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ABSTRACT
The perturbative approach (PA) introduced by Alard provides analytic solutions for gravita-
tional arcs by solving the lens equation linearized around the Einstein ring solution. This is a
powerful method for lens inversion and simulations in which it can be used, in principle, for
generic lens models. In this paper, we aim to quantify the domain of validity of this method for
three quantities derived from the linearized mapping: caustics, critical curves and the deforma-
tion cross-section (i.e. the arc cross-section in the infinitesimal circular source approximation).
We consider lens models with elliptical potentials, in particular the singular isothermal elliptic
potential and pseudo-elliptical Navarro–Frenk–White models. We show that the PA is exact
for this first model. For the second, we obtain constraints on the model parameter space (given
by the potential ellipticity parameter ε and characteristic convergence κs) such that the PA
is accurate for the aforementioned quantities. In this process, we obtain analytic expressions
for several lensing functions, which are valid for the PA in general. The determination of this
domain of validity could have significant implications for the use of the PA, but it still needs
to be probed with extended sources.
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1 IN T RO D U C T I O N

Gravitational arc systems can be used as a powerful probe of
the matter distribution of galaxies and galaxy clusters acting as
lenses (Kovner 1989; Miralda-Escudé 1993a; Hattori, Watanabe &
Yamashita 1997). Further, their abundance can be used to constrain
cosmological models (Bartelmann et al. 1998, 2003; Oguri, Taruya
& Suto 2001; Golse, Kneib & Soucail 2002). This motivated several
arc searches to be carried out, both in wide field surveys (Gladders
et al. 2003; Cabanac et al. 2007; Estrada et al. 2007; Belokurov
et al. 2009; Kneib et al. 2010; Kubo et al. 2010; Gilbank et al. 2011;
Wen, Han & Jiang 2011; Bayliss 2012; More et al. 2012; Wiesner
et al. 2012; Erben et al., in preparation), as well as in images target-
ing know clusters (Luppino et al. 1999; Zaritsky & Gonzalez 2003;
Sand et al. 2005; Smith et al. 2005; Hennawi et al. 2008; Horesh
et al. 2010; Kausch et al. 2010; Furlanetto et al. 2013a). Upcom-
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ing wide field imaging surveys, such as the Dark Energy Survey1

(Abbott et al. 2005; Annis et al. 2005), which started operations
in 2012, are expected to detect of the order of 103 strong lensing
systems, about an order of magnitude increase with respect to the
current largest surveys.

Two primary approaches have been followed in practical appli-
cations of gravitational arc systems. On the one hand, inverse mod-
elling attempts to ‘deproject’ the arcs in individual lens systems to
determine lens and source properties (Kneib et al. 1993; Keeton
2001b; Golse et al. 2002; Comerford et al. 2006; Wayth & Webster
2006; Jullo et al. 2007, 2010). On the other hand, arc statistics (Wu
& Hammer 1993; Bartelmann & Weiss 1994; Grossman & Saha
1994) aims at counting the number of arcs in cluster samples and
comparing with the predictions from cosmological models.

Both approaches require the lens equation to be solved numer-
ically for finite sources numerous times. The inverse modelling
typically needs arc images obtained from a multidimensional space

1 http://www.darkenergysurvey.org/
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of source positions and lens parameters scanned during the min-
imization process to find the best solution for sources and lenses
(e.g., Wayth & Webster 2006). For this reason, analyses using the
inverse modelling are often restricted to simple lens models, in
particular models with elliptic lens potentials (so-called pseudo-
elliptical) and/or to point sources, for example, considering bright
spots in arcs as multiple images of point sources (Keeton 2001b;
Wayth & Webster 2006; Jullo et al. 2007; Oguri 2010).

For arc statistics, predictions for the arc cross-section must be
derived as a function of source and lens properties, and the cos-
mological model again by obtaining a large set of arc images
(Miralda-Escudé 1993b; Bartelmann & Weiss 1994; Meneghetti
et al. 2001; Meneghetti, Bartelmann & Moscardini 2003; Oguri,
Lee & Suto 2003). The cross-section is then convolved with the
distribution of lens properties expected in a given cosmology and
convolved with the source distribution. Another approach is to use
directly high-resolution N-body simulations obtaining arc images
by ray tracing through the mass distribution for a large number of
sources (Meneghetti et al. 2008; Horesh et al. 2011; Boldrin et al.
2012).

It is therefore useful to develop approximate methods for ob-
taining gravitational arcs, which will be particularly useful given
the increase of strong lensing systems to be discovered by the next
generation wide-field surveys. A most promising technique for this
purpose is given by the perturbative approach (PA; Alard 2007,
2008), which provides an approximate solution for the lens equa-
tion close to the Einstein ring, leading to analytic solutions for arcs.

The power of this approach is that it can be applied, in principle, to
generic lens models, including those arising from simulations. The
method is suitable for large tangential arcs, since the solutions are
accurate for images located close to the Einstein ring corresponding
to the circularly averaged lensing potential.

Another important feature of the method is that it naturally re-
produces arcs resulting from the merger of multiple images, which
cannot be accounted for with other approximate methods for arcs
proposed in the literature (e.g., Keeton 2001a; Fedeli et al. 2006).
Such merger arcs are key for lens inversion methods and also play
an important role in the arc cross-section (Rozo et al. 2008).

The PA has already been used for inverse modelling in Alard
(2009, 2010). Given that it reproduces arc contours that can be as-
sociated with isophotes, it could also be used to simulate the bright-
ness distribution of arcs, in a similar way to what was implemented
in Furlanetto et al. (2013b) for arc shaped contours.

An important issue for practical applications of this approach is
the determination of its domain of validity. This topic is discussed
in Alard (2007), comparisons with arc simulations are presented in
Peirani et al. (2008), and a recent work by Habara & Yamamoto
(2011) has investigated arcs in several configurations for a pseudo-
elliptical model in this approach. However, a systematic study of
its limit of applicability has not yet been carried out. In this paper,
we make a first attempt to determine a domain of validity of the
method in terms of the parameter space of the lens model. We will
restrict to the simple case of pseudo-elliptical models, which are
nevertheless widely used for the inverse modelling. Moreover, for
simplicity, we will restrict the comparisons with the exact solution
for three quantities connected to arcs, but which do not involve the
lensing of finite sources. We expect that the limits obtained here can
be connected to the domain of validity for arcs and extended for
more general models, but this is left for subsequent explorations.

In this work, our purpose is twofold. The first is to explore the
application of the PA to determine quantities arising from the lo-
cal lens mapping, such as the arc cross-section for infinitesimal

circular sources (deformation cross-section). The second is to de-
termine a domain of validity such that the critical curves, caustics
and deformation cross-section are accurately obtained. This study is
performed for the pseudo-elliptical Navarro–Frenk–White (PNFW)
model, determining regions of its parameter space where the PA pro-
vides a good approximation for these quantities. We also consider
the singular isothermal elliptic potential (SIEP) model and show
that the solution of the PA is exact in this case.

The outline of this paper is as follows: in Section 2, we present
a few basic results of gravitational lensing theory, introduce the
radial lens models to be used in this work and discuss models with
elliptic lensing potentials. In Section 3, we review the PA, present
its application to the computation of the deformation cross-section
and discuss its implementation to pseudo-elliptical models. In Sec-
tion 4, we establish a metric for the comparison between the PA and
the exact solution for critical curves and caustics, and determine
a domain of validity for the PA. In Section 5, we summarize the
results and present concluding remarks.

2 BA S I C S O F G R AV I TAT I O NA L L E N S I N G :
D E F I N I T I O N S A N D N OTAT I O N

In this section, we present a brief review of the lensing theory to set
up the notation and to define the quantities associated with pseudo-
elliptical models. For a more detailed description see, e.g., chapter 8
of Schneider, Elhers & Falco (1992), chapter 6 of Petters, Levine &
Wambsganss (2001) and chapter 3 of Mollerach & Roulet (2002).

The lens equation relates the two-dimensional position (with
respect to the optical axis) of the observed images ξ to those of
the sources η. We may choose a length-scale ξ 0 and define x =
ξ/ξ0 and y = η/η0, with η0 ≡ DOS

DOL
ξ0, where DOL and DOS are the

angular diameter distances from the observer to the lens and source,
respectively. Using these definitions the lens equation is written as

y = x − α(x) = x − ∇xϕ(x), (1)

where α(x) is the ‘dimensionless’ deflection angle and ϕ(x) is the
‘dimensionless’ lensing potential.

The local distortion in the lens plane is described by the Jacobian
matrix of equation (1)

J =
(

∂ y
∂x

)
ij

= δij − ∂iαj (x). (2)

The two eigenvalues of this matrix are written as λr = 1 − κ + γ

and λt = 1 − κ − γ , where κ and γ are the convergence and the
shear given below. Points satisfying the conditions λr,t = 0 define
the radial and tangential critical curves, respectively. Mapping these
curves onto the source plane, we obtain the caustics.

For axially symmetric models, the deflection angle, convergence
and shear are given by

α(x) = dϕ0(x)

dx
= x

�̄(ξ0x)

�crit
, (3)

κ(x) = 1

2

[
α(x)

x
+ dα(x)

dx

]
, (4)

γ (x) = 1

2

[
α(x)

x
− dα(x)

dx

]
, (5)

where �̄(ξ0x) is the mean surface density within a radius x and �crit

is the critical surface density.
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In this work, one model we will make use of is the singular
isothermal sphere (SIS), which is useful to model lenses at the
galactic scale. Its dimensionless lensing potential, deflection angle,
convergence and shear are given by (Turner, Ostriker & Gott 1984;
Schneider et al. 1992; van de Ven, Mandelbaum & Keeton 2009)

ϕ0(x) = x, α(x) = 1, κ(x) = γ (x) = 1

2
, (6)

where we choose the Einstein radius to be the characteristic scale

ξ0 = RE = σ 2
v

G�crit
,

where σ v is the velocity dispersion. From this potential, analytic
solutions of the lens equation can be obtained for finite sources
(Dobler & Keeton 2006; Dúmet-Montoya 2011).

We will also make use of the Navarro–Frenk–White (NFW)
model (Navarro, Frenk & White 1996, 1997), often used to repre-
sent lenses in the galaxy-to-galaxy cluster mass scales. This model
has two independent parameters rs and ρs. By fixing ξ0 = rs and
defining the characteristic convergence as

κs = ρsrs

�crit
, (7)

the lensing potential is given by (Bartelmann 1996)

ϕ0(x) = 4κs

(
1

2
log2 x

2
− 2 arctanh2

√
1 − x

1 + x

)
, (8)

which is a function of the parameter κs alone.
Models with elliptical potentials (the so-called pseudo-elliptical

models) provide simple analytical solutions for some lensing quanti-
ties (Blandford & Kochanek 1987; Kassiola & Kovner 1993; Kneib
2001). They have been widely used in lens inversion problems and
are implemented in several public codes for lens inversion such
as GRAVLENS (Keeton 2001b), LENSVIEW (Wayth & Webster 2006),
LENSTOOL (Jullo et al. 2007) and GLAFIC (Oguri 2010). They have
also been used for arc simulations (Oguri 2002; Meneghetti et al.
2003, 2007).

Pseudo-elliptical models, with potential ϕε(x), are built from
a given axially symmetric potential ϕ0(x) by replacing the radial
coordinate x by

x̃ =
√

a1 x2
1 + a2 x2

2 = x�φ, (9)

where

�φ ≡
√

a1 cos2 φ + a2 sin2 φ, (10)

such that the ellipticity of the lensing potential is

εϕ = 1 −
√

a1

a2
,

where the orientation was chosen such that the major axis of the
ellipse is along the x1 axis (i.e. a2 > a1). The deflection angle,
convergence and shear can be written as combinations of the lensing
functions of the corresponding axially symmetric model for any
choice of a1 and a2 (Dúmet-Montoya, Caminha & Makler 2012).

The SIEP and PNFW models are obtained by following this pro-
cedure for the potentials given in equations (6) and (8), respectively.

3 PERTURBATIVE A PPROACH

For a given lens model, the PA allows one to obtain analytic solu-
tions for arcs as perturbations of the Einstein ring solution. In this

work, we investigate the limits of applicability of the PA, by consid-
ering simple non-axially symmetric models and by looking at local
properties of the lens mapping, instead of lensed finite sources.

In this section, we briefly review the PA and use it for the deriva-
tion of the caustics and critical curves, the deformation cross-section
and quantities needed for its computation. The method is also ap-
plied to models with elliptical lensing potentials.

3.1 Lens equation

The gist of the PA for gravitational arcs developed by Alard (2007,
2008) is to obtain an analytic solution for the lens equation consider-
ing the lens as a perturbation of an axially symmetric configuration
and the source position as a small deviation from the optical axis (i.e.
positioned transversely away from perfect observer–lens–source
alignment). In other words, the arcs are found as perturbations of
the Einstein ring configuration. In this work, we will consider the
thin lens and the single lens plane approximations, which imply a
unique solution for the Einstein ring (Werner, An & Evans 2008).

The Einstein ring is the image of a source aligned with an axially
symmetric lens (with lensing potential ϕ0). Its radius xE is obtained
by solving λt(x) = 0 at the centre of the source plane, i.e.

x − dϕ0

dx
= 0. (11)

Arcs can be obtained by perturbing the equation above either by
shifting the position of the source away from the optical axis and/or
by adding a non-circular perturbation to the lensing potential. These
perturbations are described by

y = δy, ϕ(x) = ϕ0(x) + δψ(x). (12)

These perturbations are assumed to be of the same order in ε (the
strength of the perturbation) throughout the following calculations,
such that

δy = εy, δψ(x) = εϕ(x).

The response to such perturbations is given by the displacement of
the radial coordinate in the lens plane,2 i.e. x = xE → x = xE + δx,
where we also assume the same order in ε such that δx = εx.

To find εx, we solve equation (1) by expanding the solution
around x = xE. Expanding the lensing potential in a Taylor series
around x = xE, we have

ϕ(x) =
∞∑

n=0

[Cn + fn(φ)] (εx)n, (13)

where

Cn ≡ 1

n!

[
dnϕ0

d xn

]
x=xE

,

(14)

fn(φ) ≡ 1

n!

[
∂nδψ

∂ xn

]
x=xE

= ε

n!

[
∂nϕ

∂ xn

]
x=xE

.

2 Note that in Alard (2007, 2008), ξ0 = xE was used as a characteristic scale.
This choice is equivalent to setting xE = 1 in our equations. In this work,
we have made the choice of keeping xE explicitly in the equations for more
generality, allowing us, for example, to choose another characteristic scale
of the problem.
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Inserting x = xE + εx and (13) into equation (1), we find that the
resulting equation at zeroth order in ε is

xE = C1, (15)

which is the Einstein ring equation. Using the relations above and
δx = εx, the resulting equation at the first order in ε is given by

y1 = (κ2δx − f1) cos φ + 1

xE

df0

dφ
sin φ,

y2 = (κ2δx − f1) sin φ − 1

xE

df0

dφ
cos φ, (16)

where κ2 ≡ 1 − 2C2. From equations (3)–(5) we have

d2ϕ0(x)

d x2
= 2κ(x) − α(x)

x
,

and therefore κ2 can be expressed as

κ2 = 2 − 2κ(xE). (17)

Equation (16) is the lens equation in the PA. It can be solved for
δx for each angular position φ of the source, given a perturbation
described by fn(φ). To obtain the images of a finite source, we must
first parametrize its boundary. Then, by varying φ from 0 to 2π, each
point of that boundary is mapped to the lens plane through equations
(16). As a result, a new equation with separated radial and angular
components is formed, whose solution is obtained straightforwardly
(Alard 2007, 2008; Peirani et al. 2008; Dúmet-Montoya 2011).

It is important to emphasize that the solutions (xi, φi) of equation
(16) are valid only to first order in the perturbations in equation
(12), i.e. only for points near the Einstein ring. For points far from
this curve, the solutions are not expected to be highly accurate. For
this reason, the PA is particularly useful for applications involving
tangential arcs. In this work, instead of using finite sources, we focus
on the potential applicability of this method to quantities based on
the local mapping as a first step to quantify the differences with the
exact solutions.

3.2 Local mapping

The Jacobian matrix for the lens mapping is

J =
(

∂ y
∂x

)
ij

=
∑

k

(
JS→L,pol

)
ik

(
JL,pol→cart

)
kj

, (18)

where JS→L,pol is the Jacobian of the transformation from the lens
plane to the source plane in polar coordinates from equation (16) and
JL,pol→cart is the standard Jacobian matrix from polar to Cartesian
coordinates. The calculation of the eigenvalues of the lens mapping
is then straightforward from the equation above and they are given
by

λt = − 1

x

[
1

xE

d2f0

dφ2
− (κ2δx − f1)

]
,

λr = κ2.

(19)

Therefore, the radial coordinate of the tangential critical curve is

xt(φ) = xE + δxt(φ) = xE + 1

κ2

(
f1 + 1

xE

d2f0

dφ2

)
, (20)

and the parametric equations of the critical curve are simply

x1t = xt(φ) cos φ,

x2t = xt(φ) sin φ.

Inserting δxt in equation (16), the parametric equations of the tan-
gential caustic are found to be

y1t = 1

xE

d2f0

dφ2
cos φ + 1

xE

df0

dφ
sin φ, (21)

y2t = 1

xE

d2f0

dφ2
sin φ − 1

xE

df0

dφ
cos φ.

3.3 Constant distortion curves

For infinitesimal circular sources, the length-to-width ratio of arcs
can be approximated by the ratio of the eigenvalues of the lens
mapping Jacobian matrix (Wu & Hammer 1993; Bartelmann &
Weiss 1994; Hamana & Futamase 1997)

L

W
� |Rλ(x)| ≡

∣∣∣∣λr(x)

λt(x)

∣∣∣∣ . (22)

Under this approximation, it is possible to define a region where
gravitational arcs are expected to form by fixing a value for the
threshold length-to-width ratio Rth. Such region is limited by the
curves Rλ = ±Rth (constant distortion curves). Although the condi-
tion (22) does not hold for merger arcs (Rozo et al. 2008), nor for
large or elliptical sources, the curves defined above still provide a
typical scale for the region of arc formation. In this work, we adopt
the common choice Rth = 10 (unless explicitly stated otherwise).
We denote the radial coordinates of these curves as xλ. They are
obtained by solving Rλ(x) = ±Rth, with λr and λt given in the PA
by equation (19). It follows that

xλ(φ) = xt(φ) ×

⎧⎪⎪⎨
⎪⎪⎩

Rth

Rth − 1
, Rλ = +Rth,

Rth

Rth + 1
, Rλ = −Rth.

(23)

The constant distortion curves in the lens plane are therefore
self-similar to the tangential critical curve. The mapping of these
curves to the source plane is done by substituting δxλ = xλ − xE in
equation (16). For instance, the curve Rλ = +Rth has the following
parametric equations:

y1λ = f1+κ2xE

Rth−1
cos φ+ 1

xE

[(
Rth

Rth−1

)
d2f0

dφ
cos φ+ df0

dφ
sin φ

]
,

y2λ = f1+κ2xE

Rth−1
sin φ+ 1

xE

[(
Rth

Rth−1

)
d2f0

dφ
sin φ− df0

dφ
cos φ

]
.

(24)

The parametric equations of the Rλ = −Rth curve are given by the
expressions above with the substitution Rth − 1 → Rth + 1. There is
no self-similarity between these curves and the tangential caustics.

3.4 Deformation cross-section

As mentioned in Section 1, the arc cross-section is a key ingredient
in arc statistics calculations. It is defined as the effective area in the
source plane such that sources within it will be mapped into images
with L/W ≥ Rth. The definition of this area must take into account the
image multiplicity given the source position (i.e. multiply imaged
regions are counted multiple times; see, e.g., Meneghetti et al. 2003).
The computation of the arc cross-section in general demands ray-
tracing simulations, which are computationally expensive (Miralda-
Escudé 1993b; Bartelmann & Weiss 1994; Meneghetti et al. 2001,
2003; Oguri et al. 2003). An alternative is to use the infinitesi-
mal circular source approximation, equation (22), which allows the
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computation of the arc cross-section to be carried out directly from
the local mapping from lens to source plane. In this case, σRth is
computed in the lens plane by

σRth = η2
0σ̃Rth = η2

0

∫
|Rλ|≥Rth

d2 x

|μ(x)| (25)

(see, e.g., Fedeli et al. 2006; Dúmet-Montoya et al. 2012; Caminha
et al., in preparation), where μ = (λrλt)

−1 is the magnification and
the integral is performed over the region of arc formation above the
chosen threshold. The quantity σ̃Rth is known as the dimensionless
deformation cross-section.

In the PA, the magnification can be written from equation (19)
as

|μ(x)|−1 = κ2
2

x

⎧⎪⎨
⎪⎩

xt(φ) − x, x < xt(φ),

x − xt(φ), x > xt(φ),

(26)

where xt(φ) is given in equation (20). Inserting the equation above
in equation (25) and integrating the radial coordinate within the
lower and upper limits given in equation (23), it is straightforward
to obtain

σ̃Rth = κ2
2

|Rth|2 + 1(|Rth|2 − 1
)2

∫ 2π

0
x2

t (φ) dφ. (27)

Note that σ̃Rth ∝ R−2
th for Rth 
 1, as expected from the be-

haviour of the deformation cross-section with Rth (Rozo et al. 2008;
Caminha et al., in preparation).

For axially symmetric models (xt = xE), the cross-section is
given simply by

σ̃Rth = 2πκ2
2 x2

E

R2
th + 1(

R2
th − 1

)2 . (28)

The expression above is exact for the SIS model (Bartelmann,
Steinmetz & Weiss 1995). For other axially symmetric models this
expression is still an approximation, since the curves Rλ = ±Rth are
obtained approximatively.

3.5 Perturbative functions for pseudo-elliptical models

We write the elliptical potential as

ϕε(x) = ϕ0(x) + [ϕ0(x̃) − ϕ0(x)] , (29)

such that the perturbed potential becomes

δψ(x, φ) = ϕ0(x̃) − ϕ0(x).

From the definitions (14) and using the identities (3)–(5), it follows
that

f1 = x̃E

xE
α(x̃E) − α(xE),

df0

dφ
= x2

E

2x̃E
α(x̃E)(a2 − a1) sin 2φ, (30)

d2f0

dφ2
= x2

E

x̃E
α(x̃E)(a2 − a1) cos 2φ

−γ (x̃E)

2

[
x2

E

x̃E
(a2 − a1) sin 2φ

]2

,

where α and γ are the deflection angle and shear of the corre-
sponding axially symmetric lens. These expressions hold for any

parametrization of the lensing potential ellipticity and for any
pseudo-elliptical lens (Dúmet-Montoya et al. 2012).

For small values of the lensing potential ellipticity, equations (30)
reduce to

f1 = a1 − a2

2
κ(xE)xE cos 2φ + O(ε2),

df0

dφ
= a2 − a1

2
x2

E sin 2φ + O(ε2), (31)

d2f0

dφ2
= (a2 − a1)x2

E cos 2φ + O(ε2).

From equation (20) and the expressions above, we have

xt(φ) = xE

[
1 + a2 − a1

2

(
2 − κ(xE)

κ2

)
cos 2φ

]
, (32)

and inserting this into equation (27) we get

σ̃Rth = 2πx2
E

R2
th + 1(

R2
th − 1

)2

[
κ2

2 + 1

8

(
1 + κ2

2

)2
(a2 − a1)2

]
. (33)

Thus, for small ellipticities, the deviation with respect to the axially
symmetric case is quadratic.

Instead of using a2 and a1 it is more intuitive to express the results
in terms of the ellipticity of the potential. Several parameterizations
have been used to define the ellipticity in this context. From now
on, we adopt the convention (Blandford & Kochanek 1987; Golse
& Kneib 2002; Dúmet-Montoya et al. 2012)

a1 = 1 − ε, a2 = 1 + ε, (34)

where ε is the potential ellipticity parameter. The connection to the
ellipticity of the mass distribution ε� depends on the model. For
the SIEP ε� = 3 ε to first order in ε (Kassiola & Kovner 1993). For
the PNFW model this relation depends on κs and expressions for
ε�(ε, κs) are provided in Dúmet-Montoya et al. (2012).

Fig. 1 shows the comparison for caustics and critical curves be-
tween the PA and the exact solution for the PNFW model for dif-
ferent values of κ s and ε.

3.6 Singular isothermal elliptic potential

One of the simplest and most often used lens models is given by
the SIEP. For this model, using expressions (6) in equation (30), the
perturbative functions are

f1 = �φ − 1,

df0

dφ
= (a2 − a1)

sin 2φ

2�φ

, (35)

d2f0

dφ2
= a1 a2�

−3
φ − �φ,

where �φ is given in equation (10). When substituted into equations
(16) the expressions above lead to

y1 = x
(

1 − a1

x̃

)
cos φ and y2 = x

(
1 − a2

x̃

)
sin φ, (36)

which are the components of the lens equation of this model without
any approximation. Hence, the solution of the PA is exact in the case
of lensing by the SIEP model.

The same conclusion does not hold for the PNFW model. We
will thus investigate the domain of validity for this model in the
next section.
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2980 H. S. Dúmet-Montoya et al.

Figure 1. Critical curves (top panels) and caustics (bottom panels) obtained with the PA (dashed lines) and the exact solution (solid lines) for the PNFW
model: κs = 0.1 and ε = 0.2 (left), κs = 0.5 and ε = 0.32 (middle), and κs = 1.0 and ε = 0.35 (right). The values of ε in the middle and right-hand panels
were chosen by imposing D2 = 5 × 10−4 for critical curves and caustics, respectively (see Section 4).

4 LI M I T S O F VA L I D I T Y O F TH E
PE RTURBATIVE A PPROACH FOR
T H E PN F W MO D E L

Previous attempts to quantify the differences between exact and per-
turbative solutions were carried out in the literature. Alard (2007)
proposed a method based on the relative importance of the third-
order term in the Taylor series of the gravitational potential. Habara
& Yamamoto (2011) performed a qualitative analysis of a particular
arc configuration, varying some of the system parameters and estab-
lishing criteria based on the position and multiplicity of the images.
However, they did not define a metric to compare the solutions nor
carry on the analysis for more general configurations.

Investigating the domain of validity of the PA with finite sources
would require a large parameter space to be probed, including the
lens and source parameters and their relative positions. On the other
hand, as a starting point, we may look at quantities that are depen-
dent only on the lens, such as the tangential caustic and critical curve
and the deformation cross-section (the latter will depend also on the
choice of Rth). Besides reducing the parameter space – for example,
for ε and κ s in the PNFW case – it is simpler to define metrics to
quantify the deviation of the perturbed solution from the exact one.
We expect that the constraints on the domain of validity determined
from the quantities above can be connected to those arising from
the images of finite sources. Thus, exploring the simplest case be-
fore may provide guidance to the determination of the domain of
validity of the method finite sources in the future. Setting a domain
of validity from the lens model alone may provide a rapid method
to adjudicate validity of the perturbative method a priori, just from

the lensing potential, without the need of obtaining images of the
sources.

In this section, we shall attempt to quantify the deviation of crit-
ical curves and caustics using a figure of merit akin to the one
proposed in Dúmet-Montoya et al. (2012). We will then compare
the deformation cross-sections and, finally, combine the results to
obtain limits that define a region in the parameter space of PNFW
models where the PA can be used to accurately obtain local proper-
ties of a given lens system.

4.1 Limits for critical curves and caustics

To quantify the deviation of the solution of the PA from the exact
one for critical curves and caustics we use a figure of merit defined
as the mean weighted squared fractional radial difference between
the curves, i.e.3

D2 ≡
∑N

i=1 wi[xES(φi) − xPA(φi)]2∑N
i=1 wi x2

ES(φi)
, (37)

where xES(φi) and xPA(φi) are the radial coordinates of the tangential
curves (either critical curves or caustics) obtained from the exact
solution and with the PA, respectively. These are computed on a
discrete set of N points defined by the polar angle φi. Further,

3 Expression (37) is formally equal to the one proposed in Dúmet-Montoya
et al. (2012), where it was used to compare an isocontour of κ to an ellipse.
Here, the same expression is used to compare two solutions for caustics or
critical curves.
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Figure 2. Mean weighted squared radial fractional difference D2 as a function of the ellipticity parameter for the PNFW model for various values of the
characteristic convergence κs. Left-hand panel: for critical curves. Right-hand panel: for caustics.

wi ≡ φi − φi−1 is a weight to account for a possible non-uniform
distribution of points in φ.

Choosing a cut-off value for D2, we can define a range in ε

for which the curves obtained with both the exact and perturbative
solutions will be similar enough to each other. The cut-off value
is then chosen by visually comparing the exact and perturbative
solutions for the critical curves and caustics associated with several
values of D2, for combinations of the PNFW lens parameters.

Before presenting the results, we should stress a technical point.
In the particular case of caustics, calculating the two functions in
the same polar angle becomes a non-trivial issue. This is because in
general, the source plane points (y1t, y2t) are not equally distributed
in angle, as they are obtained by scanning angular values in the
lens plane which map non-linearly to angular values in the source
plane. Thus in general, a source plane angle does not correspond to
the same lens plane angle. Yet, to compute D2 for the caustics, it
is necessary that both xES and xPA be calculated at the same polar
angle position in the source plane. Thus, to enforce this last point, we
first determine the polar angle corresponding to each point (y1t, y2t)
obtained with the exact solution, i.e.

φS = arctan

(
y2t

y1t

)

and obtain the corresponding radial coordinate xES = yt(φS) =√
y2

1t + y2
2t . In the same way, we compute the polar angle of the

tangential caustic obtained with the PA (which we denote by φPA
S ),

i.e.

φPA
S = arctan

(
y2t(φL)

y1t(φL)

)
,

where y1t and y2t are given in equation (21) and yPA
t =

√
y2

1t + y2
2t.

We then vary the angle φL (only the interval 0 ≤ φL ≤ π/2 is
needed, for symmetry reasons) such that for each radial position
yt, the angles φS and φPA

S are chosen to have the same value at
step i. Finally, having determined (yt, φS) for the exact solution and
(yPA

t , φPA
S ), we proceed to compute D2 as in equation (37).

Fig. 2 shows D2 as a function of ε for some values of4 κ s. In the
left-hand panel, the results for critical curves are shown. Since the
perturbation increases with ε, D2 also increases with ε, as we might
expect. In addition, D2 decreases as κ s increases, at least for κ s <

1.0. In the right-hand panel, we show the results for caustics. The
behaviour of D2 is qualitatively similar to that of critical curves,
except for at the highest κ s, where the behaviours are reversed.
However, the values of D2 computed for caustics are higher than
the corresponding ones for critical curves, for a given (κs, ε). This
means that imposing cut-off values of D2 for matching caustics,
we will match the corresponding critical curves automatically. We
found by visual inspection that for D2 ≤ 5 × 10−4 there is a very
good match for the caustic curves. In Fig. 1, we show the values of
D2 calculated for each example, demonstrating visually the validity
of this diagnostic measure. In particular, we have checked that cut-
off values of D2 higher but close to our chosen limit of 5 × 10−4

are not suited for matching caustic curves well.
To estimate the validity of the PA, Alard (2007) introduced the

parameter D ≡ 3|C3|(δxarc)2, where δxarc corresponds to the differ-
ence between the arc contours obtained in the PA and the Einstein
radius, and C3 is the third-order term in the Taylor expansion of the
gravitational potential (see equation 13). In order for the PA to be
accurate, D should be small. For models based on the SIS profile,
this condition is always true, since C3 = 0 (which is consistent with
the fact that the perturbative method is exact in this case). For other
pseudo-elliptical models, usually C3 �= 0.

Here, we adapt the definition of D to be used for critical curves,
such that δx is now the radial deviation of these curves with respect
to xE. We associate a unique value of D to the tangential critical
curve, using its maximum value over this curve, which corresponds
to

Dmax = 3|C3|max{(xt(φ) − xE)2}, (38)

4 Throughout this work, following Dúmet-Montoya et al. (2012), we will
consider the range κs ≤ 1.5.
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Figure 3. Maximum values of ε obtained from some cut-off values of D2

on caustics for the PNFW model.

where xt is given in equation (20) and 0 ≤ φ ≤ 2π. Following
Alard’s criterion (i.e. Dmax  1), it would be expected that the
critical curves and caustics obtained with the PA would be close to
the ones obtained in the exact case when both ε and κs are small.
We compute Dmax for the curves shown in Fig. 1, obtaining Dmax =
0.006, 0.38 and 0.55 from left- to right-hand panels. In contrast to
expectations, when Dmax increases, the curves obtained with the PA
become more similar to the exact solutions. Therefore, the criterion
Dmax  1 does not reflect the validity of the PA for these cases.
Moreover, Dmax is not scale invariant (i.e. Dmax ∝ r2

s , where rs is
the length-scale of the PNFW model). These considerations show
that this measure is not well suited to assess the limit of validity of
the method for caustics and critical curves. This result emphasizes
the relevance of our definition of D2 as a measure for the validity
of the PA for critical curves and caustics.

For the application of our criterion, we define εPA
max, for a given

κ s, as the ellipticity threshold giving D2 = 5 × 10−4. This will be
used as a measure of the limit of applicability for the PA for critical
curves and caustics. Fig. 3 shows the maximum values of ε as a
function of κ s for the PNFW model, for some cut-off values of D2.
The εPA

max(κs) function shown in this figure is well fitted by a Padé
approximant of the form

εPA
max =

∑4
n=0 an(κs)

n∑2
m=0 bm(κs)

m
, (39)

with an = {−0.018, 0.235, −0.415, 0.565, −0.264} and bn =
{2.243, −3.709, 1.725}.

4.2 Comparison between deformation cross-sections

In this section, we compare the exact and perturbative solutions
for the deformation cross-section in order to establish limits of
validity for the approximation of this quantity. We then contrast
these limits to those obtained for caustics and critical curves as
done in Section 4.1 (i.e. by imposing ε < εPA

max for each κ s). If
within this regime the PA and the exact solution of the deformation

cross-section do not agree well, this can impose additional limits to
the applicability of the PA.

To quantify the difference between the deformation cross-
sections, we compute their relative difference

�σ̃Rth

σ̃Rth

=
∣∣∣∣ σ̃ES,Rth − σ̃PA,Rth

σ̃ES,Rth

∣∣∣∣ , (40)

where the subscripts ES and PA refer to the exact and perturbative
calculations, respectively.

In Fig. 4, we show �σ̃10/σ̃10 as a function of κ s for some values
of ε. In the left-hand panel, we compare the exact solution with the
expansion for low ellipticities in the PA, equation (33), while in the
right-hand panel we compare with the general expression, equation
(27).5 The perturbative calculation for the axially symmetric NFW
model (ε = 0, equation 28) is a good approximation in this case,
since �σ̃10/σ̃10 < 10 per cent for the entire allowed range of κs. For
values of ε < 0.1 the PA is a good approximation only for κs �
0.5. As ε increases, the difference is larger at smaller values of κs.
However, the perturbative calculation is accurate to within about
10 per cent for κ s � 0.7 up to ε = 0.3 (see the right-hand panel of
Fig. 4).

Additionally, we computed �σ̃th/σ̃th as a function of the thresh-
old Rth. We find that �σ̃th/σ̃th can exceed 50 per cent at values of
Rth � 2.5, since for these values of Rth, the constant distortion
curves are far from the tangential critical curves, meaning that the
premises of the PA do not apply. However, as Rth increases, the
relative deviations among the deformation cross-sections decrease.
In particular, we found that for κ s � 0.9 and Rth > 7.5, these relative
deviations do not depend on Rth.

In Fig. 5, we show isocontours of �σ̃10/σ̃10, for the exact and
perturbative calculations, in the parameter space κs–ε together with
the curve εPA

max(κs). We see that the constraints imposed by �σ̃10/σ̃10

and εPA
max are complementary, meaning that for κs � 1.0 the constraint

obtained with caustics and critical curves is the strongest, while
the opposite is true for κ s > 1.0 if we impose that the maximum
fractional deviation for the cross-section is 10 per cent.

We may then combine the constraints to define a region limited
approximately by the curves

ε =
{

εPA
max(κs), κs � 1.0,

0.33, κs > 1.0.
(41)

Within this region the PA can replace the exact computation of
critical curves, caustics and deformation cross-section with high
accuracy.

5 C O N C L U D I N G R E M A R K S

The PA (Alard 2007, 2008, 2009, 2010) provides analytical solu-
tions for gravitational arcs by solving the lens equation linearized
around the Einstein ring solution. This method has a wide range of
potential applications, from the inverse problem in strong lensing
to fast arc simulations. This technique goes beyond other analytical
approximations in the literature in which it may be used for generic
lens models (including mass distributions arising from N-body sim-
ulations) and for finite sources.

5 It should be noted that, due to the quadratic scaling with respect to ε of
the deviation from the axially symmetric case, equation (33) is an excellent
approximation for equation (27) for low ellipticities. Thus, the left-hand
panel of Fig. 4 would remain essentially unchanged if we used equation
(27) instead of equation (33) there.
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Figure 4. Relative deviation among deformation cross-sections for the PNFW model as a function of κs for some values of ε. Left-hand panel: �σ̃10/σ̃10

between exact solution and equation (33). Right-hand panel: �σ̃10/σ̃10 between exact solution and equation (27).

Figure 5. Comparison between deformation cross-sections for the PNFW
model space parameter. Contours of constant �σ̃10/σ̃10. The solid line shows
the εPA

max(κs ) curve.

A key aspect for practical applications of the method that has
not been systematically addressed before is the determination of its
limit of validity. Motivated by this issue, in this paper we aimed to
determine the accuracy of the PA for caustics and critical curves, and
for the deformation arc cross-section. Although these quantities do
not involve arcs (i.e. the lensing of finite sources), they allow one to
obtain limits on the accuracy of the linearized mapping from the PA.
Also, the parameter space to be probed is significantly decreased,
since these quantities depend basically on the lens properties and
not on the source ones.

We have considered a restricted set of lens models, more specifi-
cally those with elliptical lens potentials, and in particular the PNFW
and SIEP models, which are nevertheless widely used in strong
lensing applications, specially for the inverse modelling. Whenever
possible, we sought to derive analytic expressions for the quantities
involved in the calculations, many of which are new. Some are valid
for the PA in general, others apply to pseudo-elliptic lens models.
The main results of the paper are summarized below.

We obtained analytic expressions for the constant distortion
curves in the PA (equations 23 and 24), which, in the lens plane,
are found to be self-similar to the tangential critical curve. We de-
rived an analytic formula for the deformation cross-section (equa-
tion 27), which reproduces the scaling of the arc cross-section with
Rth obtained numerically in previous works. For axially symmetric
models, the cross-section is obtained in closed form (equation 28).

We have obtained simple analytic expressions for the pertur-
bative functions for pseudo-elliptical models, which are valid for
any choice of the ellipticity parametrization (equation 30). These
expressions generalize those given in Alard (2007, 2008) and in
Habara & Yamamoto (2011).

We derive approximate solutions to the tangential critical curve
(equation 32) and for the deformation cross-section (equation 33)
for low ellipticities in pseudo-elliptical models. We show that the
deviation of the cross-section with respect to the axially symmetric
case is quadratic in the ellipticity.

We have considered the SIEP and the PNFW models to represent
lenses at galaxy and galaxy cluster mass scales. We have shown
that the PA provides the exact solution for the SIEP model. For the
PNFW model, we compared the critical curves and caustics obtained
with this approach with those obtained with the exact solution for a
wide range of values of κ s and ε.

We show that the criterion Dmax  1 proposed by Alard (2007)
extended to be applied to the tangential critical curve (equation 38)
is not adequate to set a limit of validity for these cases. To this
end, we use a figure of merit, D2 (equation 37), to quantify the
deviation of the PA from the exact solution for caustics and critical
curves. We verify that D2 provides a quantitative description of the
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deviation among both solutions. In particular, D2 decreases with κ s

(as can be drawn from Fig. 1) and increases with ε (as expected from
the increasing of the perturbation to the lensing potential with ε).
Since the deviation between the exact and perturbative solutions for
caustics is higher than the deviation for critical curves, it is sufficient
to set a limit onD2 for caustics to ensure a small deviation for critical
curves.

By setting a threshold on D2 computed at caustics, a maximum
value of ε is determined for each κs, such that a good matching
for caustics and also for critical curves is ensured. We determine
these maximum values εPA

max(κs) by choosing D2 = 5 × 10−4. This
defines a domain of applicability of the PA for the PNFW model in
the range of κ s being considered. We provide a fitting function for
εPA

max(κs) (equation 39). For κ s � 0.8, the PA is limited to ε � 0.1.
However, for κ s > 1.0 it is possible to use this approach even up to
ε = 0.4 for these cases.

Another limit on the PFNW model parameters is obtained from
the comparison of the deformation cross-section for both exact
and perturbative calculations. The fractional deviation is less than
10 per cent (Fig. 5) for κs � 0.7 and ε � 0.3 (corresponding to
ε� � 0.55).

We may use these results to set further constraints on the elliptic-
ity parameter of the PNFW model, by requiring an agreement with
the exact σ̃Rth , besides the condition ε < εPA

max(κs). This ensures that
caustics, critical curves and the local mapping are well reproduced
by the PA for the PNFW model. The combined restriction, imposing
the matching for caustics and an agreement to about 10 per cent for
deformation cross-sections, is given in equation (41).

In this paper, we provided a first systematic attempt to set limits
on the domain of applicability of the PA for strong lensing in terms
of the parameters of a given lens model, more specifically for the
PNFW model. The limits are imposed so that the caustics, critical
curves and deformation cross-section match the exact solutions
with a given accuracy. Although these quantities are useful for
strong lensing applications, it is important to determine a domain of
validity for arcs/finite sources. For example, Habara & Yamamoto
(2011) investigated the domain of validity of the PA for extended
circular sources. It is argued that PA can be used for sources with
radius � 0.2 xE up to ε � 0.3. This result should be extended for
generic configurations probing the space of the source and lens
parameters and their relative position. We expect that the limits
obtained here can be connected to the domain of validity for arcs
providing guidance to the exploration of this wider parameter space.
The systematic application to arcs and connection to the current
results is left for a subsequent work. It is also important to check
whether the criterion established here for the D2 threshold can be
applied to other lens models, so that we have an a priori criterion for
the domain of validity of the PA regardless of the specific model.

The usefulness of the PA justifies the search for a determination
of its accuracy and limit of applicability. Once this is established
we will be able to safely use this promising technique in a number
of applications, within its domain of validity.
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