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6Instituto de Fı́sica Teórica and ICTP South American Institute for Fundamental Research, Universidade Estadual Paulista, Rua Dr. Bento T. Ferraz 271, São
Paulo, SP 01140-070, Brazil

Accepted 2013 August 7. Received 2013 August 2; in original form 2013 June 5

ABSTRACT
We analyse the large-scale angular correlation function (ACF) of the CMASS luminous
galaxies (LGs), a photometric-redshift catalogue based on the Data Release 8 (DR8) of
the Sloan Digital Sky Survey-III. This catalogue contains over 600 000 LGs in the range
0.45 ≤ z ≤ 0.65, which was split into four redshift shells of constant width. First, we estimate
the constraints on the redshift-space distortion (RSD) parameters bσ 8 and fσ 8, where b is the
galaxy bias, f the growth rate and σ 8 is the normalization of the perturbations, finding that
they vary appreciably among different redshift shells, in agreement with previous results using
DR7 data. When assuming constant RSD parameters over the survey redshift range, we obtain
fσ 8 = 0.69 ± 0.21, which agrees at the 1.5σ level with Baryon Oscillation Spectroscopic
Survey DR9 spectroscopic results. Next, we performed two cosmological analyses, where
relevant parameters not fitted were kept fixed at their fiducial values. In the first analysis,
we extracted the baryon acoustic oscillation peak position for the four redshift shells, and
combined with the sound horizon scale from 7-year Wilkinson Microwave Anisotropy Probe
(WMAP7) to produce the constraints �m = 0.249 ± 0.031 and w = −0.885 ± 0.145. In the
second analysis, we used the ACF full shape information to constrain cosmology using real
data for the first time, finding �m = 0.280 ± 0.022 and fb = �b/�m = 0.211 ± 0.026. These
results are in good agreement with WMAP7 findings, showing that the ACF can be efficiently
applied to constrain cosmology in future photometric galaxy surveys.

Key words: surveys – cosmological parameters – large-scale structure of Universe.

1 IN T RO D U C T I O N

The study of the large-scale structure of the Universe represents
an important cosmological tool and recent galaxy surveys have
become sufficiently large to competitively constrain cosmological
parameters. For instance, spectroscopy surveys such as the Two-
degree Field Galaxy Redshift Survey (2dFGRS; Colless et al. 2001)
and the Sloan Digital Sky Survey (SDSS; York et al. 2000) used the
3D galaxy clustering analysis to constrain cosmological parameters.
Last year the WiggleZ (Parkinson et al. 2012) released its final
cosmological results from galaxy distribution, measuring redshifts

� E-mail: fsimoni@id.uff.br

out to z ∼ 1. The Baryon Oscillation Spectroscopic Survey (BOSS,
Dawson et al. 2013), part of the SDSS-III, is an ongoing project
that is pushing the analysis of the galaxy distribution to another
level. It is going to measure more galaxies compared to previous
spectroscopic surveys at an effective redshift of z ∼ 0.57. Some few
representative papers are Percival et al. (2007), Blake et al. (2011)
and Anderson et al. (2013).

Some of the next generation galaxy surveys will be carried
out with photometric data instead of spectroscopy, using broad-
band photometry to estimate the so-called photometric redshifts, or
photo-zs for short. These surveys will estimate photo-zs for a large
number of objects, but with a lower accuracy compared to spectro-
scopic redshifts, effectively trading accuracy for statistical power.
Obviously, this is only possible with a careful characterization of
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the photo-z errors. The typical approach is to slice the survey into
redshift shells with thickness of order of the photo-z errors, and
study the angular clustering on each shell. The 3D information can
then be partially restored by also including the correlations between
different redshift shells and the photo-z errors.

One of the next large photometric surveys is the Dark Energy
Survey (DES; The Dark Energy Survey Collaboration 2005), which
had its first light in 2012 September. This survey expects to measure
over ∼300 million galaxies within an area of 5000 deg2 of the
southern sky up to redshift z ∼ 1.4. Another proposed photometric
galaxy survey is the Large Synoptic Survey Telescope (LSST) with
expected science data for 2021 (Abate et al. 2012). This survey will
detect over a billion galaxies and will go deeper than the DES in
redshift.

Photometric galaxy surveys will demand a full understanding of
the angular clustering of the galaxy distribution in order to provide
useful cosmological information. Therefore several studies have
been performed in order to gauge the use of the galaxy angular
clustering at large scales, both on theoretical and observational
grounds. We briefly review some of them below.

On the theoretical front, Simpson, Peacock & Simon (2009) per-
formed the first study on the measurement of the baryon acoustic
oscillation (BAO) peak in the galaxy angular correlation function
(ACF) in configuration space using photometric redshifts. They em-
phasized the role of photo-z errors in establishing the connection
between the observed BAO position and the sound horizon scale.
Sobreira et al. (2011) forecasted the cosmological constraints in
a DES like survey from the ACF full shape information using
the Fisher matrix formalism. They found that DES will constrain
the dark energy equation of state w with a precision of ∼20 per
cent. Crocce, Cabré & Gaztañaga (2011a) verified the accuracy
of the ACF theoretical covariance matrix against N-body simula-
tions, showing that at scales larger than ∼20 h−1 Mpc, the Gaussian
covariance is a good approximation. Ross et al. (2011a) forecasted
constraints on redshift-space distortion (RSD) parameters for a DES
like survey from the ACF full shape information and Sánchez et al.
(2011) developed a method to apply the BAO peak position in the
ACF as a standard ruler, overcoming some issues outlined in Simp-
son et al. (2009).

On the observational front, only one galaxy survey had the char-
acteristics to make it possible to look into the large-scale properties
of the ACF using photo-zs: the SDSS. This survey produced a series
of data releases with four of them leading to a cosmological anal-
ysis with photometric data: Data Release 3 (DR3; Finkbeiner et al.
2004); the DR4 which was used to produce the MegaZ photometric
catalogue (Collister et al. 2007), the DR7 (Abazajian et al. 2009)
and the recent DR8 luminous galaxies (LGs) catalogue (Ross et al.
2011b). These four photometric catalogues resulted in a series of
results on the angular clustering of galaxies at large scales, mostly
in the redshift range 0.45 ≤ z ≤ 0.65.

Padmanabhan et al. (2007) estimated the angular power spectrum
in eight redshift shells, constraining RSD parameters and �m. Blake
et al. (2007) used the MegaZ catalogue to produce the first cosmo-
logical constraints directly from the galaxy angular clustering using
the angular power spectrum. Sawangwit et al. (2011) measured the
large-scale ACF but did not constrain cosmological parameters due
to an excess power at these scales. Thomas, Abdalla & Lahav (2010)
produced a similar analysis as that of Blake et al. (2007), but for the
improved DR7. Crocce et al. (2011b) used DR7 data to constrain
the so-called RSD parameters with the ACF full shape information,
but did not estimate the cosmology. Carnero et al. (2012) used the
BAO peak position information in DR7 to find the sound horizon

scale. Ross et al. (2011b) measured the large-scale ACF in DR8
in order to check the impact of systematics, reducing the excess
of power at these scales reported earlier (Sawangwit et al. 2011;
Thomas, Abdalla & Lahav 2011). Using the DR8, Ho et al. (2012)
estimated the cosmological parameters from the full information of
the angular power spectrum and Seo et al. (2012) found the sound
horizon scale also from the angular power spectrum. Notice that the
cosmological analysis in all of these studies was performed in har-
monic space with the angular power spectrum, not in configuration
space with the ACF full shape information.

In the present paper we focus on the less explored approach of
using the full shape of the ACF in configuration space to derive con-
straints on cosmological parameters, following the steps outlined in
Sobreira et al. (2011). We also estimate RSD parameters and define
the BAO peak position using the method developed in Sánchez et al.
(2011). For these purposes we measure the ACF with the SDSS-III
DR8 photometric data, using the so-called CMASS LGs catalogue
(Ross et al. 2011b).

This paper is organized as follows. In Section 2 we present the
SDSS DR8 data to be analysed. In Section 3 we briefly describe the
novel method to estimate the ACF introduced by Ross et al. (2011b)
and discuss how to construct the full covariance matrix including
correlation among redshift shells. For completeness, in Section 4 we
describe the theoretical modelling of the ACF. In Section 5 we find
the best-fitting RSD parameters, and compare to the values found by
Crocce et al. (2011b) with a similar data set and also compare with
BOSS DR9 spatial correlation function results (Reid et al. 2012).
The cosmological analysis is finally performed in Section 6, where
we apply two methods. First, we use the power law+Gaussian fit
(PLG) approach first applied to real data by Carnero et al. (2012).
Secondly, for the first time using real data, we perform an estimation
of cosmological parameters from the full shape information in the
ACF. Finally, Section 7 provides a summary and our conclusions.

Throughout this study, when not stated otherwise, we assume as
fiducial cosmological model a flat �cold dark matter (�CDM)
universe with parameters as determined by 7-year Wilkinson
Microwave Anisotropy Probe (WMAP7)1 (Komatsu et al. 2011):
dark matter density parameter �cdm = 0.222, baryon density pa-
rameter �b = 0.0449, Hubble parameter h = 0.71, primordial index
of scalar perturbations ns = 0.963 and normalization of perturba-
tions σ 8 = 0.801. All numerical codes developed for our analysis
applied the GSL package,2 and the linear matter power spectrum was
computed with the CAMB package (Challinor & Lewis 2011).

2 TH E DATA

2.1 Galaxy selection

In this work we use the imaging data from the SDSS DR8 (Aihara
et al. 2011), which is publicly available by the SDSS team.3 This
photometric sample has the same selection as the BOSS targets,

1 During the final stages of this paper the WMAP9 results were released
(Hinshaw et al. 2012); as these results are similar to the previous WMAP7
ones we will continue to use the WMAP7 numbers since our findings would
not be affected in a significant manner. Also, the Planck collaboration re-
cently released its cosmological results (Ade et al. 2013); in this case it was
found a significant difference with respect to WMAP7 mainly in �m and
the Hubble parameter. We comment on the impact of this difference on our
results along the paper.
2 http://www.gnu.org/software/gsl/
3 http://portal.nersc.gov/project/boss/galaxy/photoz/
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Table 1. The four redshift shells used
in this work. Columns show, for each
shell, the photo-z range, the number
of galaxies from Ho et al. (2012) and
the mean photo-z dispersion from Ross
et al. (2011b).

Redshift shell Ngal σphot

0.45 ≤ zp ≤ 0.50 154 531 0.043
0.50 ≤ zp ≤ 0.55 198 132 0.044
0.55 ≤ zp ≤ 0.60 190 603 0.052
0.60 ≤ zp ≤ 0.65 121 181 0.063

which was intended to have approximately constant stellar mass,
the so-called CMASS (Ross et al. 2011b; White et al. 2011). The
construction of this photometric catalogue is detailed in Ross et al.
(2011b) and Ho et al. (2012), where special care was taken to
identify and remove potential systematic errors that could affect the
measurement of the angular clustering of galaxies.

With the appropriate selection and cuts, one ends up with a cat-
alogue containing ∼700 thousand galaxies, mostly in the photo-
metric redshift range 0.45 ≤ zp ≤ 0.65, which is going to be our
limiting redshifts for the cosmological analysis. Following Ross
et al. (2011b) we will call this sample luminous galaxies, or LGs
for short. We split the data in the range 0.45 ≤ zp ≤ 0.65 into four
photo-z shells of width �zp = 0.05 and measure the ACF for each
shell. We note that these are the same shells used in Ross et al.
(2011b), Ho et al. (2012), Seo et al. (2012) and de Putter et al.
(2012).

2.2 Selection functions

The true redshift distribution is one of the most important and chal-
lenging quantities needed in order to produce trustable results when
investigating the projected angular clustering of galaxies within a
redshift shell. In this sense, it is as important as the ACF measure-
ment itself. For the LGs sample used in this work, the photo-zs of
the objects are fairly accurate. They were estimated with the neural
network ANNz code (Collister & Lahav 2004) using as training set
112 778 spectra, i.e. almost 10 per cent of the final photometric LGs
sample. The photo-z dispersion and the number of galaxies in each
of the four shells are displayed in Table 1.

The selection function convolves the redshift distribution with
the photo-z errors and must be included in the ACF calculation as
described in the next section. In Fig. 1 we reproduce the selection
functions φ(z) for the four redshift shells estimated by Ross et al.
(2011b), which is also publicly available. The selection functions
overlap due to photo-z uncertainties, as expected. We properly ac-
count for this effect both in the ACF itself and in its covariance
matrix, which accounts for the correlation amongst redshift shells,
as explained in the next section. In order to speed up our numer-
ical code to evaluate the theoretical ACF, we have smoothed the
selection functions by applying a cubic spline, with an error below
0.01 per cent.

3 M E A S U R I N G T H E AC F A N D E S T I M AT I N G
I T S C OVA R I A N C E

The estimation of the ACF was performed following Ross et al.
(2011b). We use the ‘Astar’ method (see section 4.1 of Ross et al.
2011b) to correct for stellar density systematics and correct for the
offset between SDSS photometry in the North and South Galactic

Figure 1. Selection functions for the set of redshift shells applied in the
cosmological analysis (Ross et al. 2011b).

Cap (Schlafly & Finkbeiner 2011) using the method applied to
obtain their ‘� South’ results. Below we outline the main features
for this evaluation.

The catalogue is pixelized at Nside = 256 using HEALPix (Gorski
et al. 2005) and each pixel i is assigned a weight wti related to
its overlap with the imaging footprint. The estimated ACF ω̂(θ ) is
obtained from

ω̂(θ ) =
∑

ij δiδjwtiwtj∑
ij wtiwtj

, (1)

where θ is the angular distance between pixel i and pixel j and the
overdensity in pixel i, δi, is given by

δi = ni

n̄wti
− 1, (2)

where ni is the number of galaxies in pixel i and n̄ = ∑
ni/

∑
wti .

In this work we measure the ACF in the angular range 1◦ ≤ θ ≤ 8◦

with 35 angular bins for all redshift shells. This corresponds to spa-
tial scales of 25 � r � 200 h−1 Mpc. Note that in this approach,
developed by Ross et al. (2011b) and Ho et al. (2012), it is straight-
forward to incorporate systematics effects, such as spurious clus-
tering power due to extinction, seeing and star contaminations. In
Fig. 2 we show the ACF measurements for the first and last redshift
shells. They show no excess of power at large scales found previ-
ously by Thomas et al. (2011) and Sawangwit et al. (2011) and the
BAO peak is apparent in both shells.

It is well known that the estimation of the covariance matrix
for a galaxy clustering analysis in configuration space is a difficult
task. The standard way to construct the covariance matrix C(θ i, θ j),
between angular bins i and j, is by the use of bootstrap methods,
i.e. applying the data itself in the estimation. The most widely used
approach is the so-called jackknife method. The idea is to divide the
survey into N equal size areas, with the number of areas depending
upon convergence tests, and producing the following errors (the
covariance matrix is obtained with a similar procedure):

σ 2(θ ) = N − 1

N

N∑
i=1

[ω̄(θ ) − ω̂i(θ )]2, (3)

where ω̄(θ ) is the measured ACF for the full area and ω̂i(θ ) is
the measurement when the ith jackknife region is removed. The
main shortcoming is that the jackknife method may give unstable
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Figure 2. Estimated ACF for the first and last redshift shells. The error bars
are estimated via jackknife method.

results, especially at large scales. A noisy covariance matrix can
change the best-fitting value for the parameters in a pronounced
manner. Moreover, it does not give the covariance between redshift
shells, which is needed when analysing the full sample of galaxies.
We illustrate the importance of including the covariance in the next
section, where we compare results obtained using the full covariance
and using only diagonal errors.

In a recent study, Crocce et al. (2011a) extensively studied a theo-
retical model for the ACF covariance matrix, assuming Gaussianity
at large scale. They found that this approximation for the ACF co-
variance matrix at large scales is in very good agreement with the
covariance from N-body simulations. This can be understood as a
consequence of the central limit theorem, and of course, because
at large scales one expects that the matter distribution follows a
Gaussian distribution. Therefore, supported by this study, we will
adopt the theoretical Gaussian covariance matrix in our analysis.
As a bonus, for this covariance matrix it is straightforward to take
into account correlation between redshift shells.

The full Gaussian covariance matrix is given by (for a detailed
description see e.g. Crocce et al. 2011a; Sobreira et al. 2011)

Cα,β (θi, θj ) = 2

fsky

∑
l

[
2l + 1

(4π)2
Pl(cos θi)Pl(cos θj )

×
(
C

α,β
l + 1/n̄α δαβ

)2
]

. (4)

The indices α and β label the redshift shells. The angular power
spectrum given by

C
α,β
l = 2

π

∫
dk k2Pm(k)α

l (k)β
l (k). (5)

In the above equations fsky is the fraction of the sky covered by
the survey (in our case fsky = 0.24), Pl are Legendre polynomials,
n̄α is mean density of galaxies in redshift shell α, Pm(k) is the
matter power spectrum, α

l (k) is the kernel function due to RSD
for redshift shell α and δαβ is the Kronecker delta, showing that the
shot-noise enters only in the autocovariance.

The cosmological parameters enter in the model for the covari-
ance matrix through Pm(k) and the kernel α

l (k). In an ideal analysis
one should construct the likelihood L with this information added

in the best-fitting search as was performed by Blake et al. (2007),
i. e.

L ∝ |C|−1/2 exp

(
− dTC−1d

2

)
, (6)

where d = ω̂(θ ) − ω(θ ) is the vector with the difference between
the measured ACF and its theoretical value for all redshift shells. In
our case, for four redshift shells we have ω̂(θ ) = (ω̂1, ω̂2, ω̂3, ω̂4),
and C is the full covariance matrix with correlation between shells
given in equation (4). It is well known that the covariance matrix
C is nearly singular, |C| ≈ 0, and we apply the singular value de-
composition method (Press, Flannery & Teukolsky 1986) in order
to obtain its inverse.

Another problem when applying the full likelihood method is
that it is very time consuming to evaluate the theoretical covariance
matrix for a given set of parameters, rendering a Markov chain
Monte Carlo (MCMC) estimation of the parameters not viable. In
order to overcome this issue we adopt the following strategy. We first
fix a cosmology, in our case WMAP7, and assign an initial constant
value b = 2 for the bias, from which we generate a covariance
matrix. Next we find the best-fitting value for the bias itself using
the ACF full shape information as will be explained in the next
section. In our case we find the following results for each redshift
shell: b = (1.94, 2.02, 2.15, 1.97).

With the fitted bias values, we compute the final covariance matrix
that will be applied in our cosmological analysis. This approach
assumes that most information in the covariance matrix comes from
the bias or, in other words, most of the information in the covariance
comes from the ACF amplitude and not its shape. In order to check
the consistency of this assumption, we have compared the diagonal
elements of the theoretical covariance matrix obtained using this
procedure with the jackknife results estimated with equation (3)
with N = 20. In Fig. 3 we show this comparison for the redshift
shell 0.55 ≤ zp ≤ 0.60. The results are in fair agreement, giving
some confidence on the use of the theoretical covariance matrix.
The consistency between the measured and theoretical covariance
lead us to believe that our results would not change appreciably
in a more complete analysis that vary the cosmology within the
covariance matrix, or in a more conservative analysis that simply
use the measured covariance.

Figure 3. Comparison between jackknife and theoretical errors for the
redshift shell 0.55 ≤ zp ≤ 0.60.
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Hence, we fix the cosmology when computing the covariance
matrix, and we construct the standard χ2 statistics,

− 2 logL = χ2 = dTC−1d, (7)

to derive cosmological constraints from the data. This approach is
widely applied in large-scale clustering analysis, such as the analysis
performed in the BOSS DR9 data, e.g. Sánchez et al. (2012) and
Anderson et al. (2012).

4 MO D E L L I N G T H E A N G U L A R
C O R R E L AT I O N F U N C T I O N

Our modelling of the ACF is based on the methods used in previous
studies (see e.g. Crocce et al. 2011a; Ross et al. 2011a; Sobreira
et al. 2011). The ACF is related to the two-point spatial correlation
function ξ (s) in redshift space by

ω(θ ) =
∫ ∞

0
dz1�(z1)

∫ ∞

0
dz2�(z2)ξ (s) (r(z1, z2, θ )) . (8)

The function �(z) is determined by the selection function of the
survey φ(z), the dark matter to luminous bias factor b(z) and the
linear growth function D(z) [normalized to D(z = 0) = 1] as
�(z) = φ(z)b(z)D(z). The comoving distance r(z1, z2, θ ) between
two galaxies at redshifts z1 and z2 separated by an angle θ and in a
flat cosmology is given by the relation

r =
√

χ2(z1) + χ2(z2) − 2χ (z1)χ (z2) cos θ, (9)

where χ (zi) is the radial comoving distance of the object i to us
(hereafter we use units with c = 1),

χ (z) =
∫ z

0

dz′

H (z′)
, (10)

and H(z) is the usual Hubble function.
The redshift-space spatial correlation function ξ (s), in the plane-

parallel approximation, is given by (Hamilton 1992; Matsubara
2000)

ξ (s)(r) =
[

1 + 1

3
[β(z1) + β(z2)] + 1

5
β(z1)β(z2)

]
ξ0(r)P0(μ)

−
[

2

3
[β(z1) + β(z2)] + 4

7
β(z1)β(z2)

]
ξ2(r)P2(μ)

+
[

8

35
β(z1)β(z2)

]
ξ4(r)P4(μ). (11)

Here the P�(μ) are the usual Legendre polynomials as a function
of μ = d̂ · r̂ (cosine of angle between the line of sight d and r)
and β(z) = f(z)/b(z) with f (z) = d ln D/d ln a. The correlation
multipoles are related to the matter power spectrum Pm(k) through

ξl(r) = 1

2π2

∫ ∞

0
dkk2Pm(k)jl(kr), (12)

and can be written as (Hamilton 1992)

ξ0(r) = ξ (r), (13)

ξ2(r) = 3

r3

∫ r

0
dx ξ (x) x2 − ξ (r), (14)

ξ4(r) = ξ (r) + 5

2

(
3

r3

∫ r

0
dx ξ (x) x2

)
− 7

2

(
5

r5

∫ r

0
dx ξ (x) x4

)
,

(15)

where ξ (r) is the real-space spatial correlation function. One can in-
corporate the effects of non-linearities using the so-called renormal-
ized perturbation theory (RPT) approach (Crocce & Scoccimarro
2008), which determines the real-space correlation as

ξnl(r) = ξ (r) + Amcξ
(1)(r)ξ ′(r), (16)

where ξ ′ is the derivative of ξ (r) with respect to r and

ξ (1)(r) = 1

2π2

∫ ∞

0
dkkPm(k)j1(kr). (17)

For Amc we apply the value 1.55 found by Crocce et al. (2011a)
from N-body simulations. Another non-linear effect that must be
taken into account is the so-called Gaussian damping that affects
mostly the BAO peak in the correlation function, and it is added
phenomenologically by introducing a non-linear power spectrum
PNL(k) and substituting Pm(k) as (Crocce & Scoccimarro 2008)

Pm(k) → PNL(k) = Pm(k) exp
[−r2

NLk2D2(z)/2
]
, (18)

with rNL = 6.6 Mpc h−1. Crocce et al. (2011a) showed that this
approach is in good agreement with simulations on scales above
∼20 h−1 Mpc; therefore, our analysis will be applied above this
scale.

In order to proceed it is worth pointing out some numerical issues
that arise in going from P(k) to ξ (r). For this transformation, we
have done some analysis varying the lower and upper limits in the
integral (e.g. equation 12), since in principle it should be evaluated
for all values of k. We found that with kmin � 10−5 h Mpc−1 and
kmax � 100 h Mpc−1, the integral converged and the time evaluation
is reasonable for our purposes, something crucial for an extensive
Markov chain analysis. Also, in order to compute the integrals in
equations (14) and (15), we had to adopt a lower limit, and we found
rmin � 0.01 h−1 Mpc to be a good value.

5 R EDSHIFT-SPAC E D ISTO RTION

We start by using the LG data to examine the constraints on the
parameters describing RSD following closely the study by Crocce
et al. (2011b).

In order to motivate the definition of the RSD parameters, we
write the ACF in terms of a polynomial in the bias b and the velocity
growth rate f:

ω(θ ) = b2ω0(θ ) + bf

(
2

3
ω0(θ ) + 4

3
ω2(θ )

)

+f 2

(
1

5
ω0(θ ) + 4

7
ω2(θ ) + 8

35
ω4(θ )

)
, (19)

where ωl(θ ) is the projection of the space correlation function multi-
poles in the redshift shell. This equation is in fact an approximation
of equation (8), where one assumes that the functions f(z), D(z) and
the bias do not evolve appreciably within each photo-z shell. We
actually verified this assumption to hold in our case, by comparing
both equations, (8) and (19), with our assumed cosmology and the
LGs selection functions.

Since each term in equation (19) contains implicitly the product
between σ 2

8 and D(z)2, the two parameters that we are going to fit
are

b(z)σ8(z) = bσ8D(z) (20)

and

f (z)σ8(z) = f σ8D(z). (21)
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Table 2. Best-fitting values for RSD parameters
for the three approaches: in the top part it is dis-
played the results allowing free parameters for
each redshift shell; in the middle the velocity
growth rate is assumed constant in all shells but
allowing different b(z)σ 8(z) for each shell and in
the bottom part it is assumed constant b(z)σ 8(z)
and f(z)σ 8(z) for all four shells.

Redshift shell b(z)σ 8(z) f(z)σ 8(z)

0.45 ≤ zp ≤ 0.50 1.23 ± 0.06 0.66 ± 0.33
0.50 ≤ zp ≤ 0.55 1.25 ± 0.11 0.26 ± 0.46
0.55 ≤ zp ≤ 0.60 1.30 ± 0.06 0.93 ± 0.37
0.60 ≤ zp ≤ 0.65 1.16 ± 0.08 1.11 ± 0.42

0.45 ≤ zp ≤ 0.50 1.23 ± 0.05
0.50 ≤ zp ≤ 0.55 1.20 ± 0.05

0.72 ± 0.22
0.55 ≤ zp ≤ 0.60 1.32 ± 0.05
0.60 ≤ zp ≤ 0.65 1.20 ± 0.07

All shells 1.24 ± 0.04 0.69 ± 0.21

In order to compare with Crocce et al. (2011b), in this section we
adopt the following values for the cosmological parameters in a
flat �CDM Universe: �m = 0.272, �b = 0.0456, ns = 0.963 and
h = 0.704. We slice the survey into four redshift shells between
zp = 0.45 and 0.65 with constant width �zp = 0.05, as defined in
Section 2.1.

We have constrained RSD parameters with three different ap-
proaches, all including correlations between shells due to photo-z
dispersion. In the first approach we constrained fσ 8 and bσ 8 for
each redshift shell, with a total of eight parameters. It should be
noticed that within this approach the parameters best-fitting results
are correlated. In the second approach we follow Padmanabhan
et al. (2007), where it was noticed that the parameter fσ 8 does not
change appreciably within the redshift limits in the �CDM model
we adopt. Therefore, in this approach we fit only one fσ 8 parameter
for all shells, but still allow bσ 8 to be different for each shell, for a
total of five parameters to be fitted. In the third approach, we have
assumed both bσ 8 and fσ 8 to be constant for all redshift shells,
therefore, we have only two free parameters. This last approach is
similar to what is done with spectroscopic survey analysis, which
typically finds effective parameters over the whole survey range.
The results for the three methods are respectively shown in Table 2.

The results for the first approach for the bσ 8 parameters are
in good agreement with Crocce et al. (2011b), which reported
bσ 8 = 1.26, 1.21 and 1.10 with 2 per cent error for the first
three shells (they did not analyse our last shell), although we find
somewhat larger errors of ∼5 per cent. If we assume σ 8 = 0.8,
this translate to the following bias parameter for each shell:
b1 = 1.94 ± 0.08, b2 = 2.02 ± 0.08, b3 = 2.15 ± 0.08 and
b4 = 1.96 ± 0.11. Comparing with the results found by Ho et al.
(2012) we see that the first three shells agree quite well, only the last
shell is 10 per cent lower. Although in principle the angular power
spectrum Cl and the ACF have the same information, in practice
they can yield different results. This is mostly due to the need to
include mask effects in the case of the angular spectra, and also in
the estimation of the covariance matrix, which is nearly diagonal for
the power spectrum. The two analyses, performed independently,
are complementary and the consistency between them provides an
interesting cross-check of systematics.

For the product of the growth rate with σ 8, Crocce et al. (2011b)
found fσ 8 = 1.14 ± 0.57, 0.024 ± 0.53 and 1.39 ± 0.46 in redshift

Figure 4. Best-fitting values for the RSD parameters for the first and third
approaches as explained in the text: black bullets assuming different fσ 8

and bσ 8 for each shell and blue star assuming a constant bσ 8 and fσ 8 for
all shells. The red squares are the results from Crocce et al. (2011b) and
green diamonds from Reid et al. (2012). The dashed lines are the expected
theoretical values with σ 8 = 0.8 and b = 2.

shells similar to our three lowest. Within the large errors, the results
are compatible. In Fig. 4, we show the best-fitting results for both
parameters in each redshift shell. It shows that the first two shells
are in agreement with the theoretical expectation within 1σ and the
last two shells only agrees at the 2σ confidence level. For the bias
parameters, it shows that only the third shell does not agree with a
bias b = 2 at 1σ level.

Recently, Reid et al. (2012) reported the result for RSD param-
eters using BOSS DR9 spectroscopic data, which is a subset of
the LGs we are analysing. They found bσ 8 = 1.24 ± 0.05 and
fσ 8 = 0.43 ± 0.07 at an effective redshift z = 0.57 (their results
are shown in Fig. 4 as a green diamond). The bσ 8 agrees quite well
with our results for all approaches. When assuming a constant fσ 8

for all shells, we find fσ 8 = 0.72 ± 0.22 as our best-fitting value,
which agrees with Reid et al. (2012) at 1.5σ . For a better compar-
ison with the Reid et al. (2012) results, we analyse the results for
our third method, in which case we find bσ 8 = 1.24 ± 0.04 and
fσ 8 = 0.69 ± 0.21 (both results are displayed in Fig. 4 as a blue
star); in this case the bias is again consistent, but the velocity growth
rate still agrees at the 1.5σ level. Ross et al. (2011b) showed that
the highest redshift shell is most likely to be affected by systematic
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uncertainties, so we performed this last analysis without the last
shell, with results bσ 8 = 1.26 ± 0.04 and fσ 8 = 0.64 ± 0.23, and
in this case our results agree with Reid et al. (2012) at 1σ .

In a previous study, Ross et al. (2011a) showed the impact of the
assumed cosmology upon the RSD parameters using ACF. They
found that changing �m from 0.25 to 0.30 produces a significant ef-
fect on f(z)σ 8(z) result. The difference between WMAP7 and Planck
results (Ade et al. 2013), for a �CDM cosmology, is most pro-
nounced in �m, which increases by ∼10 per cent. Therefore the
RSD is affected when assuming WMAP7 or Planck cosmologies.
We re-analysed the data with Planck cosmology for the case of
constant fσ 8 and bσ 8 in all four shells and found that fσ 8 increases
by 33 per cent in comparison to WMAP7 cosmology, whereas bσ 8

does not change significantly, in agreement with Ross et al. (2011a).
In order to check the impact of the assumed cosmology on the

covariance matrix we have also performed the fits with a different
cosmology, varying �m, �b, h, within the WMAP7 allowed values.
We found that the best-fitting results and the corresponding χ2 do
not change significantly, with a difference at the sub-per cent level.
Therefore we are confident that the approximation of keeping the
theoretical covariance matrix fixed at a given cosmology does not
bias our results significantly.

We also performed the analysis with only the diagonal errors,
in angle and redshift, to check the impact of the covariance matrix
on the results. The results for fσ 8 and its error are affected in a
significant manner. The errors are typically four times smaller with
respect to the errors with the full covariance matrix and the χ2 are
much higher for all shells. This demonstrates, as expected, that it is
crucial to apply the full covariance matrix in the ACF analysis.

6 C O S M O L O G I C A L PA R A M E T E R S

6.1 PLG analysis

In this section we apply the so-called PLG method (Sánchez et al.
2011) to extract the baryonic acoustic scale in the four redshift bins
under analysis. The ACF is fitted around the BAO peak by a function
of the form

ω(θ ) = A + Bθγ + Ce
−(θ−θplg)2

2σ , (22)

with six free parameters (A,B, C, γ, σ, θplg).
We modify the PLG method by imposing some priors in the width

of the BAO peak σ . The width of the BAO peak is defined by three
factors: silk damping; adiabatic broadening of the acoustic oscil-
lation and correlations of the initial perturbations. In configuration
space, this correspond to ≈10 per cent of the BAO scale. Therefore
we fix the width of the Gaussian to be proportional to 10 per cent
of the BAO scale at a given redshift. We keep as free parameter the
proportionality constant p between the width and the mean of
the peak, assumed to be independent of redshift. Therefore, from
the original 24 free parameters, six for each shell, we have now five
free parameters per redshift shell (20 in total, keeping σ fixed), plus
one extra free parameter p, related to the width of the peak by

σ = 0.1 p θplg. (23)

If we do not impose priors in σ , the PLG method can give un-
physical results due to the noisy nature of the ACF measurement.
For instance, in the second panel from top to bottom of Fig. 5, a wide
peak can be seen in the data around ≈3.◦6, but with some decrease
of the amplitude at the mean (consistent with noise), producing two
peaks: one around 3.◦2 and the other around 4.◦2. The basic PLG

Figure 5. PLG fit (red line) using priors in the width of the Gaussian, to the
four ACF (black dots) simultaneously using the full covariance matrix with
correlations between redshift shells. We do not display the ACF values for
clarity. The redshift shells are arranged from top to bottom with increasing
redshift. We use this result as the best case.

method is not capable of solving this kind of structure, and for this
reason we impose the prior discussed above.

The mean of the Gaussian θplg is associated with the true angular
acoustic scale at redshift z, θBAO(z), through a correction λ(z, �z)
that is independent of cosmology and only depends on redshift and
redshift bin width:

θBAO(z) = λ(z, �z)θplg. (24)

The parametrization of the function λ(z, �z) is described in Sánchez
et al. (2011), where it is shown that this function does not vary
significantly (sub-per cent level) for 14 different cosmologies.

In order to find �z, one has to face a small difficulty. In a photo-
metric analysis, one defines the top-hat bin width as the difference
between the photo-z limits, which does not correspond to the true
redshift bin width, due to the smearing by the photo-z error. There-
fore, we need to correct the actual top-hat photo-z bin width to
obtain the true bin width �z. In our case, since we have the redshift
selection function for each redshift bin, we can estimate the true
redshift bin width for each redshift bin from the relation (Simpson
et al. 2009)

�z =
√

12 σz, (25)

where σ z is the dispersion of the selection function at the given
redshift bin. In our analysis, we obtain a true bin width for each
bin given by �z1

true = 0.101, �z2
true = 0.130, �z3

true = 0.158 and
�z4

true = 0.185.
These measurements can then be used to constrain the angular

diameter distance as a function of redshift, related by

θBAO(z) = rs

DA(z)
, (26)

extracted from the ACF, where rs is the baryonic acoustic scale at
decoupling and DA(z) is the angular diameter distance at redshift z.

The four redshift bins are fitted together considering the covari-
ance matrix between redshift shells introduced in Section 3 using
the MINUIT library (James & Roos 1975). In total, there are 21 free
parameters, with a number of 140 data points and hence 119 de-
grees of freedom. In Fig. 5, the fit results are shown on top of the
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Table 3. PLG fit results for the four redshift bins im-
posing priors in the width of the BAO peak. The overall
quality of the fit is χ2/dof = 0.96. θBAO is obtained after
correcting from projection effects (equation 24), and its
error accounts for both statistical and systematic errors.
The signal-to-noise ratio (S/N) is giving as the strength of
the Gaussian divided by its error (in our parametrization,
parameter C).

Redshift shell θplg (◦) θBAO (◦) S/N

0.45 ≤ zp ≤ 0.50 4.13 ± 0.19 4.48 ± 0.29 2.6
0.50 ≤ zp ≤ 0.55 3.93 ± 0.20 4.28 ± 0.29 2.5
0.55 ≤ zp ≤ 0.60 4.49 ± 0.31 4.90 ± 0.39 2.0
0.60 ≤ zp ≤ 0.65 3.68 ± 0.23 4.01 ± 0.30 1.3

Figure 6. θBAO as a function of z for the CMASS catalogue. The dashed
line is given by the best-fitting cosmology, when the θBAO measured in
the CMB is also used. The best-fitting cosmology is �m = 0.249 ± 0.031,
w = −0.885 ± 0.145, fixing the other parameters to h = 0.71 and
�b = 0.0449.

measured ACF for the four redshift bins and in Table 3 we display
the main values of the fit. The best-fitting value for the proportion-
ality constant is p = 1.28, resulting that the width of the acoustic
peak is 12.8 per cent the scale of the peak, common to all redshift
bins and in agreement with what is expected from theory.

After correcting from projection effects (using the true redshift
bin width), we obtain θBAO for each redshift bin, as shown in Ta-
ble 3. Errors in θBAO(z) have two main contributions: the statistical
error coming from the fit plus an intrinsic error due to the vari-
ance introduced by the photometric redshift uncertainty, estimated
to be around 5 per cent for a SDSS-like survey (details are found in
Carnero et al. 2012). The combined errors are presented in Table 3.

In Fig. 6 the evolution of θBAO as a function of redshift is shown
for our analysis, together with the best-fitting value stated below,
when the θBAO measured in the cosmic microwave background
(CMB) is also used. Errors are given as the diagonal term in the
full covariance matrix of the parameters for the four redshift shells
(statistical plus systematic error).

To find the best-fitting cosmology we parametrize rs as a func-
tion of cosmological parameters using the analytical approxima-
tion given in Eisenstein & Hu (1998). We then minimize the
χ2 statistics using the four BAO measurements together with
the BAO measurement at decoupling measured by WMAP7, with

θBAO(z = 1091) = 0.◦5952 ± 0.◦0016. The best-fitting cosmology for
free parameters �m and w, fixing the other parameters to h = 0.71
and �b = 0.0449, is �m = 0.249 ± 0.031, w = −0.885 ± 0.145. If
we instead use only the DR8 measurements in the (�m, w) space,
there are not enough degrees of freedom and the cosmology is
poorly constrained. Therefore, we fit only �m for a �CDM model,
with a best-fitting result of �m = 0.231 ± 0.079.

Throughout the analysis we have fixed the effective number of
neutrino species to Neff = 4.34, the central value of the result found
by WMAP7 data in combination with BAO and H0 priors (Komatsu
et al. 2011), which deviates from what is expected in the standard
model of particle physics (Neff = 3.04). In order to test the effect
of Neff on the cosmological constraints, we find the best-fitting
value to �m using the BAO measurements from DR8 alone, with
Neff = 3.26, obtained in WMAP9 (Hinshaw et al. 2012). In this
case, the best fit is �m = 0.292 ± 0.090, ∼25 per cent higher than
with WMAP7 Neff. This result shows that the effective number of
neutrino species is an important parameter in the analysis of the
BAO if we use it as a standard ruler, and its uncertainty will need
to be considered in future analysis.

In order to compare our results with previous measurements, we
use the results from Seo et al. (2012), where the BAO position for
the same data was obtained from the angular power spectrum with
a different methodology and stacked the Cl for each shell together
to give a single angular distance measurement at z = 0.54. They
measured the deviation of the best-fitting cosmology with reference
to a fiducial model with �m = 0.274, w = −1, �b = 0.049, h = 0.7,
parametrized by

α = DA(z)/DA(z)fiducial. (27)

The results found by Seo et al. (2012) was α = 1.066 ± 0.047,
after marginalizing over the other cosmological parameters. Our
parametrization is different, and we did not calculate a stacked ACF
from the four redshift bins. Nonetheless, we can also measure the
deviation from the same fiducial cosmology and obtain a value for α

using the values obtained with the PLG method. In this case we do
not use the BAO measurement from WMAP7. Without marginal-
izing, and using the best-fitting cosmology, we obtain a value of
α = 1.028 ± 0.035. This value is roughly at 1σ from the value
of Seo et al. (2012). The error is smaller in our case because we
have not marginalized over the other parameters. We note that the
DR9 BOSS study (Anderson et al. 2013) found that 1σ differences
between the BAO position recovered from the power spectrum and
that recovered from the correlation function were not unusual.

6.2 Full shape analysis

In this section we apply the full shape information of the ACF
to constrain a subset of cosmological parameters, namely �m,
fb = �b/�m, σ 8 and bias. Following Blake et al. (2007) and Thomas
et al. (2010), we assume the bias to be scale independent and con-
stant within each shell. The other cosmological parameters are held
fixed at the WMAP7 values given previously. The χ2 function was
constructed as discussed in Section 3 and we used the COSMOMC

package (Lewis & Bridle 2002) to search the parameter space, with
no priors imposed in any of the free parameters.

First we consider the behaviour of the parameters σ 8 and bias
b. These two parameters are highly degenerate, making it difficult
to constrain them separately (Okumura et al. 2008). Therefore we
show the constraint of their product for each redshift combined:
σ 8b1 = 1.46 ± 0.09, σ 8b2 = 1.49 ± 0.10, σ 8b3 = 1.63 ± 0.12 and
σ 8b4 = 1.51 ± 0.15. In order to compare with the previous results
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Table 4. Best-fitting values from the full-shape ACF analysis for
�m and fb = �b/�m, after marginalizing over σ 8 and bias, with
all other parameters being kept fixed at the WMAP7 cosmology as
stated in the text.

Redshift shell �m fb χ2/dof

0.45 ≤ zp ≤ 0.50 0.29 ± 0.04 0.25 ± 0.04 0.65
0.50 ≤ zp ≤ 0.55 0.37 ± 0.05 0.14 ± 0.04 1.49
0.55 ≤ zp ≤ 0.60 0.25 ± 0.04 0.13 ± 0.04 0.79
0.60 ≤ zp ≤ 0.65 0.23 ± 0.04 0.23 ± 0.06 0.62

All shells combined 0.280 ± 0.022 0.211 ± 0.027 1.05

from the RSD analysis (see Section 5) we assume σ 8 = 0.801
as before: b1 = 1.82 ± 0.12, b2 = 1.86 ± 0.13, b3 = 2.03 ±
0.15 and b4 = 1.89 ± 0.17. Although the results from the full
shape analysis are typically 5 per cent lower, they all agree at the
1σ level.

We now focus our attention on other parameters in our cosmolog-
ical analysis, namely �m and fb. First we perform the analysis for
each shell independently in order to check the dispersion of the best-
fitting values. In this case we have four free parameters. In Table 4
we show our results. Both parameters vary appreciably among dif-
ferent redshift shells, but they all agree within 2σ . Even though the

dispersion is non-negligible, the best-fitting values oscillate around
the expected results coming from WMAP7 namely, �m = 0.266
and fb = 0.17. This result already indicates that the combination of
all shells will give results in agreement with WMAP7, anticipating
the main results of this analysis. When comparing with the analysis
from Blake et al. (2007) and Thomas et al. (2010), which used the
angular power spectrum, we found that our results are compatible
in all shells. Compared to the results of Thomas et al. (2010), the
errors on the parameters that we find are smaller, because the area
and number of galaxies in our data set are larger.

The analysis for all combined redshift shells also accounts for
the correlation among shells. For this analysis we have seven free
parameters, the best-fitting results for �m and fb are displayed in Ta-
ble 4 and the marginalized probability distribution function and the
2D likelihood contours are shown in Fig. 7 for all parameters anal-
ysed. The results are �m = 0.280 ± 0.022 and fb = 0.211 ± 0.026
which translates into �b = 0.059 ± 0.008. The matter density pa-
rameter found in our analysis is in good agreement with the value
from WMAP7, with a difference of 5 per cent. The baryon fraction
best fit is higher than WMAP7, ∼20 per cent, but in agreement
within 1σ . In Fig. 8 we show the ACF measurements together with
the best-fitting ACF for this analysis. It shows that the model is
in good agreement with the measurements and the BAO peak is
evident for three redshift shells as already shown in the previous

Figure 7. Likelihood contours for (�m, fb, σ 8b1, σ 8b2, σ 8b3, σ 8b4) with all other parameters being kept fixed in WMAP7 cosmology. The diagonal panels
display the marginalized likelihood for each one of the six parameters. The other plots show the 1σ and 2σ confidence regions of each pair of parameters, with
the other marginalized.
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Figure 8. Best-fitting ACF full shape information when combining all
shells given in the last line of Table 4 (red line) together with the mea-
surements (black dots). Not only the angular bins are correlated but also
the ACF between shell. We do not display the ACF values for clarity. The
redshift shells are arranged from top to bottom with increasing redshift.

section. The higher χ2 for the second shell is evident due to the
poor fit at small scales.

As stated in the previous section, the main difference between
WMAP7 and Planck results is �m and the Hubble parameter. The
former is ∼10 per cent higher with Planck’s data and the latter is
∼4 per cent lower. As �m is left as a free parameter in our anal-
ysis, it is not an issue, but h is fixed. As shown in Blake et al.
(2007) the major effect of changing h is in the �m best fit. Because
the clustering characteristics are driven mostly by the combination
�mh, lowering h implies in the increase of �m. Since our best fit
with WMAP7 Hubble parameter is �m = 0.280, if we instead use
h = 0.68, as found by Planck, we would have found a higher value,
in better agreement with �m quoted by Planck.

As an additional cross-check of the results in this section, we
have repeated the analysis above using a completely independent
set of codes, both for the estimation of the theoretical ACF as
well as for the Monte Carlo sampling. We coupled the independent
ACF code to the EMCEE sampler (Foreman-Mackey et al. 2013) and
repeated all the calculations. We find that the results obtained from
COSMOMC and EMCEE are in most cases nearly identical and in all
cases consistent with each other within 1σ errors.

The quoted errors of 8 per cent for �m and 12 per cent for fb are
underestimated since they do not take into account the marginaliza-
tion of the other parameters. For more realistic errors, we should
have varied all parameters, including the Hubble parameter h, spec-
tral index ns and the dark energy equation of state parameter w, and
marginalized over them. Unfortunately the statistical significance
of our data set alone is not sufficient to obtain useful constraints.
Combining our results with a CMB likelihood, e.g. from WMAP or
Planck, would probably allow for a more complete analysis and for
better constraints due to the complementarity of these probes (see
e.g. Ho et al. 2012).

Nonetheless, our results point out that the methods applied to
extract information from measurements of ACF in configuration
space are able to yield competitive cosmological constraints. This
indicates that these methods will be even more useful when applied
to future data sets with greater constraining power. The combination

with other probes of large-scale structure and CMB should provide
additional consistency checks and even better constraints.

7 SU M M A RY A N D C O N C L U S I O N S

We have analysed the large-scale ACF of luminous galaxies from the
SDSS-DR8 photometric data. The ACF was measured in four photo-
z shells with the novel approach develop by Ross et al. (2011a) and
Ho et al. (2012), which incorporates systematics effects and was
able to remove the excess of power at large scales as reported by
previous studies (Sawangwit et al. 2011; Thomas et al. 2011).

We have performed three different analyses using the measured
ACFs: RSD; BAO detection using the PLG method and a cosmo-
logical analysis with the ACF full shape information. The latter
represents, to the best of our knowledge, the first cosmological
analysis performed with the ACF in configuration space. All three
analyses accounted for the correlation between redshift shells and
effects of photo-z errors encoded in the selection function. Our main
results are the following.

(i) Within the redshift-space parameters best fit and assuming
σ 8 = 0.801, we found that the bias parameters are in good agreement
with other DR8 measurements, such as those by Ho et al. (2012).

(ii) When allowing for arbitrary values of fσ 8 in each redshift
shell, the RSD parameters vary appreciably around the expected
value from �CDM cosmology, in agreement with the findings of
Crocce et al. (2011b).

(iii) When assuming constant RSD parameters over the survey
range we found bσ 8 = 1.24 ± 0.04 and fσ 8 = 0.69 ± 0.21. The bias
parameter agrees quite well with BOSS DR9 measurements (Reid
et al. 2012), and the growth rate agrees within 1.5σ .

(iv) We extracted the position of the BAO peak using the PLG
parametrization for all four shells, and combined these measure-
ments with the BAO peak in the CMB data from WMAP7. We
obtained cosmological constraints of �m = 0.249 ± 0.031 and
w = −0.885 ± 0.145. For a �CDM model, and using only our own
ACF measurements, we obtained �m = 0.231 ± 0.079 with other
parameters fixed at our fiducial cosmology.

(v) Within the ACF full shape analysis we constrained �m and fb

for each redshift shell independently, and found that the best-fitting
values oscillate around the WMAP7 values, but are all within 2σ .

(vi) When analysing all shells combined, with the full covariance
matrix accounting for the redshift correlations, the best-fitting val-
ues were �m = 0.280 ± 0.022 and fb = 0.211 ± 0.026 in reasonable
agreement with WMAP7.

(vii) Both analysis performed in this work to constrain cosmol-
ogy, namely the BAO peak and full shape information, agree in the
�m best-fitting values, showing that both methods are consistent
with each other.

We have shown that the ACF estimated from photometric data
can be efficiently applied to constrain cosmological parameters. The
ACF results for the photometric DR8 data are clearly not as com-
petitive as those from the spatial correlation function, which already
provides stronger constraints with the BOSS DR9 data (Anderson
et al. 2012; Sánchez et al. 2012). Nonetheless, our results are encour-
aging for future photometric surveys, such as the DES, Panoramic
Survey Telescope and Rapid Response System (PanSTARRS) and
LSST, which will probe larger redshifts and measure significantly
more galaxies. In this case, the ACF measurements have the poten-
tial to accurately constrain a larger number of cosmological param-
eters (Sobreira et al. 2011), allowing for extra consistency checks
with other independent probes.
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Crocce M., Cabré A., Gaztañaga E., 2011a, MNRAS, 414, 329
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