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ABSTRACT
We propose a simple toy model to explain the 2:3:6 quasi-periodic oscillation (QPO) structure
in GRS 1915+105 and, more generally, the 2:3 QPO structure in XTE J1550−564, GRO
J1655−40 and H1743−322. The model exploits the onset of subharmonics in the context
of discoseismology. We suggest that the observed frequencies may be the consequence of a
resonance between a fundamental g mode and an unobservable p wave. The results include the
prediction that, as better data become available, a QPO with a frequency of twice the higher
twin frequency and a large quality factor will be observed in twin peak sources, as it might
already have been observed in the especially active GRS 1915+105.
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1 IN T RO D U C T I O N

In spite of active research, the remarkable structure in the power
spectra of several X-ray binaries remains a major puzzle for over a
decade now. Each one of the four black hole sources that show more
than one high frequency (40–450 Hz) quasi-periodic oscillation
(HFQPO) exhibits two of them in the ‘twin peaks’ 2:3 ratio (see
Table 1).

An understanding of HFQPOs may allow us to obtain important
information about the corresponding black hole’s mass and spin,
and the behaviour of inner-disc accretion flows.

The physics of HFQPOs is not completely understood. Since the
observed 2:3 ratio suggests the presence of non-linear physics, reso-
nant models have been proposed. Thus, starting with the pioneering
work of Kluźniak & Abramowicz (2001), explanations of the ob-
served ratio have been sought by means of a parametric resonance
among the dynamical (orbital and epicyclic) frequencies (for more
recent developments, see e.g. Török et al. 2006; Stuchlı́k, Kotrlová
& Török 2013). Moreover, Kato (2008) considers long-wavelength
disc deformations which couple non-linearly to disc oscillations. A
detailed discussion of models can be found in Török et al. (2011).

Even though a considerable amount of research has thus already
focused on non-linear resonances, there is still room for further
exploitation of subharmonics, especially given the fact that other
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methods yield quasi-periodic oscillation (QPO) frequencies which
are too high to match observations (Török et al. 2011).

The main objective of this paper is thus to explore the idea of
subharmonics beyond previous efforts. Subharmonics, which have
already been identified in stars (e.g. in RV Tauri-type variables;
Pollard et al. 1996), have also been theoretically discussed in the
context of accretion discs by Kluźniak, Abramowicz & Lee (2004)
and Rebusco et al. (2012), although both papers avoid details of
disc models.

In this paper, we would like to develop this discussion by explor-
ing the inclusion of cubic (in addition to quadratic) subharmonics in
the context of relativistic discoseismology, the formalism of normal
mode oscillations of thin accretion discs (for a review, see Wagoner
2008).

According to discoseismology, the observed oscillations in the
outgoing X-ray radiation of systems such as GRS 1915+105 are due
to normal modes of adiabatic hydrodynamic perturbations. These
modes are the result of gravitational and pressure restoring forces
in a geometrically thin, optically thick accretion disc in the steep
power-law state.

This interpretation is not only corresponded observationally by
narrow peaks in the power spectral density, but some of these modes
have been observed in hydrodynamic simulations as well (Reynolds
& Miller 2009).

Assuming that this formalism is correct, we may use it to build an
exploratory study of non-linear effects. If one thinks of discoseismic
modes as harmonic oscillators, one might be able to model non-
linearities in the fluid equations as non-linear terms added to a
simple oscillatory system.
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Table 1. The frequencies of 2:3 QPO twin peaks in microquasars
and the corresponding black hole spin. The values for the non-
dimensional black hole angular momentum parameter a ≡ cJ/GM2

are averages of the different methods; numbers in parentheses ex-
press the standard deviation when there is more than one method.
References: (1) Wagoner (2012; and references therein); (2) Török
et al. (2011); (3) Remillard et al. (2003a); (4) McClintock & Remil-
lard (2006); (5) Belloni et al. (2006); (6) Remillard et al. (2003b); (7)
Remillard et al. (2002); (8) Remillard et al. (1999); (9) Strohmayer
(2001); (10) Remillard et al. (2006); (11) Homan et al. (2005).

Source Frequencies Black hole References
(Hz) spin (a)

GRS 1915+105 113±5 0.79 (19) 1, 2, 3, 4, 5, 6
168±5

XTE J1550−564 184±5 0.60 (28) 1, 7
276±2

GRO J1655−40 300±9 0.86 (14) 1, 7, 8, 9
450±5

H1743−322 165±6 0.20 1, 10, 11
241±3

When devising a toy model for the disc’s complicated dynamics,
our aim was to propose the simplest mathematical expression which
has solutions that include quadratic and cubic subharmonics in a
compact and observationally productive way. It turns out that this
can be achieved with a single one-dimensional non-linear driven
oscillator, described by the following equation:

ẍ + ω2
0x − εx2 − δx3 = B cos ωt (1)

(Landau & Lifshitz 1994). More complicated ordinary differential
equations (ODEs) or a system of coupled oscillators may be more
realistic but at the expense of being less insightful. Equation (1)
captures the essential properties without unnecessarily obscuring
the discussion. As we discuss below, this oscillator features sub-
harmonics that appear in a bifurcative way and which are thus
not obtainable by analytic continuation of linearized perturbation
theory.

The determination of the physical content of the terms in (1)
constitutes the core of this paper, and this is the matter of Section 3.
One would like to know, for example, what fraction of the hydro-
dynamic oscillation energy lies in non-linear interactions, and how
would this information be related to the peaks’ properties in the
power spectra. Before that, however, we will describe the model in
detail in Section 2, while the main discussion, including numerical
results and predictions, occupies Section 4.

2 TH E MO D EL

2.1 Background

Modelling of non-linear oscillations in rotating stars has been de-
veloped by Dyson & Schutz (1979), Schutz (1980a,b), Kumar &
Goldreich (1989), Wu & Goldreich (2001), Schenk et al. (2002),
and Arras et al. (2003). In this type of formalism, perturbation
theory is used to find the corrections to the linear regime in the
form of non-linear couplings between (otherwise uncoupled) nor-
mal modes. This type of formalism was applied by Horák (2008) to
the case of slender tori as a rough approximation to the oscillating
region in an accretion disc.

One can thus calculate, in stars and discs, mode-coupling coef-
ficients between three or more modes. These coefficients provide
important information about the system (assuming non-linearities

are mild), such as selection rules for the participating modes and
relative strengths of the couplings, in addition to slight changes in
mode frequency (‘detuning’) and stability considerations.

However, this approach has limitations and fails once the am-
plitude of the oscillations becomes large enough (even while still
being in the perturbative regime). Then, matters can become in-
tractable as the appearance, via pitchfork bifurcation, of new forms
of oscillation renders analytical approaches useless.

Vakakis (1997) illustrates the concepts by means of a toy system
of two masses connected by non-linear springs. Even though the
system has only two degrees of freedom, it can develop (under
appropriate conditions) three forms of oscillation, which he dubs
non-linear normal modes.

2.2 Physical interpretation

Our toy model is a device that incorporates succinctly the additional
aforementioned modes, and it is thus more than a simplified visual
depiction of the system. We shall assume that equation (1) represents
the dynamics of the QPOs after it has reached a stationary state,
the (toy) variable x being a measurement of fluid displacement. Let
us further assume that ε and δ are small enough that perturbative
considerations make sense.

Assume that the oscillator described by the first two terms on the
left-hand side of equation (1), ẍ + ω2

0x, represents a discoseismic
fundamental (axisymmetric) g mode (an inertial-gravitational os-
cillation), so we set ω0 to be the g-mode frequency. Let us call this
frequency ν2 ≡ ω0. Throughout this paper, we use the convenient
notation νn ≡ (n/2)ω0.

Assume further that ω represents a higher frequency oscilla-
tion, associated with discoseismic axisymmetric p waves (inertial-
acoustic oscillations). Let us set ω = 3ω0 and thus call it ν6 = ω.
As shown in Fig. 1, the conditions for the existence of axisymmet-
ric g modes and p waves are that the discoseismic eigenfrequency
σ be smaller and greater, respectively, than the radial epicyclic
frequency κ .

In the absence of the non-linear terms, the spectrum of the system
described by equation (1) would contain ω0 and ω, i.e. ν2 and ν6, and
nothing else. The presence of the term εx2 generates a subharmonic
of value (3/2)ω0 (i.e. half of ω), which we call ν3, while the term δx3

is necessary for the resonance between the ω0 and the ω oscillators.
(For a theoretical discussion of subharmonics, see e.g. Jordan &
Smith 2007; for experimental results, see e.g. Linsay 1981.)

The frequencies ν2 and ν3 would constitute the observed lower
and higher QPO twin frequency pair. But note that our model re-
quires as well the existence of a ν6 QPO frequency (see Fig. 1).
Even though there is one notable instance of this 2:3:6 structure in
GRS 1915+105 (Remillard et al. 2003b; McClintock & Remillard
2006), this is rare and presumably the ν6 is in general either a tran-
sient phenomenon or too weak to be observed, as non-linearities
can render subharmonics that are larger than the driving source.

We emphasize that equation (1) represents an effective equation
that describes the system in a formal way. The ω oscillator should not
be regarded as an ‘external’ oscillator in a physical sense. Physically,
it would be more natural to think about the ω0 (g-mode) oscillator
as the one driving the motion. Thus, even though our model was
conceived primarily to deal with the stationary state of the disc, and
not with its evolution, the following sequential scenario suggests
itself. Once a g-mode (ν2) and the p-wave (ν6) oscillations are
established via the cubic resonance, then the quadratic resonance
generates a ν3 frequency. In this way, the observed frequencies may
be a consequence of a resonance between fundamental g modes and
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Figure 1. The location of axisymmetric discoseismic oscillation modes
(wavy lines) and values of the square of their frequencies are plotted as a
function of the radius. The ν2 frequency corresponds to the fundamental g
mode, while ν3 and ν6 are p waves. Also shown are the square of κ (the
radial epicyclic frequency) for the case a = 1, and the position of the inner
edge of the disc (dashed vertical line). The frequencies ν2, ν3 and ν6 are in
a 2:3:6 relationship, and thus ν2 and ν3 produce according to our model the
twin peak pair.

unobservable p waves. (A more comprehensive approach, involving
all oscillators simultaneously, is described in Section 4.2.)

2.3 Why linear discoseismology is insufficient

A natural question to ask is just why higher frequency discoseismic
g modes cannot be used instead of p waves as the ω resonator above.
After all, g modes have frequencies in the right range, and are the
most robust modes, as they exist in the hottest part of the disc and
lie away from the uncertain physics of the inner boundary (Perez
et al. 1997). Modes with different angular mode number m (such
that oscillations are proportional to eimφ) would seem to be good
candidates.

For non-rotating black holes (a = 0), the frequencies correspond-
ing to angular mode numbers m = 0, 1, 2 are in a 1 : 3.5 : 6.4 relation.
For the a = 0.5 and a = 0.998 cases, the relations are 1 : 3.7 : 6.8
and 1 : 5.7 : 11.3, respectively. (The dependence of the frequen-
cies on the radial and vertical mode numbers is very weak, changes
amounting to a few per cent or less.)

Thus, there are no modes close to three times the fundamental
frequency. In addition, the absence of negative m g modes causes
the relevant non-linear couplings to vanish due to selection rules of
the form 
 mi = 0 (Arras et al. 2003).

3 PH Y S I C A L M E A N I N G O F T H E
PA R A M E T E R S

In order to further exploit the model, we need to make a connection
to more realistic (though not subharmonic producing) models. In
particular, we would like to obtain values for ε and δ in equation
(1) in terms of physical variables.

We will proceed thus to match our model with the values obtained
by Horák (2008) for the coupling coefficients of oscillations in
slender tori around of black holes. This will allow us to obtain
order-of-magnitude values for our parameters.

We begin by reexpressing (1) in the following form: (which is
the one used by Horák 2008)

ẏ + iω0y = iω0(Ey2 + �y3), (2)

in terms of the non-dimensional quantities

y ≡ x

A
, E ≡ εA

3ω2
0

, � ≡ δA2

4ω2
0

, (3)

where A is the amplitude of the (toy) oscillation. We have taken for
now B = 0, as the interesting part is in the non-linear terms anyway,
and higher order terms ∝ ε2 have been dropped.

In this form, y ∼ 1, while the conditions for the validity of the
perturbative approach now read |E| < 1, |�| < 1. The quantities |E|
and |�| have a simple physical meaning: they represent the ratio of
the non-linear interaction energy to the energy of the linear mode
(for the quadratic and cubic terms, respectively).

Equations (5), (6) and (8) in Horák (2008) for the fluid displace-
ment ξ and the coupling coefficients κ and b are: (indices refer to
modes)

ξ (t, x) =
∑

c∗
A(t) ξ ∗

A(x) , (4)

ċA + iωAcA = ib−1
A F∗

A , (5)

FA =
∑

κABC cBcC +
∑

κABCD cBcCcD + · · · . (6)

In this order-of-magnitude approach, we drop the indices in cA

and bA. Since |c| ∼ 1 for mild non-linearities, we can now easily
compare equations (2) and (5), and identify c with y.

This comparison can be readily performed once we have an order-
of-magnitude estimate for the (pressure- and gravity-dominated)
couplings:

κ
(p)
ABC ∼ κ

(g)
ABC(R/h) ∼ b �(ξ/h) , (7)

where �, ξ , h and R stand, respectively, for the dynamical inverse
time-scale and the displacement, disc thickness and disc radius
length-scales. We have used ξ/h ∼ �ρ/ρ, the fractional mass den-
sity, and we have assumed that all the components of ξ have the
same order-of-magnitude value.

4 D I SCUSSI ON

4.1 General results

The considerations of the previous section allow us to conclude,
taking ω0 ∼ �, that |E| ∼ ξ/h and |�| ∼ E2.

Since we have that |E|, |�| < 1 (our perturbative condition) and
that Nowak & Wagoner (1993) found that ξ/h ∼ 1, we may conclude
the following. |E| has to be smaller than 1 yet not much smaller than
1 (meaning that our system is barely perturbative), while |�| has to
be smaller than |E|. (It will be reassuring to obtain solutions with
values consistent with this reasoning below; see Table 2.)

Since |�| < |E|, it follows from (2) that the effects related to the
quadratic term will be somewhat stronger than those for the cubic
one. This means that the QPO peak amplitude should be higher for
ν3 than for ν2, which is exactly what is observed. Remarkably, this
feature holds for all of the four sources in Table 1. (For observational
reviews, see McClintock & Remillard 2006, p. 157; Belloni, Sanna
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& Méndez 2012.) The reasoning behind this statement becomes
clearer if one thinks of the non-linear terms as driving forces.

Moreover, if one thinks of (2) as a spring (left-hand side) with
driving forces (right-hand side), and if one further assumes there is
a damping term 2βẋ, with a quality factor Q ≡ ω0/2β, then there
will be, according to our model, an inverse relationship between the
ratio r ≡ amplitude of ν3/amplitude of ν2 (by ‘amplitude’ we mean
the standard PSD amplitude) and Q. This feature is also observed.
The variables r and Q show a correlation of −0.49 when the value
of Q for the lower twin frequency is used. (This correlation and the
one in the next paragraph have been calculated directly from the
data in the references listed in Table 1.)

The plausibility of the model is further supported by the following
observation. There exists a very strong correlation ( + 0.91) between
the amplitude of the lower twin frequency and its Q, while there is
no significant correlation between the amplitude of the higher twin
frequency and its Q. This suggest that the two QPO twin frequencies
arise from different physical mechanisms, and that the lower twin
frequency might play a more primary role in the dynamics (e.g. that
of being the driver of the QPO system), since it has a property that is
degraded in the other QPO frequency peak. Such an interpretation
is consistent with the identification of the toy spring frequency with
the robust discoseismic fundamental g mode.

4.2 Parameter determination

In order to obtain further results from our toy model, it is useful
now to consider all of the relevant frequencies together. Thus, we
substitute

x(t) = C cos(ωt) + D cos(ωt/2) + F cos(ωt/3) + K (8)

in (1). This procedure yields of course several cross terms in addition
to the purely quadratic and cubic subharmonic contributions. By
grouping the cos (ωt), cos (ωt/2) and cos (ωt/3) terms, it is thus
possible to obtain a system of three coupled cubic equations for
D/C, F/C and K/C in terms of the parameters E, � and B/(Cω2),
all six quantities being non-dimensional.

A numerical solution produces values for (D/F)2, i.e. the quan-
tity we called r in the previous section. We assume that the non-
linearities cause locking of the phases of the terms in (8), as it is
usual for non-linear systems (Pikovsky, Rosenblum & Kurths 2003).
There are only five different solutions for (D/F)2 when scanning
the parameter space with the 65 000-point grid given by: 0.1 <

|E| < 0.5 (step = 0.05), 0.33 E2 < |�| < 3 E2 (step = 0.33), 0.1 <

|B/(8Cω2)| < 10 (step = 0.1).
As Table 2 shows, most of the solutions have (D/F)2 > 1. The

fourth solution is the closest to the observational value of ≈ 2

Table 2. The solution values of (D/F)2 obtained nu-
merically from equation (8), with values of the param-
eters. The quantity (D/F)2 corresponds to the higher
twin/lower twin PSD amplitude ratio. |E| is bigger
than |�|, showing dominance of the quadratic sub-
harmonic over the cubic one.

(D/F)2 E � B/(Cω2)

21 ±0.5 0.083 − 7.2
2.4 ±0.5 0.083 − 7.2
4.6 ±0.5 − 0.09 − 8
1.5 ±0.45 − 0.073 − 8
0.16 ±0.4 − 0.058 − 8

(as can be appreciated directly from the plots in the references of
Table 1). As expected, |E| and |�| satisfy the properties described
at the beginning of Section 4.1. The values of B/(Cω2) are close
to −8, its value for the ε = δ = 0 case.

Thus, even in the toy model approximation, these numerical re-
sults yield a sensible outcome and have the expected parameter val-
ues. They imply that about half of the oscillation energy lies in non-
linear interactions, especially those associated with the quadratic
subharmonic.

4.3 Predictions

In the first place, the model predicts that, as better data and/or
analysis become available, a QPO frequency equal to ν6 will be
revealed, as it already appears to be present in GRS 1915+105.
Furthermore, given that ν6 presumably forms before, and is the
cause of, its subharmonic ν3, it is expectable that ν6 will be less
degraded, i.e. have a larger value of Q, than ν3 (as it already does
for the case of GRS 1915+105).

Secondly, QPO combination frequencies with values ν3 ± ν2, i.e.
ν1 and ν5 in our notation, may be observed, but only when ν2 and
ν3 are present at the same time. Even though the 1:2:3 harmonic
observations from XTE J1550−564 are favourable in this respect,
there are currently not enough data to state anything conclusive in
this regard.

4.4 Difficulties and future work

A challenge of the model concerns explaining the missing ν4, given
that the arguments applied to ν6 apply to ν4 as well, i.e. why is there
not a resonance between ν2 and ν4 via the term εx2?

Table 3 summarizes the information of the different discoseismic
p waves. The size of each wave is estimated by the discoseismic
radial wavelength (Ortega-Rodrı́guez, Silbergleit & Wagoner 2008).

The physical behaviour at the inner disc boundary is probably the
least understood aspect of the whole accretion disc system, given
the sudden domination of magnetic field and coronal effects there
(Hawley & Krolik 2001). In particular, it is not known whether there
is wave leaking or reflection, let alone phase change.

Assume, however, and for the sake of the present discussion, that
there is enough of an impedance mismatch at the inner boundary
that the p-wave oscillations bounce back without changing phase
(assuming a free boundary condition). Standing waves could then
in principle be created for the waves in Table 3, in what we may
call ‘discoseismic semi-modes’ (since there is only one boundary,
the inner one). Alternatively, it may be the case that the non-linear
character of the system confines the oscillations away from the
boundary as explained in Vakakis (1997) for certain mechanical
systems.

Table 3. The properties of theoretical p-wave oscillations rel-
evant to the discussion. Wavelengths (λ) are obtained from the
discoseismic formula λ2 = h2(1 − κ2/σ 2)−1, where h and κ

refer to the disc’s thickness and the radial epicyclic frequency,
respectively. Frequencies ν3, ν4 and ν6 are in a 3:4:6 relation.

Frequency Size Observational status
(σ )

ν6 λ6 = 1.06 h Only observed in GRS 1915+105
ν4 λ4 = 1.15 h Not observed
ν3 λ3 = 1.34 h Observed in all four sources

in Table 1
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In either case, since the distance r(κmax) − ri (the radius at which
the radial epicyclic frequency is maximum minus the radius of
the inner disc boundary) is not much larger than h, especially for
fast spinning black holes (Perez et al. 1997), the discoseismic p
waves will only travel a few wavelengths before bouncing back and
returning.

This sets up a scenario in which ν6 and ν3 can build up but ν4 does
not: if the round trip distance, which is given by twice r(κmax) − ri,
equals e.g. 5 × λ6 ≈ 4 × λ3 ≈ 4.6 × λ4, then there would be true ν6

and ν3 semi-modes, while the necessary conditions for ν4 to exist
will not be met, as it would be out of phase.

If this model is on the right track, and thus a sizable fraction of
the energy resides in non-linear interactions, then a more careful
study of subharmonic dynamics is in order. One might develop a
full (coupled) model, or even investigate the possibility of solitonic
confinement of the oscillations.
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