spectrum of
the observed quasar can be accurately modelled, then the observed
flux divided by the fitted continuum yields the transmitted fraction,
F = e−τ (where τ is the optical depth), at every wavelength pixel.
This one-dimensional map that is obtained from the spectrum of
every observed source is related (neglecting the contamination by
metal lines) to the gas density, temperature and peculiar velocity of
the hydrogen gas in the intergalactic medium that is intercepted by
the line of sight.

After the initial measurements of the Lyα power spectrum along
the line of sight from individual spectra (Croft et al. 1998, 1999,
2002; McDonald et al. 2000, 2006), the first determination of
the power spectrum of the Lyα forest in three-dimensional red-
shift space came with the Baryon Oscillation Spectroscopic Survey

� E-mail: sgontcho@icc.ub.edu

(BOSS) of Sloan Digital Sky Survey third generation (SDSS-III;
Eisenstein et al. 2011; Dawson et al. 2013). Analysis of the first
14 000 quasars led to the detection of redshift space distortions
(Slosar et al. 2011), as expected in a simple biased linear theory
where the Lyα power spectrum follows that of the dark matter with
two bias parameters, reflecting the large-scale variation of the mean
Lyα transmission with the fluctuation in the mean mass density and
peculiar velocity gradient.

However, large-scale fluctuations in the Lyα forest can also be
affected by variations in the intensity of the ionizing background
radiation, as well as the imprint that reionization may have left
on the gas temperature distribution as a function of gas density.
These effects have been studied and discussed by several authors
in the past. Analytic models of randomly distributed sources were
considered by Zuo (1992), and numerical realizations of random
sources to compute the fluctuation properties of the ionizing back-
ground were used in several subsequent papers (Croft et al. 1999;
Croft 2004; Meiksin & White 2004; McDonald et al. 2005; Slosar
et al. 2009; White et al. 2010). The impacts of these ionizing back-
ground fluctuations on the Lyα forest were found to be generally
small compared to the intrinsic Lyα forest fluctuations due to the
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large-scale structure of the mass distribution. However, as pointed
out in the early work of Croft et al. (1999), the long mean free
path of ionizing radiation in the intergalactic medium at z ∼ 3 im-
plies that the fluctuations induced by the ionizing background can
become relatively more important in the limit of very large scales.
These large scales are now becoming highly relevant with the recent
detections of the baryon acoustic oscillation (BAO) peak in the Lyα

forest (Busca et al. 2013; Slosar et al. 2013; Delubac et al. 2014;
Font-Ribera et al. 2014).

In this paper, we reanalyse with an analytic method the impact
of large-scale fluctuations in the ionizing radiation intensity and the
gas temperature–density relation on the observable redshift space
Lyα power spectrum. There are two independent effects on the
power spectrum. The first arises from the clustering of sources
and absorbers of radiation, which are assumed to trace the large-
scale mass density fluctuations, each with their own bias factor. This
clustering term is independent of the luminosity function, variability
and anisotropic emission of the sources, as well as the size or other
geometric properties of the absorbers: it depends only on how the
density of sources and absorbers follow the underlying large-scale
structure. The second effect is due to the fluctuations in the radiation
intensity that arises from shot noise in the number of sources. This
second term is independent of the source clustering, but depends
on other source characteristics like the luminosity function. An
analytical framework to treat these contributions to the Lyα power
spectrum is described in Section 2, and results for simple illustrating
models are presented in Section 3, with a discussion and conclusions
in Section 4. We use a cold dark matter cosmological model with
parameter values that are consistent with Ade, Efstathiou, Planck
Collaboration (2014): H0 = 67.3 km s−1 Mpc−1, baryon density
�b h2 = 0.022 05, �m = 0.315, ns = 0.96 and σ 8 = 0.856.

As this paper was being finalized, we became aware of the
work by Pontzen (2014), presenting very similar ideas as here. We
mention in Section 4 the similarities and differences between the
two papers.

2 A NA LY TIC FORMALISM

The use of the Lyα forest as a tracer of large-scale structure lies
on the principle that, when averaged over a large scale, the mean
value of the transmission fluctuation through the Lyα forest, δα =
F/F̄ (z) − 1 (where F is equal to the observed flux divided by
a model quasar continuum, and F̄ is the mean value of F over
all the Universe at redshift z), has a linear relation to the local
deformation tensor of large-scale structure when smoothed in the
same way over a large scale. On small scales, the distribution of
δα and its correlations have a complex dependence on the physics
of non-linear collapse of the intergalactic gas into filaments and
haloes, and the shock-heating, ionization and cooling of the gas.
However, on large scales, all these effects are absorbed into a first-
order dependence of δα on the local deformation tensor in the linear
regime (e.g. Kaiser 1987),

1

H (z)

∂vi

∂xj

, (1)

where v is the peculiar velocity smoothed over a large scale in
the same way as F, x is the comoving coordinate and H(z) is the
Hubble constant at redshift z. For an observer measuring F along
a direction specified by a unit vector n, there are two first-order
scalars that can be obtained from the deformation tensor: its trace,
H−1∂vi/∂xi = f (�m)δ, where f (�m) = d log D(a)/d log a is the
logarithmic derivative of the growth factor D(a), and the peculiar

velocity gradient along the line of sight, η = ninj (∂vi/∂xj )/H .
Therefore, the fluctuation in the Lyα transmission must be given to
first order by a linear combination of δ and η, with two bias factors,
bδ = ∂δα/∂δ and bη = ∂δα/∂η, with numerical values that depend
on redshift and on the small-scale physics of the intergalactic gas
(McDonald et al. 2000; McDonald 2003; Slosar et al. 2009, 2011).
Whereas galaxy surveys require only one bias factor to relate galaxy
density to mass density fluctuations, the Lyα forest requires two
of them because of the non-linear transformation from the Lyα

optical depth to the observed transmission fraction, which alters the
dependence on the direction vector of the observation n.

This dependence on δ and η is only valid, however, if one assumes
that no other independent physical quantities that are correlated
on large scales can affect the value of δα; in particular, a homo-
geneous ionizing background intensity is assumed. The quantity
that matters for determining the Lyα transmission is the photoion-
ization rate, 
(x), obtained from the integration over frequency
of the background intensity times the cross-section. Its fluctua-
tion is δ
(x) = 
(x)/
̄ − 1. Including these large-scale variations
of the photoionization rate, the total Lyα transmission fluctuation
smoothed over a large scale is

δα(x) = bδδ(x) + bηη(x) + b
δ
(x), (2)

where b
 is now a third bias factor for the photoionization rate.
Therefore, the total Lyα correlation depends now not only on the
correlations of δ and η (which are related to the primordial linear
power spectrum with redshift distortions) but also on the correlation
of δ
 with itself, δ and η. We now compute these correlations, and
we will do this taking into account two different effects: the fact
that sources are clustered and trace the mass fluctuations, and the
shot noise due to the random distribution of discrete sources.

2.1 Source clustering

We assume that the sources of the ionizing background have a
spatial distribution tracing the mass density field, with a bias factor
bs, so the mean large-scale overdensity of sources is δs = bsδ. In
addition, the ionizing radiation is being absorbed by a population
of absorbers, which are Lyman limit systems as well as absorption
systems with Lyman continuum optical depths below unity that have
a comparable contribution to the overall absorption. This population
of absorbers has a large-scale distribution that is affected by both
the underlying mass density fluctuations and the radiation intensity
fluctuations. So, the absorber density fluctuation can be written as
δa = baδ + b′

aδ
 . We expect these absorbers to increase in high-
density regions and decrease in response to an increased ionizing
intensity, so ba should be positive and b′

a should be negative.
Even though the opacity to ionizing photons depends on fre-

quency, and a detailed treatment has to include the intensity spec-
trum and the combined effect of absorption and redshift modifying
the background spectrum compared to that emitted by the sources,
here we shall treat the opacity as a single quantity, neglecting the
effect of redshift. The opacity due to absorbers with density fluctu-
ation δa is κ(x) = κ0[1 + δa(x)], where the average mean free path
for an ionizing photon is λ0 = κ−1

0 . The radiation intensity fluctua-
tion at a point x due to the combination of all sources at any position
x+r is

δ
(x) =
∫

d3r κ0
[1 + δs(x + r)]e−τ (x,r) − e−κ0r

4πr2
, (3)
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where r is the modulus of the vector r . Defining also ur to be the
unit vector in the direction r , the optical depth from x to x+r is

τ (x, r) =
∫ r

0
dy κ0[1 + δa(x + yur )]

= κ0r

[
1 +

∫ r

0

dy

r
δa(x + yur )

]
. (4)

Neglecting second-order terms in δs and δa, equation (3) is simplified
to

δ
(x) =
∫

dur

4π

∫ ∞

0
drκ0 e−κ0r

×
[
δs(x + rur ) − κ0

∫ r

0
dy δa(x + yur )

]
. (5)

For the second term involving the absorbers, the order of the
integrals over r and y can be inverted, and we find∫ ∞

0
drκ2

0 e−κ0r

∫ r

0
dyδa(x + yur )

=
∫ ∞

0
dy κ2

0 δa(x + yur )
∫ ∞

y

dre−κ0r

=
∫ ∞

0
dy κ0e−κ0yδa(x + yur ), (6)

and so finally, changing the name of the dummy variable y back to
r, and re-expressing the integral in terms of the variable x′ = x + r ,
we get

δ
(x) =
∫

dx′

4πr2
[δs(x′) − δa((x′)]κ0e−κ0r . (7)

This result is easy to understand, because an absorber actually acts
in the same way as a negative source in this linear regime.

We now replace δ
(x) and δs(x′), δa(x′) in equation (7) by their
Fourier transforms, invert the order of the integrals over k and x′,
and do the integral over x′, to find that the Fourier transforms are
related by

δ
(k) = [δs(k) − δa(k)] W

(
k

κ0

)

= [(bs − ba)δ(k) − b′
aδ
(k)] W

(
k

κ0

)
, (8)

where

W (s) =
∫ ∞

0
dx

e−x sin (sx)

sx
= arctan(s)

s
. (9)

Writing now equation (2) in Fourier space, and suppressing de-
pendences on k for brevity, the correlation of the Fourier modes of
the Lyα transmission fluctuation is

〈δαδα〉 = b2
δ 〈δδ〉 + b2

η〈ηη〉 + b2

〈δ
δ
〉

+ 2bδbη〈δη〉 + 2bδb
〈δδ
〉 + 2bηb
〈ηδ
〉. (10)

Using the linear redshift distortion theory of Kaiser (1987), the
Fourier modes of δ and η are related by η = f (�m)μ2

kδ, where μk ≡
n · k/k, and the power spectrum without including the radiation
term δ
 can be written as usual in the form b2

δ (1 + βμ2
k)2, where

the redshift distortion parameter is β = f (�m)bη/bδ . When the
radiation term is included and expressed as a function of δ using
equation (8), we find that the total Lyα power spectrum is given by

Pα(k, μk) = PL(k) b
′2
δ (k)

[
1 + β ′(k)μ2

k

]2
, (11)

where

b′
δ(k) = bδ + b


(bs − ba)W (k/κ0)

1 + b′
aW (k/κ0)

(12)

and β ′(k) = bδβ/b′
δ(k) = bηf (�m)/b′

δ(k).
Therefore, the effect of the photoionization rate fluctuations that

is induced by the clustering of sources and absorbers is to modify the
bias factor and redshift distortion parameter in the power spectrum,
replacing them with the effective values b′

δ and β ′ that are scale
dependent, while their product b′

δβ
′ = bδβ remains fixed. At small

scales, W is very small and the bias factor has its usual value b′
δ = bδ .

But in the limit of large scales, W approaches unity and b′
δ reaches

the asymptotic value of bδ + b
(bs − ba)/(1 + b′
a).

We now interpret physically the variation of the effective bias b′
δ

with the Fourier scale k. We mention first that any realistic model
for the absorbers needs to have 0 > b′

a > −1: the density of ab-
sorbers (which we identify with the observed population of Lyman
limit systems, as well as lower column density systems that also
contribute to the global absorption of ionizing photons) needs to
decrease with δ
 as the increased photoionization reduces the size
of the absorbing regions, but the relative fluctuation in absorbers
cannot be reduced faster than that in the ionizing intensity because
this would imply a runaway unstable process where any slight in-
crease in emission leads to an arbitrarily large increase in the mean
free path and the ionizing intensity as the absorbers are completely
ionized. Moreover, the sign of bδ is negative while that of b
 is pos-
itive, so if bs > ba, the effective bias factor b′

δ decreases in absolute
value with scale. The simple interpretation is that on scales larger as
compared to the mean free path of ionizing photons, denser regions
also have a greater ionizing intensity, and so the corresponding in-
crease of Lyα absorption that is caused by the higher density is
reduced. If b
(bs − ba)/(1 + b′

a) is larger than −bδ , then the value
of b′

δ is actually positive in the limit of large scales. Ignoring for
now the effect of the peculiar velocity gradient (we return to this in
Section 3), this means that the effect of the higher ionizing intensity
overwhelms that of the higher mass density, causing denser regions
to have an increased Lyα transmission (or reduced absorption), op-
posite to the behaviour on small scales. In this case, there needs to be
a critical scale kr where b′

δ has a root, and the only surviving term for
the power spectrum in equation (11) is Pα(kr ) = PL(kr )(bδβμ2

k)2.
In practice, the power spectrum near μk = 0 can never quite go
down to zero owing to the shot noise from individual sources of
radiation, as discussed below, as well as non-linear effects from
small scales which we are not including here, but a change of sign
of b′

δ as a function of scale still implies the presence of a dip in
the power spectrum at small μk which should be measurable in the
observations.

2.2 Shot noise from individual sources

Our treatment so far includes only the correlation of sources and
absorbers with the matter density fluctuations. Next, we consider
the term that is added to the correlation function because of the
shot noise from individual sources. We assume that all the ionizing
sources emit their radiation isotropically at a constant luminos-
ity. As we shall discuss below, this assumption is crucial for our
computation of the shot noise term, even though it does not affect
the source clustering term calculated above. We start defining the
source luminosity function, per unit of volume, as (L). The mean
emissivity of the ionizing sources is

εq =
∫ ∞

0
dL(L)L. (13)
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If all the sources have the same luminosity, the power spectrum of
the relative emissivity fluctuations is simply equal to the inverse of
the source density, 1/ns = L/εq. With a distribution of luminosities,
the fraction of the emissivity provided by sources of luminosity L
is L(L) dL/εq, and therefore the overall power spectrum is equal
to the constant

4πC =
∫ ∞

0
dL

(L)L2

ε2
q

, (14)

where we have introduced the factor 4π in the definition of C for
later convenience. The intensity correlation can now be obtained by
multiplying by the kernel in equation (9), and applying the Fourier
transform. It is also instructive, however, to directly compute the
correlation function by considering the correlated intensity at two
spatial positions separated by a distance x caused by the flux that
arrives at the two points from the same individual sources.

We choose one of the two spatial positions to be at the origin
of coordinates, r = 0, and the other one to lie on the x-axis at a
distance x. The ionizing intensity fluctuation at the origin is

δ
(r = 0) =
∑

i

Li

4πr2
i

κ0e−κ0ri

εq
− 1, (15)

where the sum is over each source i located at a distance ri from
the origin. The intensity fluctuation at x is similarly expressed,
replacing ri by |r i − x|. Using the fact that the probability per unit
of volume to find a source of luminosity L within dL at any point
r i is (L) dL, the correlation function of δ
 is then obtained as

ξ
(x) = 〈δ
(r = 0)δ
(x)〉 =
C

4π

∫
d3r

κ2
0 e−κ0(r+|r−x|)

r2|r − x|2 . (16)

We compute this integral by transforming r to spherical coordinates.
Defining μ = r · ux/r , where ux is the unit vector along the x-axis,
and changing r to the variable s = r/x, the result is

ξ
(x) = Cκ2
0

∫ ∞

0

ds

x

×
∫ 1

−1
dμ

exp
[
−κ0x

(
s +

√
1 + s2 − 2sμ

)]
1 + s2 − 2sμ

. (17)

This can be further re-expressed in terms of the exponential inte-
gral function, Ei(x) = − ∫ ∞

−x
dt e−t /t . The final expression for the

intensity correlation function is

ξ
(x) = Cκ2
0

x
A(κ0x), (18)

where the dimensionless function A is (replacing κ0x = τ and
κ0r = ρ)

A(τ ) =
∫ ∞

0
dρ

e−ρ

ρ

×
⎡
⎣Ei

⎛
⎝−ρ

√
1 + τ 2

ρ2

⎞
⎠ − Ei

(
−ρ

∣∣∣∣1 − τ

ρ

∣∣∣∣
)⎤

⎦ . (19)

The function A is plotted in Fig. 1.
The sources that dominate the fluctuations in the ionizing radi-

ation intensity are the most luminous ones, which are well known
from observations of the quasar luminosity function. We now esti-
mate the constant C from recent measurements of the quasar lumi-
nosity function by Ross et al. (2013), who used the BOSS survey

Figure 1. The dimensionless function A defined in equation (19), giving
the shape of the intensity correlation function due to a set of randomly
distributed, isotropic and constant sources of radiation.

of the SDSS-III Data Release 9 (see Eisenstein et al. 2011; Ahn
et al. 2012; Dawson et al. 2013). The quasar luminosity function
was fitted to a double power law of the form

q(L) dL = ∗/L∗
(L/L∗)−α + (L/L∗)−γ

dL. (20)

The values of the fitted parameters obtained by Ross et al. (2013)
are α = 1.52, γ = 3.10 and (R)

∗ = 10−6.37 Mpc−3 mag−1, where
they defined (R)

∗ to be a number density of quasars per unit of
absolute magnitude. We convert their value (R)

∗ to our cosmolog-
ical model, at z = 2.25 (the model used by Ross et al. 2013 had
�m = 0.30 and H0 = 70 km s−1 Mpc−1) and to our units, finding
∗ = 1.42 × 10−6( h−1 Mpc)−3. With these numbers, we com-
pute the quantity Cq for quasars using equation (14), and we find
Cq = 9.5 × 104( h−1 Mpc)3. Note that the value of Cq is indepen-
dent of L∗, and depends only on ∗ and the shape of the luminosity
function. The value of Cq diverges as γ approaches 3, so the fitted
value of γ = 3.1 from Ross et al. (2013) implies a large uncertainty
of Cq depending on the exact shape of the luminosity function at
the high-luminosity end.

The intensity of the ionizing background is likely to have a con-
tribution from galaxies, in addition to quasars. Assuming that all
galaxies are much less luminous than the quasars that contribute
appreciably to the constant Cq, then the faint galactic sources can
increase the mean intensity, but can be neglected for the fluctuations,
i.e. their contribution to the integral

∫
dL (L)L2 is negligible. In

that case, equation (14) implies that the emissivity power spectrum
amplitude is determined by the constant

C = ε2
qCq

(εg + εq)2
, (21)

where εg and εq are the emissivities of galaxies and quasars. The
correlation due to shot noise is therefore reduced as the contribution
from galaxies to the ionizing intensity is increased.

Apart from the effect of galaxies, the amplitude of the intensity
correlation function contributed by shot noise from the observed
quasars that is obtained from equation (18) ought to be considered
as an upper limit only. The reason is that real quasars are likely to
emit anisotropically and to be highly variable in their luminosity
on the light-crossing time of the cosmological scales at which the
correlations are being measured. The effects of the variability and
anisotropy of the emission from individual quasars can be highly
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complex and difficult to model, but an order-of-magnitude estimate
can be made by assuming the opposite limit in which quasars emit
in very narrow cones and short bursts. If f� is the fraction of the
solid angle over which the light of a quasar is emitted, ft is the
fraction of time during which a quasar is shining and we assume
that the quasar luminosity is zero outside of this fraction of solid
angle and time, then the correlation function ξ
 in equation (18) is
reduced by a factor f�ft, because assuming that a source is being
observed at a point r = 0, the probability that it is also observed at
a point x with the same luminosity is only f�ft.

The total correlation function of the Lyα transmission is equal to
the sum of the term due to source clustering, from equation (11),
and the shot noise term in equation (18) multiplied by b2


 .

2.3 Values of the bias parameters

We now discuss how the values of the various bias parameters that
have appeared in our derivation of the radiation effects in the Lyα

correlation function can be estimated. All the bias factors should
generally depend on redshift, and our discussion here will be fo-
cused at z = 2.25, the redshift near which the observations of Lyα

correlations have so far been done with the BOSS survey.
We start with the bias factor that relates the ionizing intensity

fluctuations to the Lyα transmission fluctuations. As described in
(Font-Ribera et al. 2013, see their equation 5.4), this bias factor can
easily be calculated from its definition as b
 = ∂δα/∂δ
, where
the values δα and δ
 are smoothed over sufficiently large, linear
scales, if the true, unsmoothed distribution of the Lyα transmission
is known, and under two additional assumptions: photoionization
equilibrium in a highly ionized medium (neglecting any contribu-
tion from collisional ionization), and that any changes of tempera-
ture and hydrodynamic evolution of the intergalactic gas with the
ionizing background intensity can be neglected (in a more detailed
treatment, small temperature variations would likely be induced by
changes in the spectral shape of the ionizing background rather than
its intensity). In this case, the effect of the ionizing intensity fluctu-
ations is simply to divide the Lyα optical depth by a factor 1 + δ
 at
every pixel in the spectrum. If P(F) is the unsmoothed probability
distribution of F, one obtains

b
 = − 1

F̄

∫ 1

0
dF P (F ) F log(F ). (22)

At z = 2.25, the distribution of the Lyα optical depth, τ = −log F,
can be approximated as a lognormal function, constrained to pro-
duce a mean transmission F̄ = 0.8 and a dispersion in the trans-
mission σ F = 0.124. This distribution yields a value b
 
 0.13.

The values of bδ and bη have to be measured observationally. They
are related to the redshift distortion parameter by β = f (�m)bη/bδ

(Kaiser 1987). Measurements from the Lyα forest correlation in
the scale range 10−60 h−1 Mpc in Slosar et al. (2011) resulted in
a good measurement of bδ(1 + β) = −0.336 ± 0.012 at z = 2.25,
with a more poorly constrained β ∼ 1. We shall assume β = 1,
which is also favoured by the measurement of cross-correlations
(see Font-Ribera et al. 2012b, 2013), and bδ = −0.17 (so bη =
βbδ/f (�m) 
 −0.17; note that the negative sign of bδ and bη results
from the convention that δα is a transmission fluctuation, which is
therefore negative when the mass density perturbation is positive).
These observational results may change in the future since they
were obtained by neglecting the radiation effects that are examined
here, and they are subject to other possible systematic errors (e.g.
Font-Ribera & Miralda-Escudé 2012a).

For the bias of the sources, quasars have had their bias factor mea-
sured from their autocorrelation (White et al. 2012, and references
therein) and cross-correlation with the Lyα forest (Font-Ribera et al.
2013), resulting in values in the range 3.5–4. The actual bias of the
sources, however, depends also on the contribution that galaxies
make to the ionizing background intensity and on the bias factor
of these galaxies. If the bias factors of quasars and galaxies are bq

and bg, then bs = (εqbq + εgbg)/(εq + εg). Galaxies are on average
associated with lower mass haloes than quasars, so their bias factor
should be smaller and therefore bs should be lower than bq.

The population of absorbers determining the mean free path of
the ionizing radiation is dominated by systems that have an optical
depth of order unity at the Lyman limit, with column densities
∼ 1.6 × 1017 cm−2. Note that only systems with column densities
above this value are usually referred to as Lyman limit systems,
but absorbers of lower column density are about equally important
(e.g. Miralda-Escudé & Ostriker 1990; Haardt & Madau 1996). The
bias factor has only been measured for systems of higher column
densities, the damped Lyα systems (Font-Ribera et al. 2012b), and
a value ba 
 2 was obtained. Lyman limit systems are of lower
column density than the damped systems but they should have a
similar bias factor if haloes of all masses give rise to the same
distribution of hydrogen column densities, depending on the impact
parameter. However, a population of low-mass haloes might exist in
which the self-shielded gas does not reach as high column densities
as in high-mass haloes, which would then reduce the mean bias
factor of the Lyman limit systems. Both bs and ba are therefore
rather uncertain. The effective Lyα forest bias depends only on the
difference bs − ba (see equation 12), for which we shall assume a
fiducial value bs − ba = 1.

Finally, the bias factor controlling the response of the absorbers
to changes in the ionizing intensity can be related to the column
density distribution of Lyman limit systems, which we model as
a power law, f (NH I) dNH I ∝ N−a

H I dNH I. This implies a radial pro-
file of the column density in spherical haloes NH I ∝ r2/(1−a). In
photoionization equilibrium, the column density at a fixed radius r
outside the region where the gas starts to self-shield will vary in pro-
portion to the inverse of the photoionization rate. The self-shielding
radius rs occurs at a fixed column density, and will therefore change
as rs ∝ 
(1−a)/2 in response to a change of the external ionizing
intensity. The cross-section to produce a Lyman limit system scales
as r2

s , so the number of absorbers that are intercepted per unit length
should scale as 
1 − a. For small changes in 
, this implies a bias
factor b′

a = 1 − a. We shall use here a = 5/3 (the value correspond-
ing to a gas density profile ρg ∝ r−2, and NH I

∝ r−3), and therefore
b′

a = −2/3.
With the values we adopt here for the fiducial model, the value

of b′
δ(k) in equation (12) is plotted in the left-hand panel of Fig. 2

as the solid line. Here and in the rest of the paper, we use a mean
free path λ0 = 300 h−1 Mpc as our fiducial value. Observational
estimates of the mean free path of an ionizing photon for being
absorbed by hydrogen in the intergalactic medium or Lyman limit
systems give a value λ0 
 350 h−1 Mpc (Rudie et al. 2013). Our
approximate treatment in Section 2.2 neglects the redshift of the
photons, which effectively acts in the same way as an additional
source of opacity with a comoving mean free path of the order of the
horizon, c(1 + z)/H(z) 
 3000 h−1 Mpc. The effective overall mean
free path is therefore close to our fiducial value of 300 h−1 Mpc.

The two other curves in Fig. 2 are for variations of the bias
values that will be used in Section 3. For our fiducial model, b′

δ(k)
is positive in the limit of large scales and negative at small scales,
and therefore changes sign at a critical scale kr. Depending on
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Figure 2. Effective bias (left) and power spectrum (right) of the Lyα forest, for several values of the bias parameters regulating the clustering strength of
sources minus absorbers (bs − ba) and the response of the absorbers to the ionizing intensity (b′

a). The dotted line is for no radiation effects, and the solid
line in the left-hand panel is for our fiducial radiation model. The mean free path is fixed to λ0 = 300 h−1 Mpc. The right-hand panel shows the monopole,
quadrupole and hexadecapole of the power spectrum, for the cases of no radiation fluctuations and for our fiducial radiation model.

the uncertain values of all the bias factors we have discussed, this
critical scale can have very different values, and is likely to vary
substantially with redshift.

2.4 Fluctuations due to helium reionization

In addition to the intensity of the ionizing background, the inter-
galactic medium may be affected by other physical elements that
are correlated over large scales. Here, we consider as another pos-
sibility the imprint that may have been left by helium reionization
in the temperature of the intergalactic gas. At the mean baryonic
density of the universe, the recombination time at z = 2.25 is much
longer than the age of the universe, and so is the cooling time of
photoionized gas. As helium is doubly ionized for the first time,
probably by luminous quasars at z 
 3 (Worseck et al. 2011, and
references therein), the gas is heated to a spatially variable tem-
perature depending on the spectrum and luminosity of the sources
producing the ionization fronts that eventually overlap when reion-
ization ends (e.g. Miralda-Escudé & Rees 1994; McQuinn et al.
2009). The long cooling time then implies that the gas temperature
at every spatial location may keep a memory of the time at which
helium reionization occurred, or the spectral shape of the sources,
or other characteristics that were imprinted at the reionization time.
If the temperature fluctuates according to δT = bT δ
e, where δ
e

is an intensity fluctuation of the He II-ionizing radiation that was
present at the reionization time arising from sources that may long
have been dead, then the observed Lyα transmission in hydrogen
would vary as δα = beδ
e owing to the dependence of the recom-
bination coefficient on temperature, which follows the approximate
relation αrec(T ) ∝ T −0.7. Using similar arguments as in Section 2.3
for deriving b
 , we can infer that be = 0.7b
bT .

If the helium-ionizing radiation intensity follows the same be-
haviour as the radiation that ionized hydrogen, with a different
mean opacity κ0e, a similar derivation as in Section 2.1 shows that
the total power spectrum that includes also the clustering term for
the sources inducing the helium-reionization perturbations is the
same as in equation (11), with the new bias factor

b′
δ(k) = bδ + b


(bs − ba)W (k/κ0)

1 + b′
aW (k/κ0)

+ be
(bse − bae)W (k/κ0e)

1 + b′
aeW (k/κ0e)

, (23)

where the bias factors with the additional subscript e are the analo-
gous ones for helium to those that were described for hydrogen in
Section 2.1.

3 R ESULTS

The correlation function of δα is obtained from the Fourier transform
of the power spectrum in equation (11), which includes the source
clustering term. To include the shot noise term, the correlation ξ


from equation (18) multiplied by b2

 must be added. Following the

formalism and notation of Kirkby et al. (2013, see their section 2.2),
the multipole terms of the power spectrum of equation (11) have
their usual form with the new scale-dependent bias factor b′

δ(k) and
redshift distortion parameter β ′(k) (Kaiser 1987; Hamilton 1992):

P�,α(k) = PL(k) b′2
δ (k) C�[β ′(k)], (24)

where

C0 = 1 + 2

3
β ′(k) + 1

5
β ′2(k),

C2 = 4

3
β ′(k) + 4

7
β ′2(k),

C4 = 8

35
β ′2(k). (25)

The multipoles of the real space Lyα correlation function are

ξ� = i�

2π2

∫ ∞

0
dk k2j�(kr) P�,α(k), (26)

where j� are the spherical Bessel functions. Note that these corre-
lation multipoles are no longer given by the equations in Hamilton
(1992) because of the scale dependence of b′

δ and β ′, except for the
hexadecapole which does not change because b′

δβ
′ = bδβ. We have

used a fast Fourier transform method to calculate these multipoles
numerically.

As shown in the left-hand panel of Fig. 2, the bias factor b′
δ(k)

in our fiducial radiation model changes sign at a critical scale
kr 
 0.005 h Mpc−1. The monopole, quadrupole and hexadecapole
of the power spectrum are well defined and non-zero at k = kr

because b′
δβ

′ is constant. At k < kr, the redshift distortion param-
eter β ′(k) is negative. While the monopole is always positive for
any value of β ′, the quadrupole is zero when β ′(k) = −7/3, and
becomes negative at small k, when −7/3 < β ′ < 0. This is seen
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Figure 3. Monopole (� = 0, left) and quadrupole (� = 2, right) of the Lyα autocorrelation function. The dotted line is with no radiation effects, and the other
three lines include them with our fiducial value of the bias factors in Section 2.3 and three different values of the mean free path.

Figure 4. Monopole (left) and quadrupole (right) of the Lyα autocorrelation function, for different values of the bias parameters regulating the clustering
strength of sources minus absorbers (bs − ba) and the response of the absorbers to the ionizing intensity (b′

a). The dotted line is with no radiation effects. The
mean free is fixed to λ0 = 300 h−1 Mpc.

in the right-hand panel of Fig. 2, where the monopole, quadrupole
and hexadecapole of the power spectrum are shown for the no ra-
diation case, and the case that includes the source clustering effect
for our fiducial values of the radiation bias parameters (the power
spectrum is computed for the cold dark matter model with the pa-
rameters mentioned in the Introduction; all results for power spectra
and correlation functions in this paper are shown at z = 2.25). The
monopole has a dip near k = kr, and the quadrupole has a root at
the slightly smaller value of k where β ′ = −7/3. The reason for this
behaviour is that when b′

δ is negative on large scales, high-density
regions produce reduced absorption owing to the larger ionizing
intensity that overwhelms the gas density effect, but the gradient of
peculiar velocity counteracts that, resulting in a negative quadrupole
for the power spectrum.

The monopole and quadrupole terms in the Lyα correlation for
our fiducial case of the values of the bias parameters discussed
in Section 2.3 are shown in the two panels of Fig. 3, multiplied
for convenience by x2. The dotted line is for a uniform ionizing
background. The well-known BAO peak appears at its character-
istic scale of ∼100 h−1 Mpc. The dashed, solid and dash–dotted
lines include the source clustering effect, with no shot noise, for
three different values of the comoving mean free path: 200, 300
and 400 h−1 Mpc (our fiducial value used in all other figures is
λ0 = 300 h−1 Mpc). This mean free path decreases rapidly with
redshift, which should change the way that intensity fluctuations
modify the correlation function as the redshift increases.

The radiation from clustered sources adds a broad-band term that
is negative in the monopole and positive in the quadrupole. This is

because the absolute value of the bias b′
δ in equation (12) is reduced

at scales smaller as compared to λ0, as long as bs > ba. The shorter
the mean free path, the larger the radiation effects. On scales larger
than the mean free path, the impact of the radiation on the monopole
becomes positive. The effects are predicted to be relatively large,
and they should be measurable as long as the broad-band shape
can be retrieved from the data without substantial systematic errors
caused by the quasar continuum fitting operation. In the observa-
tions reported so far, broad-band terms were marginalized (Busca
et al. 2013; Slosar et al. 2013; Font-Ribera et al. 2014) and therefore
the effect of the ionizing intensity fluctuations would not have been
detected. Note that the position of the BAO peak is practically not
affected; even if the peak shifts by a small amount owing to the
addition of the radiation effects, any such shift should be further
reduced when fitting with a parametrized broad-band term.

Fig. 4 shows how the radiation effects vary with some of the
bias parameters (again, with the monopole on the left-hand panel
and the quadrupole on the right-hand panel). The dotted line (no
radiation effects) and the solid line (for the fiducial values of the
bias parameters in Section 2.3) are the same as in Fig. 3. The dashed
line shows that the radiation effect is very insensitive to b′

a on scales
smaller as compared to λ0. The dash–dotted line has a reduced
value of bs − ba, and shows that the radiation effect is basically
proportional to this bias difference between sources and absorbers.

Observations of the correlation function (or one-dimensional
power spectrum) can also be done exclusively on the line of sight
(McDonald et al. 2006; Palanque-Delabrouille et al. 2013). The
correlation function along the line of sight is equal to the sum of all
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Figure 5. The sum of the monopole, quadrupole and hexadecapole of the
Lyα autocorrelation function. The dotted and solid lines are as in Figs 2 and
3. The dash–dotted line changes the mean free path to 200 h−1 Mpc, and
the dashed line shows the effect of changing the bias parameters from our
fiducial model to the values indicated in the legend.

Figure 6. Monopole of the Lyα autocorrelation function. The dotted and
solid lines are the same as in Figs 2 and 3. The dashed line includes the
effect of helium reionization, assuming an influence on the gas temperature
with an effective mean free path λ0e = 30 h−1 Mpc. The dash–dotted line
shows the effect of adding the shot noise from individual sources, multiplied
by a reduction factor as explained in the text.

the multipoles. The result is shown in Fig. 5 for some of the same
models shown in Figs 3 and 4. This figure shows that the correlation
along the line of sight on scales smaller as compared to the mean
free path is much less affected by the radiation fluctuations than the
three-dimensional correlation.

A simple model for the possible helium effect on the monopole of
the correlation function, computed as explained in Section 2.4, has
been included in the dashed line in Fig. 6. We have assumed a mean
free path for the helium reionization influence on the gas temper-
ature of λ0e = κ−1

0e = 30 h−1 Mpc, and a relation between the gas
temperature fluctuation and helium-ionizing intensity fluctuation of
bT = 0.1, implying be = 0.0084 (see Section 2.4). The small value
that we estimate for this bias factor means that the effect from the
imprint on the gas temperature that may be left from double helium
reionization is very small, even with a much smaller mean free path
than for the case of hydrogen. However, the effects might be more
substantial if different spectra of the ionizing sources in regions of
different density gave rise to a larger variation of gas temperature
than our assumed value bT = 0.1.

The effect of shot noise is also analysed in Fig. 6. The dotted
and solid lines are again like in Figs 3 and 4 (only the monopole
is shown here), and the dashed line adds to the solid one the shot
noise term from equation (18), multiplied by b2


 , and multiplied
also by a reduction factor that we now describe. If quasars are the
sources of the ionizing background with the luminosity function
used in Section 2.2, and they are isotropic and constant, the shot
noise is an extremely large effect which brings the value of the
correlation function near the BAO peak, at x 
 100 h−1 Mpc, to
x2ξ 0(x) 
 2( h−1 Mpc)2, well above the upper bound of the axis in
Fig. 6. However, as discussed at the end of Section 2.2, the shot
noise term is likely to be reduced by the contribution from galaxies
to the ionizing background (by the factor C/Cq in equation 21), the
fraction of solid angle over which quasars emit their radiation, and
the fraction of the time over which an individual quasar is emitting.
For the purpose of visualization, we multiply the shot noise by the
overall factor

C

Cq
f�ft = 1

4

10 h−1 Mpc

max(x, 10 h−1 Mpc)
. (27)

The effect of variability in reducing the shot noise may reasonably
be expected to scale as x−1, because two points in the Lyα forest are
affected by the same luminosity of a certain quasar only if they are
both within the paraboloid of constant retarded time for the light
emitted by the quasar that ionizes the gas producing the observed
Lyα absorption, and this paraboloid has a fixed width determined
by the duration of the quasar luminous phase. We stress, however,
that the effects of anisotropy and variability are complicated and
that here we multiply the shot noise by this simple reduction factor
for display purposes.

The result in Fig. 6 shows that the shot noise can be a large and
highly significant effect. Clearly, the case of constant and isotropic
quasars was already ruled out by the observations of Slosar et al.
(2011), which showed that the correlation function was well fitted
by the linear approximation that generalizes the redshift distortion
effects (Kaiser 1987) to the Lyα forest. Even with a large reduction
of the shot noise term, the effects are likely to be comparable to
the source and absorber clustering term, and this will make the
interpretation of any observed differences from linear theory to
be complicated. One can hope, nevertheless, that by combining
a detailed observation of the monopole and quadrupole terms, and
using joint constraints from cross-correlations of the Lyα forest with
quasars and other objects in addition to the Lyα autocorrelation, the
impact of the biasing of sources and absorbers and the shot noise
from a complex population of ionizing sources can be disentangled
in the future.

4 D I S C U S S I O N A N D C O N C L U S I O N S

The first observational determination of the large-scale Lyα power
spectrum in redshift space by Slosar et al. (2011) showed remark-
ably good agreement with the simple linear theory of redshift space
distortions with the cold dark matter power spectrum. The same con-
clusion was reached from measurements of the cross-correlations
with damped Lyα systems and quasars (Font-Ribera et al. 2012b,
2013). However, the ionizing intensity fluctuations should have an
impact on these correlations. We have presented an analytical frame-
work in this paper to model these effects in the Lyα autocorrelation,
which can also be easily generalized to the cross-correlation with
quasars or other objects, assuming they contribute as sources of the
ionizing background. Our conclusion from the results obtained in a
few illustrating cases is that both the clustering term that measures
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how sources and absorbers of the ionizing background trace the
mass density fluctuations, and the shot noise term that depends on
the luminosity function and other properties of the sources, have an
important and measurable effect on the monopole and quadrupole
of the Lyα autocorrelation. A substantial broad-band term is added
as a contamination to this autocorrelation, which is being marginal-
ized over in present studies that are focused on inferring the scale
of the BAO peak (Busca et al. 2013; Slosar et al. 2013). As the
modelling of the spectral calibration and quasar continua and the
accuracy of the Lyα correlation measurements in BOSS and up-
coming surveys improve in the future, we can look forward to a
detection of the broad-band terms induced by radiation fluctuations
discussed in this paper.

There are several parameters that are important in determining
how the Lyα correlation is modified by intensity fluctuations. These
are the quantities appearing in equation (12) for the effective Lyα

bias factor, and the mean free path of ionizing photons. The ad-
ditional shot noise term is also dependent on many characteris-
tics of the sources: the luminosity function, luminosity history and
emission anisotropy. Disentangling all these effects from a detailed
measurement and model fit to the redshift space autocorrelations
and cross-correlations will probably be a difficult challenge. How-
ever, if the emission properties and typical luminosity histories of
quasars can be well understood from an accurate determination of
the quasar–Lyα cross-correlation, it should be possible to model
the shot noise contribution to the autocorrelation and to infer from
the observations some constraints on the biasing terms that affect
the source clustering term. It is also worth noting that in the Lyα

power spectrum, the term proportional to μ4
k is affected by neither

the source clustering nor shot noise effects, and the other two terms
proportional to μ2

k and independent of μk can in principle be used
to separate the influence of the source clustering and shot noise
effects (the term proportional to μ2

k is not affected by shot noise
for constant and isotropic sources, but would acquire a contribution
for anisotropic and variable sources). The three-dimensional Lyα

power spectrum therefore provides a way of separating the radiation
influences by separating the multipole terms, which are predicted
to have the specific features near the scale of the mean free path
shown in Fig. 2 and can then be compared to constraints obtained
from cross-correlations.

The conclusions of our work are in agreement with those of
Pontzen (2014), who has presented very similar ideas with a some-
what different mathematical treatment. There are a few differences
in the way that absorbers are treated, and our incorporation of the
redshift distortion effects allows us to predict the different behaviour
of the monopole and quadrupole terms in the Lyα power spectrum,
but the basic conclusions of the two papers are similar.

While the radiation intensity fluctuations make the large-scale
Lyα forest correlations substantially more difficult to interpret as
a tracer of the primordial fluctuations in the universe, these com-
plications practically do not affect the measurement of the BAO
scale, and they should constitute a new motivation for studying
the evolution of the source and absorber population of the ionizing
background.
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