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ABSTRACT

In this article, we perform a second order perturbation analysis of the gravitational metric
theory of gravity f(x) = x*/? developed by Bernal et al. We show that the theory accounts
in detail for two observational facts: (1) the phenomenology of flattened rotation curves
associated with the Tully—Fisher relation observed in spiral galaxies, and (2) the details of
observations of gravitational lensing in galaxies and groups of galaxies, without the need of any
dark matter. We show how all dynamical observations on flat rotation curves and gravitational
lensing can be synthesized in terms of the empirically required metric coefficients of any
metric theory of gravity. We construct the corresponding metric components for the theory
presented at second order in perturbation, which are shown to be perfectly compatible with
the empirically derived ones. It is also shown that under the theory being presented, in order
to obtain a complete full agreement with the observational results, a specific signature of
Riemann’s tensor has to be chosen. This signature corresponds to the one most widely used
nowadays in relativity theory. Also, a computational program, the Metric EXtended-gravity
Incorporated through a Computer Algebraic System (Mexicas) code, developed for its usage
in the Computer Algebraic System Maxima for working out perturbations on a metric theory

of gravity, is presented and made publicly available.
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1 INTRODUCTION

When Einstein introduced his theory of general relativity, an astro-
physical prediction for the motion of the planet Mercury (a massive
particle) through its orbit was made (Einstein 1916). The second
step was to test general relativity through the deflection of light
(massless particles) coming from stars appearing near the Sun’s
limb during a solar eclipse (Dyson, Eddington & Davidson 1920).
Both observations constituted the first coherent steps towards the
solid foundation of general relativity, a theory capable of describing
gravitation through a correct relativistic description.

In this sense, any metric theory of gravity must be compatible with
both kinds of observations, the dynamical ones for massive particles
and the observations of the deflection of light for massless particles.
The correct approach is extensively described in the monograph by
Will (1993) where it is shown that when working with the weak field
limit of a relativistic theory of gravity in a static spherically space—
time, the dynamics of massive particles determine the functional
form of the time component of the metric, while the deflection of
light determines the form of the radial one (see also Will 2006, and
references therein).
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To order of magnitude and through a first perturbation analysis,
Bernal et al. (2011b) have shown that it is possible to recover flat
rotation curves and the Tully—Fisher relation (i.e. a MONDian-like
weak field limit) from a metric theory of gravity, which includes
the mass of the system in the gravitational field’s action. Such limit
is of high astrophysical relevance at the scales of galaxies, where
Modified Newtonian Dynamics (MOND) accurately describes the
rotation curves of spiral galaxies and the Tully—Fisher relation with-
out the need of dark matter (see e.g. Milgrom 1983; Famaey &
McGaugh 2012). In this article, we show the strength of the calcu-
lations made by Bernal et al. (2011b) by doing an extensive analysis
from perturbation theory for a static spherically symmetric metric
and show that in the weak field limit our results are in perfect agree-
ment not only with the Tully—Fisher relation, but are also in exact
accordance with observations of gravitational lensing over a wide
range of astrophysical scales.

Extensions to Einstein’s general theory of relativity have been
proposed since the publication of the theory itself (see e.g.
Schimming & Schmidt 1990). However, it has not been until recent
times that observations at different mass and length scales have
concluded that in order to keep Einstein’s field equations valid,
unknown dark matter and energy entities need to be added to the
theory. In this article, a complementary approach is taken where the
existence of these unknown dark entities is not required. We show
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the theory built by Bernal et al. (2011b) to be in accordance not
only with the very well established observations of the dynamics of
massive particles through the Tully-Fisher relation, but also with
the dynamics of massless particles through the bending of light as
astrophysically observed.

Mendoza & Rosas-Guevara (2007) and Rosas-Guevara (2006)
showed for the first time that metric theories of gravity are capa-
ble of producing more deflection of light than the one produced
by Einstein’s general relativity. This was done using the metric
theory of gravity constructed by Sobouti (2007). The implications
of this result invalidated the so-called no-go theorem for metric
f(R) theories of gravity proposed by Soussa & Woodard (2003);
Soussa (2003). Furthermore, in this work, we show that it is possi-
ble to explain the observed gravitational lensing for galaxies, and
groups of galaxies without the need of invoking dark matter. De-
velopments, by see e.g. Capozziello et al. (2006), Horvéth et al.
(2012), Nzioki et al. (2011), on weak and strong lensing regimes
of extended metric theories of gravity have followed the work by
Mendoza & Rosas-Guevara (2007) but are not of general validity
with respect to different astrophysical observations.

Testing any metric theory of gravity against observations can
be cumbersome. From an action principle one must derive field
equations, which in principle, have to be solved for e.g. in spher-
ically symmetric space—times. The solutions to this lead to metric
coefficients which in turn, with the use of the geodesic equation,
yield orbits for massive and massless particles, to be then compared
against astrophysical observations. These last are varied and diverse
e.g., centrifugal equilibrium orbits at a variety of radii, for sys-
tems having total masses spanning several orders of magnitude, and
the observed shears and caustic positions of gravitational lensing
observations.

Fortunately, we have derived a much more direct and generic
approach. First, dynamical observations regarding the amplitudes
of galactic flat rotation curves satisfy a well-known scaling with
the fourth root of the total baryonic content: the Tully—Fisher rela-
tion. To second order in perturbations of the velocity measured in
units of the speed of light, this can be shown to imply a definite
empirical prescription for the time component of any metric theory
not requiring dark matter. Secondly, we show that all gravitational
lensing observations on elliptical and spiral galaxies, as well as
for groups of galaxies can be synthesized as the requirement for
the same isothermal total matter distribution as needed to explain
the observed spiral rotation curves and dynamics about elliptical
galaxies, if one assumes Einstein’s general relativity. From study-
ing directly the lens equation in general relativity, this implies a
bending angle which is independent of the impact parameter, and
which scales with the square root of the total baryonic mass of a
system. It can then be shown that this, in combination with the em-
pirical time component of the metric mentioned above, leads to a
fixed empirical prescription for the radial component, for any metric
theory not requiring dark matter.

Thus, we synthesize all dynamical and gravitational lensing as-
trophysical observations at galactic and galaxy group scales, into
empirical time and radial metric components of a spherically sym-
metric metric given at second order in perturbation. It is through
comparing the above to perturbed metric coefficients to the same
order coming from the metric theory treated in this paper that we
are able to show its full compatibility with all relevant dynamical
and gravitational lensing astrophysical observations.

The article is organized as follows. In Section 2, the concept of
weak field limit for a static spherically symmetric space—time is
established and we define the relevant orders of perturbation to be
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used throughout the article. In Section 3, we perturb the vacuum
field equations of the metric theory built by Bernal et al. (2011b)
and show that for a point mass source they closely resemble the
ones usually adopted in f(R) gravity in vacuum. However, these
equations slightly differ under the approximations of the mass and
length scales associated with galaxies and groups of galaxies —
where gravity is expected to differ from Einstein’s general relativity
in the absence of any dark matter component. In Section 4, we ob-
tain the solution for the Ricci scalar up to the second order from the
perturbed field equations and discuss the importance of the signa-
ture in the Riemann tensor to yield the correct results. In Section 5,
we obtain the coefficients of the metric up to the second order in
perturbation. In Section 6, we obtain the metric coefficients up to
the second order in an empirical way, without reference to any spe-
cific metric theory of gravity, using the dynamical phenomenology
of galaxies and groups of galaxies and the gravitational lensing pro-
duced by these objects. In that section, we also compare the metric
coefficients obtained in 5 with those empirically obtained and show
full consistency. Finally in Section 7, we discuss our results.

2 THE WEAK FIELD LIMIT

An excellent account of perturbation theory applied to metric the-
ories of gravity (in particular general relativity) can be found in
the monograph written by Will (1993). More recently, Capozziello
& Stabile (2009) have developed a perturbation analysis technique
useful when dealing with lenses in f(R) gravity. In this Section, we
define the relevant properties of the perturbation theory having in
mind applications to the metric theory developed by Bernal et al.
(2011b).

Let us consider a fixed point mass M at the centre of coordinates
generating a gravitational field. Under these considerations, the
space—time is static and its spherically symmetric metric g,, is
generated by the interval

ds? = guv dx" dx" = goo Ade? + gn dr? — r2dQ2. (1)

In the previous equation and in what follows, Einstein’s summation
convention over repeated indices is used. Greek indices take values
0, 1, 2, 3 and Latin ones 1, 2, 3. As such, in spherical coordinates
&, x', X2, ) = (ct, r, 0, @), where c is the speed of light, ¢ is
the time coordinate, r the radial one, and 6 and ¢ are the polar
and azimuthal angles, respectively. Also, the angular displacement
dQ? := d6? + sin >0 dy?. Due to the symmetry of the problem, the
unknown functions gy and g, are functions of the radial coordinate
r only. Note also that We choose a ( +, —, —, —) signature for the
space—time metric, which we maintain throughout the article.
The radial component of the geodesic equations

d?x« , dxf dx*
— ——— =0, 2

ds? o ds ds @)
for the metric (1) in the weak field limit, i.e. when the speed of light
¢ — 00, is given by

1 d&®r I 4,

- =z r 3
2dr 2% 8w 3)
where the subscript (), := 0/0r denotes the derivative with respect

to the radial coordinate. In the above relation, we have assumed that
for the weak field limit ds = ¢ dt and since the velocity v < ¢ then
v’ & dx°/dt with v’ := (dr/dt, rd@/dt, rsin 6 de/d?). In the strong
¢ — oo limit, both sides of the above equation vanish simultane-
ously. Thus, the condition of the right-hand side of equation (3)
vanishing in the v < ¢ provides a consistency check on the results

20z 11dy B0 U0 159NB Aq 009¥1Z1/2081/E/EEY/AI0IME/SEIUW/WO0d"dNO"OlWapED.//:SANY WOy PapEojumMoq



1804  S. Mendoza et al.

of the following sections, where a perturbative solution to the metric
is developed.

In this limit, a particle bound to a circular orbit about the mass
M experiences a centrifugal radial acceleration given by
dr ?
2 =’ “
for a circular or tangential velocity v. The preceding equation is a
kinematical relation of general validity and does not introduce any
particular assumption of the gravitational theory.

When material particles are used as test particles in the weakest
limit of the theory, the metric takes the form (see e.g. Landau &
Lifshitz 1975):

2¢
goo=1+67, gun=-—1,

2

gn =1’ g3 = —r’sin’ 6, ®)

for a Newtonian gravitational potential ¢. The above equations
are only used when analysing the motion of material particles when
gravity is very weak (see e.g. Will 1993). In order to demand greater
accuracies of the theory and to recover exact results for the motion
of massless particles, i.e. to accurately describe the bending of
light rays, the following term in the expansion of g;; must also be
considered.

For a particle on circular motion about the mass M in the weak
field limit, the lowest order of the theory is obtained when the left-
hand side of equation (3) is of the order of v>/c? and when the
right-hand side is of the order of ¢/c2. Both are just orders O(1/c?)
of the theory, or simply O(2). As such, when lower or higher order
corrections of the theory are introduced we will use the notation
O(n) for n = 0, 1, 2, ... meaning O(0), O(c™"), O(c™2),...,
respectively.

Having in mind further astrophysical applications (of motion
of material particles and bending of light — massless particles),
we expand the metric g, about a flat Minkowski metric 1, :=
diag(1, —1, —1, —1) up to the second order in time and radial posi-
tion in such a way that

200 = g0 + g0 = 1+ g + O,

gn =g\l +g7=-1+g7+0@),
g =gl =
g3 = gnsin’6, 6)

where the superscript (p) denotes the order O(p) at which a par-
ticular quantity is approximated. From equations (6) it follows that
the contravariant metric components are given by

goo — gOO(O) +g00(2) —1- g(%) +0O®@),
gll - gn(r)) +g11(2) -1 —gﬁ) + 0O@),

gzz _ gzz(o) _ —l/r2

g3 = g% /sin6. ©)

In fact, to the lowest order of perturbation, we need to find the time
g(%) and radial gﬁ) metric components up to the second order to
compare with the astrophysical observations of material particles
and bending of light (Will 1993, 2006). Note that in keeping with
the assumption of spherical symmetry for the matter configurations
to be studied, we consider no perturbations on the angular terms of
the metric. This assumption thus limits the applicability of all our

following results to systems not far from spherical symmetry, e.g.

the spheroidal elliptical galaxies about which gravitational lenses
are often detected.

3 FIELD EQUATIONS

For the case of a point-mass source generating a gravitational field,
Bernal et al. (2011b) have proposed an extended gravitational field’s
action in the metric approach given by

- c = d*
Sf——m/f()() —gd'x, (3

for any arbitrary dimensionless function f(x ) of the dimensionless
Ricci scalar:

x = L%R, ©)
where R is the standard Ricci scalar and
Ly = crd1if, (10)
is a length scale with

1/2
=S e (GT’OW) ° (1

with [, the mass-length scale of the system defined by Mendoza
etal. (2011), ap := 1.2 x 107" m s~2 is Milgrom’s acceleration con-
stant (see e.g. Famaey & McGaugh 2012, and references therein)
and ¢ is a coupling constant of order one which has to be cal-
ibrated through astrophysical observations. This f(x) theory was
constructed through the inclusion of ay as a fundamental physical
constant, which has been shown to be of astrophysical and cos-
mological relevance (see e.g. Hernandez et al. 2010; Bernal et al.
2011a,b; Mendoza et al. 2011; Hernandez & Jiménez 2012; Her-
nandez, Jiménez & Allen 2012; Mendoza 2012; Carranza, Mendoza
& Torres 2013). Equation (8) is understood as a particular case of a
fuller formulation where the details of the mass distribution appear
inside of the action integral, in such a way that for a fixed point
mass, the result is the action (8), as will be more fully discussed
towards the end of this section.

Following the description of Bernal et al. (2011b), the matter
action takes its ordinary form:

o
Sn= 5 / LoV =gd'x, (12)
C

with £, the Lagrangian matter density of the system. The null
variation of the complete action, i.e. § (S; + Sp,,) = 0, with respect
to the metric g, yields the following field equations:

1
FOO0xuw — 35008 = L3, (V.Y = gwA) f1(x)

_ 8nGL3,
!

Ty (13)

where the Laplace—Beltrami operator has been written as A :=
V#V,, the prime denotes the derivative with respect to the argu-
ment and the energy—momentum tensor 7, is defined through the
standard relation 6Sm = —(1/20)Ta,38g°"9‘ Also, in equation (13),
the dimensionless Ricci tensor is defined as

Xy = Li/[R;w 5 (14)

where R,,, is the standard Ricci tensor.
The trace of equations (13) is

8nGL?
FO0X = 2700 +3L3 Af (0 = — 1T, (15)

where T := T}

20z 11dy B0 U0 159NB Aq 009¥1Z1/2081/E/EEY/AI0IME/SEIUW/WO0d"dNO"OlWapED.//:SANY WOy PapEojumMoq



To order of magnitude approximation, where d/dy ~ 1/yx,
A ~ —1/#* and the mass density p &~ M/r*, Bernal et al. (2011b)
have shown that the trace (15) equation takes the following form:

¢-)  $nGML},

X
x"(b—2)—3bL3, — (16)

2

c2r3

for a power-law form:

o =x". (17

As shown by Bernal et al. (2011b), the third term on the left-hand
side of equation (15) dominates over the first two when the radius
of curvature R, &~ R~/ of space—time is such that R. > r and so,
this corresponds to the region where MONDian eftects are expected
to appear.

Bernal et al. (2011b) and Mendoza (2012) have shown that the
function f(x ) must satisfy the following limits:

x> when x > 1,
FO0 = (18)
x>, wheny « 1.
The limit x > 1 recovers Einstein’s general relativity and the con-
dition y < 1 yields a relativistic version of MOND. In this last
regime, the first two terms on the right-hand side of the trace (15)
are smaller than the third and so (cf. Bernal et al. 2011b)

F'O0x =200 < 3Ly Af'Go, 19)
at all orders of approximation, and so the trace (15) is given by
8nGL?
L3 AF G0 = T (20)
c

Since we are interested in the field produced by a point mass M,
then the right-hand side of equations (13) and (20) are null away
from the source and so, the last relation in vacuum can be rewritten
as

Af'(x)=0. @n

As shown by Bernal et al. (2011b), the relation f(x) = x¥/? yields
the correct MONDian non-relativistic limit. However, for the sake
of generality we will assume in what follows that the function f(x)
is of power-law form 17. In this case, relation (21) is equivalent to

Af'(R) =0, (22)

to all orders of approximation for a power-law function of the Ricci
scalar

f(R) = R®. (23)

Substitution of the power-law function (17) in the null variations
of the gravitational field’s action (8) in vacuum means that

3
< 2(b—1) b 4
88 =———L 8§ | R\ /=gd*x =0, 24
"= T lenGg M / §a @49
and so
B/R”./—gd“x =0. (25)

This equation gives the same field equations as the null variation
of the action for a standard power-law metric f(R) theory (23) in
vacuum. With this in mind, we can follow the standard perturbation
analysis for f(R) restricted by the constraint equation (22) needed to
yield the correct MOND-like limit. Since we are only interested in
a power-law description of gravity far away from general relativity
(cf. equation 18), then in what follows we use the standard f(R)
field equations for vacuum as described by Capozziello & Faraoni
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(2011) for a power-law description of gravity given by equation (23)
with b = 3/2, with the constraint (22). To follow their notation, we
write the field equations (13) in vacuum as

1
f/(R)R/LU - Ef(R)g/l.v + H;/.v =0, (26)

where the fourth-order terms are grouped into the following quan-
tity:

Huw == (V¥ — gud) f(R). 27
The trace of equation (26) is thus given by

S (RR=2f(R)+H =0, (28)
with

H:=H,g"" =3Af'(R). (29)

The mathematical form of the field’s action (8) includes the
Schwarzschild mass (through L,/) in the description of the grav-
itational field. This is usually not the case for the description of
the gravitational field since the matter content is generally assumed
to appear only in the matter action (12). Following the remarks by
Sobouti (2007) and Mendoza & Rosas-Guevara (2007), where sim-
ilar conclusions were reached, one should expect extensions to the
theory even at the fundamental level of the action. For the case of
a general matter distribution it is not evident what path to follow.
As explained by Carranza et al. (2013) and Mendoza (2012), for
systems with a high degree of symmetry (such as the Friedmann—
Lemaitre—Robertson—Walker — FLRW — universe or a spherically
symmetric distribution of matter) the action may be postulated as

c 700
Sp=— J—gd 30
T Ttenc ) 13, VO (30)

where the mass-energy is given by (see e.g. Misner, Thorne &
Wheeler 1973)

M(r) = 47 / p(r) ridr. 31
0

For the case of the FLRW universe, the upper limit of the previous
integral is taken as the Hubble radius (cf. Mendoza 2012; Carranza
et al. 2013). The connection between the action 30 and the f(R, T)
theory described by Harko et al. (2011) is then evident through the
identification

JO0

7 -
M

F(R,T) :=

(32

The field equations then follow through the full formal variation of
the action with respect to both R and T (see e.g. Harko et al. 2011;
Mendoza 2012).

The general description of the gravitational theory is by no means
complete, and further investigation needs to be carried out in this
direction. We only mentioned one possible generalization of the
simple point mass description by Bernal et al. (2011b) for com-
pleteness. In any case, the lensing phenomena we are interested in
occur sufficiently far away from the matter distribution producing
it, that these can be correctly described as point mass sources.

In what follows, the sign convention used in the definition of
the Riemann tensor becomes a relevant point. As discussed in
Appendix A, the solutions to the differential field equations of any
f(R) theory of gravity greatly depend on the signature chosen for
Riemann’s tensor. Two different choices of signature bifurcate on
the solution space, a property which does not appear in Einstein’s
general relativity. This is not surprising as it mirrors the analogous
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unfolding of the metric and Palatini approaches in f(R) gravity,
which does not appear in Einstein’s f(R) = R theory (see e.g. Olmo
2011). Throughout the article, we select a particular branch of solu-
tions given by the nowadays almost standard definition of Riemann’s
tensor in equation (A3).

In dealing with some of the cumbersome algebraic manipulations
that a perturbation to an f(R) theory of gravity presents, we have
used the Computer Algebra System (CAS) Maxima to facilitate the
computations. The Metric EXtended-gravity Incorporated through
a Computer Algebraic System (MexicAS) code (copyright of TB, SM
and LAT and licensed with a GNU Public License Version 3) we
wrote for this is described in Appendix B and can be downloaded
from http://www.mendozza.org/sergio/mexicas. Furthermore, de-
velopment on the treatment of the field equations by the MEXICAS
code is described in Appendix C.

For the case of a static spherically symmetric space—time (1) it
follows that

H;w = _f”{R,/w - F;l,,vR,r — 8uv |: <g_l;~l + gll (11’1 v _g),r)

xR, + g”R,,,]} —f"{R,R,—gug" R}, (33)
and

H=3r"[ (g +8" (InV=g),) R, +8"Ro| +37"8" K.
(34)

Under the assumption of spherical symmetry, the angular terms
of the metric are not perturbed and so

~J—g =r’sind {1 + [g(%) - 8521)] + 0(4)}1/2 ) (33)

then, by using the fact that In (J—g)‘r = (J—g)rr //—g. it fol-

lows that

2 1
In(v=g), = -+ [, — &l ] + 0. (36)

Since Ricci’s scalar depends on the metric components and their
derivatives up to the second order with respect to the coordinates, it
follows it can only have a non-null second and higher perturbation
orders, i.e.

R =R? 4+ R% 4+ 0(6). 37

The fact that R® = 0 is consistent with the flatness of space—
time assumption at the lowest zeroth order of perturbation. The
expression for the second order component of Ricci’s scalar from
the metric components (6) is given by

(2)
R(2>=_% 2 811

2
g1t + 55|~ 80 — 800 (38)

The global minus sign that appears on the right-hand side of equa-
tion (38) for Ricci’s scalar R® at second perturbation order dif-
fers from that reported by Capozziello, Stabile & Troisi (2007),
Capozziello & Stabile (2009). As mentioned above, and discussed
in Appendix A, this fact occurs due to the choice of signs in the def-
inition of Riemann’s tensor. The particular choice used throughout
the article is the one given by equation (A3) and so, our solutions
lie in a different branch as the one reported by those authors.

4 LOWEST ORDER SOLUTION

Let us now calculate the order of the trace equation (28) using
relations (23) and (37). On the one hand, the lowest order of the first

two terms on the left-hand side of the trace equation is O(2b). On the
other hand, direct inspection of the right-hand side of equation (34)
results in the fact that the lowest order of H is O(2b — 2). Indeed,
the last term of the right-hand side of this equation is & f”'g'' R’
and so, to the lowest order of perturbation of relations (7) and (37),
this means that { contains terms of the form R®”~*R»? and so,
‘H is of the order of O(2b — 2). This analysis indicates that to the
lowest order the trace equation to consider is

HP™P =3Af7I(R) = 0. (39

This result is consistent with relation (22) to the lowest order of
approximation and is in perfect agreement with the perturbative
study performed by Bernal et al. (2011b). Note also that this is the
only independent equation at this order.

Direct substitution of equations (23) and (37) into the last equa-
tion leads to
HE2 = 3p(h — 1)RDP-2g11O [(ln J?g)(0> R_(f) i R(fﬁ

+3b(b — 1)(b — 2)RPP g ORE2 = . (40)

Substitution of expressions (7) and (36) in the previous equation
leads to the following differential equation for Ricci’s scalar at
order O(2):

2
RO [;sz) + szg} +(b—DRP? =0, “10

which can be written in a more suitable form as
2

[nRY] +(®—2)[InR?] 42)

Na

The solution of the previous equation is

A 1/(b=1)
RO(r) = {(b -1 <— - B)} , 43)
r

where A and B are constants of integration.

Far away from the central mass, space—time is flat and so Ricci’s
scalar must vanish at large distances from the origin. This means
that the constant B = 0 and so

1/(b—1)
RP(r) = {(b - 1)% ) (44)
r

As explained by Bernal et al. (2011b), the case b = 3/2 yields a
MOND-like weak field limit and so, substituting b = 3/2 in relation
(44) yields:

R

RP(r) = =,
r

45)
where R := A2?/4. This is exactly the same result as the one obtained
by Bernal et al. (2011b). As these authors have shown, this result
yields a MONDian-like behaviour for the gravitational field in the
limit r >> Iy > r,. For this particular case, the lowest order of
approximation of the theory is O(1), which has a higher relevance
as compared to the order O(2) of standard general relativity for
which b = 1. Using very general arguments, the authors also showed
that the constant R o rg/ly and so, R is proportional to the square
root of the mass of the central object. In order to calculate R from
perturbation analysis we need to find the expressions for the metric
at order O(2) of approximation.

5 f(x) = x> METRIC COMPONENTS

Let us now solve the field equations at the next order O(2b) of
. . . . ®)
approximation. At this order, we expect the metric components g ,
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¢'% and Ricci’s scalar R® to play a relevant role in the description
of the gravitational field. In fact, the field equations (26) at this order
are given by

1
bRP"IRY) — ER<2>"g§?3 +HD =0, (46)
where

HEY == (VuVy — gud) fPO(R). 47)

The complete Hf",’) from equation (33) is written in Appendix C.

Now, from equation (22) it follows that the Laplace—Beltrami
operator applied to f'(R) must be zero at all perturbation orders. In
particular Af'?”) = 0. With this condition, the field equations (46)
simplify greatly and can be written as

1
2)b—1 p(2 2)b (O
bR®? RLV)—ER()’gLV)

(2)b—2 (4) 1(0) p4) 1(2) p2)
_b(b - 1) {R [R,“; - F;/,v R,r - F/u) R.r ]

+(b—2)RPPRY[RY) — T RYTY

v

—b(b— 1)(b —2) [2R®"ZRORY

+ (b =3)RPHRYRVRY] = 0. (48)
Direct substitution of the following Christoffel symbols
1
M’ =0, Top’ =—5¢" %, 49)

and relations (6) and (7) in the 00 component of equation (48) leads
to

1 1
BREVIRY) — SR + Zb(b — Dgyg R¥'ZRY =0. (50)

If we now substitute b = 3/2, expression (45) and the value of
Ricci’s tensor at O(2) of approximation:

2) 2
800, T 2 800.r

2r

into equation (50), we obtain the following differential equation for
(2

800 -

RY = — : 1)

2R
7 800 + 3800, + 5 =0, (52)
and so
fi’ r k]
S0 =—3In (7) + 5. (53)

where k; and r, are constants of integration. By substitution of this

result in equation (38) and using equation (45) we get the following

differential equation for g(lzl):

kR
reil, +ei + 5 + 3 =0, (54)
with solution:
ki kR
gl =5 += -2, (55)
r r 3

where k; is a constant of integration.

6 METRIC COEFFICIENTS FROM
ASTRONOMICAL OBSERVATIONS

In this section, we derive the constraints well established by as-
trophysical phenomenology of asymptotically flat galactic rotation
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curves satisfying the Tully—Fisher relation, and the cumulative grav-
itational lensing observations for elliptical and spiral galaxies and
galaxy groups, imply for the metric coefficients for static, spheri-
cally symmetric space—times for any metric theory of gravity where
dark matter is not required.

To begin with, let us take the radial component (3) of the geodesic
equations (2) in the weakest limit of the theory. In this limit, the
rotation curve for test particles bound to a circular orbit about a
mass M with circular velocity v(r) given by equation (4) is

2
“62(:) = %g”goo,w (56)
Except for the inner regions of spiral galaxies, v(r) can be well
approximated by a constant which scales with the fourth root of
the total baryonic mass My of the spiral galaxy in question, as
described by the Tully—Fisher empirical relation (see e.g. Milgrom
2008; Famaey & McGaugh 2012)

v = (GMpag)'*. (57)

In fact, it is from numerous observations of galactic rotation curves
and total baryonic mass estimates, that the constant a, has been cal-
ibrated (see e.g. Famaey & McGaugh 2012, and references therein).

We now substitute equations (6) and (7) to order O(2) of approx-
imation and relation (57) in equation (56) to obtain the following
differential equation for gf,f)):

2 /vN\2  2(GMyay)'?
(2)
- =—(-) =——7F-—7— 58
Soor =7 (c) c*r (58)
having as solution
®) v\ 2 r
e =2(Y) m (L
8oo (1) c n (r,)
2(G Myay)'/? 2
— %ln (L) = ey, (L) i (59)
c r, Iy Ty

where r, is a scale radius which, from the point of view only of
the flat rotation curves of galaxies and the Tully—Fisher relation,
remains arbitrary. We therefore see that a necessary and sufficient
condition in any metric relativistic theory of gravity, where all obser-
vational constraints of galactic rotation curves are satisfied without
invoking dark matter, is that g(%) must satisfy the previous empiri-
cally derived relation.

Comparing the theoretical metric coefficient g(%) given by (53)
(obtained from perturbation theory for f(x) = x*/?) and the em-
pirical one (59) (obtained from the phenomenology of flat rotation
curves and the Tully—Fisher relation), give the following values for

the integration constants needed in equation (53):
k=0, R =6ry/ly. (60)

In this case, the gravitational potential ¢ from equation (5) takes
the form:

¢ =—v%In (i) = — (GMypap)"*In (i) , (61)
which yields a radial MONDian acceleration:

(GMyag)'
.

lal =Vo| = (62)
Thus, in the v/c < 1 limit, the f(x) = x>/ presented is seen to
agree with the observed phenomenology of the observed galactic
rotation curves in the absence of dark matter, as already shown by
Bernal et al. (2011b).
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The g1, metric coefficient will be obtained from gravitational
lensing phenomenology. We begin from the general deviation angle
equation written from the point of view of an observer at infinity, the
‘astronomer’ detecting the gravitational lens in question (see e.g.
Weinberg 1972; Schneider, Ehlers & Falco 1992; Keeton & Petters
2005):

[—8goo(r)gi1(r)]'"*dr

B= / - (63)
i1 [(r/r)?goo(ri) — goo(r)] 2

where r; is the closest approach to the central mass M, and itis related
to the impact parameter b through the relation r? = b? goo ().

Over the last few years, it has become clear that the complete
phenomenology of gravitational lensing, at the level of extensive
massive elliptical galaxies (see e.g. Koopmans et al. 2006; Gavazzi
et al. 2007; Barnabe et al. 2011), galaxy groups (see e.g. More
et al. 2012), clusters of galaxies (see e.g. Limousin et al. 2007;
Newman et al. 2009) and more recently spiral galaxies (see e.g.
Dutton et al. 2011; Suyu et al. 2012) can be accurately modelled
using total matter distributions having isothermal profiles, when
treating the problem from the point of view of Einstein’s general
relativity. All these observations show that the dark matter haloes
needed to explain gravitational lensing under Einstein’s general
relativity obey the same Tully—Fisher scaling with total baryonic
mass as the ones needed to explain the observed rotation curves
of spiral galaxies. This means that for a given total baryonic mass,
spiral and elliptical galaxies and groups of galaxies require dark
matter haloes having the same physical properties to explain the
observations; from kinematics of rotation curves in the former case
to gravitational lensing in the latter one (Dutton et al. 2011; Suyu
etal. 2012). Under Einstein’s general relativity the majority of these
isothermal matter distribution, particularly at large radii, must be
composed of a hypothetical dark matter.

For a static spherically symmetric total matter distribution
My, since assuming the validity of Einstein’s general relativity

Schwarzschild’s metric holds, and therefore goos = —1/g115, We
obtain:
2r, 2GM 2
800321—£=1—+(r)=1—2<3>. (64)
r c’r c

The subscript S identifies the coefficients of the Schwarzschild met-
ric, and Mr(r) = v*r/G refers to the hypothetical isothermal total
matter distribution (cf. Binney & Tremaine 2008) needed to explain
the observed lensing, when assuming general relativity. From this
it follows that the dark matter hypothesis provides a self-consistent
interpretation of observed phenomenology: the same dark matter
haloes, which are required to explain the observed rotation curves,
have been solved for by analysing extensive lensing observations.

From equation (64) it follows that for isothermal total matter
haloes under Einstein’s general relativity, the metric coefficient goos
does not depend on the radial coordinate. We can see this by using
the empirical Tully—Fisher relation (57) between the velocity and the
total baryonic mass in the last identity above. Thus, the coefficient
(64) can then be taken outside of the integral (63) of the deviation
angle, where for the Schwarzschild metric and isothermal total
matter haloes we now obtain

T =20/ e —1)

The above radial integral yields 7t/2 and we obtain the observed
bending angle as

us us

P= T T = 2AGMya0) )

T 20007 e (09

We see that the well-established empirical result of lensing ob-
servations yielding isothermal total dark matter haloes under the
standard theory is strictly the observation of constant bending an-
gles which do not depend on the impact parameter, scaling with the
observed baryonic total masses as indicated above.

Now, since (v/c)? is of the order of ()(2), we can write equation
(66) as

1/2
,327[(3)2:“%:“@_ ©7)
c c Ly
The above equation summarizes all empirical results of gravitational
lensing at galactic and galaxy group scales: the bending angle does
not depend on the impact parameter and scales with the square
root of the total baryonic mass. This last equation gives a clear
illustration of the link between the dynamics and the space—time
curvature effects induced by the presence of an observed baryonic
mass.

‘We can now use the result of equation (67) to constrain the metric
coefficient g;; for any metric theory of gravity, seeking an accurate
description of the observed gravitational lensing phenomena with-
out the introduction of any hypothetical dark matter. To do this, let
us return to the general lensing equation (63), and ask that the re-
sults obtained under the Schwarzschild metric with isothermal total
matter haloes match those under any metric theory of gravity, at all
impact parameters and for any total baryonic masses:

A d

_ /°° [—g00(r)gi1 ()] dr
nor [0r/r)goo(ri) — goo(r)

%(ﬂJrTf)

] 1/2° (68)

at O(2) of approximation from equations (63) and (65). Let us
rearrange integral (68) in such a way that

N ——

[—goo(r)gn(r)]'"? _
- 172 =0.
r [(r /i) goo(ri) — goo(r)]

Since the result must hold for all impact parameters, the integrand
of the above equation must be equal to zero and so

(69)

[l + (E) } 1 _ —8oo0(r)g1(r)

c (r/riy =1 (r/r)*goo(ri) — goo(r)
Approximating the previous relation to order O(2), it follows that
the metric coefficient g;; is given by

(70)

)2 , B
gnlr)y=— [1 12 (;)2] (r/r)” [8oo(ri)/ goo(r)] 1. an

(r/r)* =1

From a mathematical point of view, since the contribution to the

integral in the lensing equation (63) is fully dominated by the region

r ~ r;, and given the very mild radial dependence of the empirical

goo term, we can take goo(ri) &~ goo(r) in the above equation to
yield:

any=—1-2(2)’

c

. ACMwa)' 2

72
=2 I (72)

Thus, any metric theory of gravity where g;; matches the above
expression in the regime where gravitational lenses are observed
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will accurately reproduce all the observed lensing phenomenology,
with M, the total baryonic mass of the object in question (galaxies
or group of galaxies), and no hypothetical dark matter assumed to
exist. Equations (59) and (72) give empirical mathematical rela-
tions for the metric coefficients at perturbation order O(2) which
reproduce all observed rotation velocity and gravitational lensing
phenomenology, without the inclusion of any dark matter compo-
nent.

Notice that the mass dependence of the second term on the right-
hand side in expression (72) for the metric coefficient g;; is the
same as the factor in expression (59) for go. This last was obtained
for a rigorously flat rotation curve in accordance with the Tully—
Fisher relation. This shows that the ratio ry/I); of the two impor-
tant characteristic lengths of the extended metric theory of gravity
proposed by Bernal et al. (2011b) is the determinant dimension-
less measure of deviations from flat space—time at galactic scales,
exactly as expected from the dimensional analysis in Hernandez
(2012).

The metric coefficient g,; in equation (72) can be directly com-
pared to the results for the f(x) = x*/> metric theory of Bernal
et al. (2011Db) obtained in equation (55) with the inclusion of the re-
sults of equation (60). This means that the choice of the integration
constant

k, =0, (73)

makes these expressions for the metric component g; identical.

Use of the mathematical approximation A* &~ 1 + x In A to write
the following expressions for the full empirical metric coefficients
gives:

goo ~ L+ (2ry/ly) In (/1) = (r/r)>e/™ (74)

gu A =1 = (2ry/ly) = e/, (75)

We note that all the approximations used in this section introduce
an error several orders of magnitude smaller than the intrinsic ob-
servational uncertainties in the empirical relations used. Therefore,
all of the expressions given can be considered as strictly equivalent
in regards to the accurate modelling of astrophysical rotation curves
and gravitational lensing data.

7 DISCUSSION

By constructing the weak field limit of the metric f(x) = x>/ theory
of gravity developed by Bernal et al. (2011b), we have shown that
it is possible to explain both the dynamics of massive particles and
the deflection of light by observed astronomical systems such as
elliptical galaxies, spiral galaxies and groups of galaxies. Recently,
the same metric theory of gravity was shown to be coherent also
with the expansion dynamics of the observed Universe (Mendoza
2012; Carranza et al. 2013). This is an expected result from a theory
of gravity constructed through astronomical observations: it must be
coherent at all scales. The regime of Einstein’s general relativity is
by no means violated, since the applications developed in this article
(r > ly) lie far away from the mass and length scales associated
with the ones of Einstein’s general relativity (r < [j;) (see e.g.
Mendoza 2012).

The results of this article were constructed using a static spher-
ically symmetric metric with the time and radial components per-
turbed up to order O(2) of approximation. This work generalizes
the one of Bernal et al. (2011b) in which the radial metric com-
ponent was assumed up to order O(0) only and so, information
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on the choice of signature of the Riemann tensor was lost (see
Appendix A). Such information is very important while working
with fourth-order metric theories of gravity.

‘We mention again the tremendous importance of a correct choice
for the signature of the Riemann tensor as described in Appendix A.
The choice (A3), and only that choice, used in this article yields
results in agreement with astronomical observations. In other words,
astronomical observations fix the correct (and unique) choice of
signature for Riemann’s tensor. This is an important result, since
otherwise solutions from the other branch appear which are not in
accordance with astronomical observations.

Table 1 summarizes our main results. It is important to emphasize
that the empirical values of the metric components g(()%)) and g7 do
not depend on any gravitational theory and as such, they represent
functions that any successful theory of gravity (such as the one
used in this article) needs to match. Notice that observationally,
independent empirical constraints fixed the 2/r, /) factors in ggo
and gy to be equal; it is encouraging that the formal mathematical
perturbation treatment of the theory proposed also yields identical
R /3 factors in the expressions for gy and g;. If this were not the
case, even given the compatible functional forms of empirical and
theoretical metric coefficients, the f()) = x>/? proposal would have
been rejected.

An important fact arises from the usage of the f(x ) metric theory
of gravity and not the f(R) formalism. Although closely related to
each other for a power-law function (23) and a mass point source,
the correct dimensional approach f(x ) introduces mass and length
scales that, as shown by Bernal et al. (2011b), need to be incorpo-
rated into the gravitational field action. Although the field equations
in vacuum for both f(x) and f(R) under a power-law representa-
tion yield the same field equations (since the mass M generating
the gravitational field is a constant), f(R) gravity is not capable of
reproducing the crucial lensing observations as it lacks a crucial
constraint equation (22). The gravitational theory f(x) = x*/? is
able to do so since under this approach the correct limit where
MONDian-like effects are expected yield the constraint equation
(21) or (22). Notice however that both f(R) and f(x) with the

Table 1. The table shows the results obtained for the metric components
gf)%)) and 8(121) for a static spherical symmetric space—time in scales of
galaxies and galaxy groups obtained empirically from astronomical ob-
servations of these systems and the ones predicted by the metric f(x) =
x3/? theory of gravity of Bernal et al. (2011b). A good metric theory of
gravity must be such that it converges to the inferred values presented in
the table. The theory f(x ) = x>/? is in perfect agreement with the observed
metric components. The dimensionless ratio formed by the quotient of the
gravitational radius ry to the mass-length scale [y (see equation 11) is the
determinant dimensionless quantity of the problem. Since the metric com-
ponents determine the ‘gravitational potential’ of the system, the length
r, is undetermined. However, since the natural length scale of the system
is [y one can always assume r, = [y7, which also ensures no sign change
in the potential in equation (61) over the domain of applicability r > .

Metric g(()%) 8 izl>
coefficient
2r r 2rg
~7Em (L) T
Observations
(Tully—Fisher) (lensing)
R k k k R
“Em(g)+h h+a-4
Theory
FOO = 37 R=6ry/ly ki =0 R=6ry/ly k=0
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appropriate choice of Riemann’s tensor (A3) are able to reproduce
the flat rotation curves of galaxies and the Tully—Fisher relation.

In an effort to generalize and look for a fundamental basis to an
f(x) theory of gravity, Carranza et al. (2013) and Mendoza (2012)
have shown that these metric theories are equivalent to the f(R, T)
construction of Harko et al. (2011). These authors have also shown
that the particular theory f()) = x*/? is in excellent agreement with
cosmological observations of SNIa.

An f(x) theory of gravity satisfying the limits of equation (18)
implies that gravity is no longer scale invariant. In fact, pre-
cise gravity tests have been performed only at strong regimes of
Einstein’s gravity, where y >> 1, and so the involved accelera-
tions of test particles are such that a > ap (see e.g. Will 2006).
In exactly the opposite regime, where x <« 1, where the in-
volved accelerations of test particles are such that a < ao, grav-
ity differs from Einstein’s general relativity. The traditional ap-
proach of assuming Einstein’s general relativity to be valid at all
scales means that unknown dark entities are needed to explain
various astrophysical observations. This article heavily reinforces
many others (Hernandez et al. 2010, 2012; Bernal et al. 2011a,b;
Mendoza et al. 2011; Hernandez & Jiménez 2012; Mendoza 2012;
Carranza et al. 2013) that show how astrophysical and cosmological
observations can be accounted for without assuming the existence
of dark entities and extending gravity so as to be non-scale invariant.
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APPENDIX A: COMMENTS ABOUT THE SIGN
CONVENTION IN RIEMANN’S TENSOR

In the study of the gravitational field equations, the link between the
curvature of space—time and the matter content is a key fact. All the
information regarding the curvature of space—time is contained in
the Riemann curvature tensor R%,,, which is a function of the first
and second derivatives of the metric. From a purely mathematical
point of view, the Riemann tensor can be obtained from the Com-
mutator of covariant derivatives (Carroll 2004):

[V, VulVP = RS VE, (AD)
for any vector field V*. From a geometrodynamical point of view,
the curvature tensor is constructed through the change AA, in a
vector A,, after being displaced about any infinitesimal closed con-
tour (Landau & Lifshitz 1975): AA, = § '} A, dx". By the use of

v
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Stokes’ theorem it then follows that for a sufficiently small closed
contour:

1
AA, ~ =R

5 o AL (A2)

where Af"? represents the infinitesimal area enclosed by the contour

of the line integral. In this respect, it follows that the Riemann tensor

measures the curvature of space—time (cf. Landau & Lifshitz 1975).
In equations (A1) and (A2), the Riemann tensor has been defined

as

RO, =Tt —Th  +T, 1, 10T (A3)

o e, v o nv*

If Riemann’s tensor is defined by equation (A3), then Ricci’s tensor
is R,y := gﬁ“Rﬁwa and Ricci’s scalar is R®,. Since these are the
most used definitions in relativity theory nowadays, we will refer to
these quantities as ‘standard’.

However, there is another way in which Riemann’s tensor (and
Ricci’s tensor) can be defined, usually adopted by mathematicians
and by CASs such as Maxima (http://maxima.sourceforge.net). In
these cases, the syntaxis is such that (see e.g. Toth 2005)
Rlu,v,a, ] :=RP =T%

nva o

B i B A
_Féwt‘v +Fkar _F}VUF

1% et

(A4)

If Riemann’s tensor is defined by equation (A4), then Ricci’s tensor
is R,y := gP"Rg,.. and Ricci’s scalar is R%,. Although this choice
of signs for the Riemann and Ricci tensors is not very much in
use these days, some well-known textbooks use them (see e.g. the
table of sign conventions at the beginning of reference Misner et al.
1973). The CAS Maxima uses the definition (A4) and is such that

Rmaxima = _Rslandardy (AS)

in free-index notation.

As discussed in the table of sign conventions of Misner et al.
(1973), general relativity can use any of the above definitions (and
a few more) simply because of the linearity with which Ricci’s
scalar and Ricci’s tensor appear in Einstein’s field equations. This
is however not the case in metric f(R) theories of gravity, since for
example in those theories, the trace of the field equations is given
by (see e.g. Capozziello & Faraoni 2011)

8nG
6‘4

F/(R)R —2f(R) +3Af(R) = T. (A6)

To highlight the point, let us substitute the power-law function (23)
in the previous equation to obtain

(b—2)R" +3bAR" = @T. (AT)
C

This equation reflects a crucial fact about the choice of sign in
Riemann’s tensor. Due to the presence of the derivative term f'(R) =
bR’ !, depending on the sign convention of the definition of
the Ricci scalar, there appears a sign factor (&)’ ~! which is not
global to all the terms in the equation. This establishes a bifur-
cation in this class of solutions of the theory. Indeed, for a situ-
ation where f(R) = R® + R’ or any more complicated function
of R, there is not (a priori) any indication of which convention in
the definition of Riemann’s tensor should be used to describe a
particular physical phenomena. In this article, we show that, un-
der the theory being presented, the convention can be settled. The
results presented in this article were obtained with the standard
definition of Riemann’s tensor in equation (A3). That choice (and
only that one) can account for both observed dynamics of mas-
sive particles in spiral galaxies through the Tully—Fisher relation,
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and for the deflection of light observed in gravitational lenses.
An important aspect to point out is that the case f(R) = R of
Einstein’s general relativity is free from the above ambiguity. This
is so because it is possible to redefine the signature for the energy-
momentum tensor to recover the same field equations (see e.g.
Misner, Thorne & Wheeler 1973; Hobson, Efstathiou & Lasenby
2006).

We see from this result that previous works by Capozziello et al.
(2007), Capozziello & Stabile (2009) have selected the conven-
tion used by the CAS Maxima in order to compute their results.
In that respect, their results lie in another branch of the solutions
of the field equations. If we would have taken for example, the
definition of Riemann’s tensor by Maxima, then the metric co-
efficients would have been: g(%) =2R1In*()/9 + A In(r) + B and
¢V = —2RIn(r)/9+4 D/r 4+ (R — A)/2 (where A, B and D are
constants). These are very different from the ones obtained in equa-
tions (53) and (55) and would have never reproduced the astrophys-
ical observations treated in this article. It is only through the correct
choice of signs in the definition of Riemann’s tensor, such as the
ones used in the present article and represented in equation (A3),
that the good agreement with the Tully—Fisher relation and lensing
observations can be correctly obtained.

APPENDIX B: COMMENTS ABOUT THE
MAXIMA CODE

In this section, we give a brief introduction to the code we wrote
in the CAS Maxima (http://maxima.sourceforge.net) to obtain the
field equations. Specifically, we work with the module ctensor
(cf. Toth 2005). The syntax of such module is that, when invoked,
it runs an input interface to design the form of the covariant metric.

The Maxima code MExicas is copyright of TB, SM and LAT,
licensed under a GNU Public General License (GPL), ver-
sion 3 (see http://www.gnu.org/licenses) can be obtained from
http://www.mendozza.org/sergio/mexicas (see the section about
copyright and usage in that web page).

For the implementation of the code, we consider a perturbative
approach in the parameter € := 1/c, such that the covariant compo-
nents of the metric are given by

g0 = 1+€g5) + 04,
g = —1+0 +0@), (BI)

where the angular components are given by the standard expres-
sions for spherical coordinates as shown in equation (6). With these
equations, it is simple to construct the contravariant components of
the metric:

gOO - 1— 628(()%) + (/)(4)7
gl = —1-eg) +0@). (B2)

With these considerations, the metric is recorded in the ctensor
module. From this fact, it is simple to invoke all the quantities
required to construct the field equations, either in general relativity
or for any extended metric theory of gravity. For example, in a
descriptive way concerning the syntaxis of maxima it follows that

christof(mcs) — F)”lw, (B3)

and with similar syntaxis for the Riemann tensor, the Ricci tensor
and the Ricci scalar.

Due to the fact that the metric has an order parameter e, all
the tensorial quantities involved in the construction of the field
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equations will gain this dependence. In the formalism of the code,
it is a crucial fact to extract the perturbation order of every metric
quantity to construct the field equations at the desired perturbation
order. For example, for a generic quantity g calculated from the
manipulation of the metric, if we consider that g™ represents such
quantity at order n, we have

¢ =limg, (B4)

e—0

which reproduces the flat space—time limit. For the second order we
have

q—q° —;q’(”vo

@ _ 14 B
g% = lim === (BS)
and consequently the fourth order is obtained by

0 0
— g0 _ — 2002 _ 3,4
g = lim a-4" — 4" 4 E/’W (B6)
€e—> €

Similarly, higher perturbation orders can be obtained by the obvious
generalization of the previous relation.

In equations (B5) and (B6), it is implied that the first-order quan-
tities vanish, as is also the case for the Christoffel symbols. This
computational procedure gives as an output a key result used in the
article corresponding to Ricci’s scalar at second perturbation order,
given by equation (38).

APPENDIX C: EXTENDED FIELD EQUATIONS
USING MAXIMA

By using the CAS Maxima and the Mexicas code (see appendix B),
we obtained the field equations up to the second order.

The trace (28) of the field equations (46) to the order O(2b) of
approximation can be simplified with the aid of the solutions found
at the lowest order of approximation in Section 4 to obtain

(b —2)R?* —3b(b — HR? {R(Z) {R(“) L 2R
Srr r W

1
4R (o, + )] +20 - 2R2RY )

+3b(b — (b — 2)RP*RY = 0. (CD)

The components H\7? of the field equations (26) at order O(2b)
are given by

HOD = _p(p — 1){R<2>’3*2 [R(“) _ Tl p& _ 12 p@)
Y N T Y r

—& (Rff) (8@ + "0 yv=9) +g"?
x (Iny/=)'] + " [(n V=0) PR + R}
8" ORY) — ge" O (RPn =) + RD) |

+(b—2)ROPIRW [Rff)v —TIOR _ o010

jay

x ((n V=) VR + RZ)| } = b6 — 1o ~2)

% {R<2>b—3 [2R,(,2L)R.(3) — g0 (2g1‘(°)Rff>Rff) +g1l®

« R,(r2)2> _ g,(fl?g”(o’Rff)z} + (b —3)RPP 4R

x [RORY — g O RZ2] L. ()

Dividing the field equations (46) by R®” ~* and using the trace
(C1) and the last equation, a reduced expression for the field equa-
tions is found:

_$ R®* £ bRPR) — p(b — 1)R??

x [RY, ~TIORY ~ TIORD] — bib — Db~ 2R
4) 2) 100) p(2) 2) p&)

x [RY (RS, =T VR?) + 2R} R

—b(b — 1)(b —2)(b —HRPRPRY =0, (C3)

which can also be regarded as the traceless component of the field
equations.

This paper has been typeset from a TEX/IATEX file prepared by the author.
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