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ABSTRACT

Beyond convergence studies and comparison of different codes, there are essentially no con-
trols on the accuracy in the non-linear regime of cosmological N-body simulations, even in the
dissipationless limit. We propose and explore here a simple test which has not been previously
employed: when cosmological codes are used to simulate an isolated overdensity, they should
reproduce, in physical coordinates, those obtained in open boundary conditions without expan-
sion. In particular, the desired collisionless nature of the simulations can be probed by testing
for stability in physical coordinates of virialized equilibria. We investigate and illustrate the
test using a suite of simulations in an Einstein—de Sitter cosmology from initial conditions
which rapidly settle to virial equilibrium. We find that the criterion of stable clustering allows
one to determine, for given particle number N in the ‘halo’ and force smoothing ¢, a maximum
redshift range over which the collisionless limit may be represented with desired accuracy.
We also compare our results to the so-called Layzer—Irvine test, showing that it provides a
weaker, but very useful, tool to constrain the choice of numerical parameters. Finally, we out-
line in some detail how these methods could be employed to test the choice of the numerical
parameters used in a cosmological simulation.
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1 INTRODUCTION

Numerical simulations of structure formation in the universe in
cosmology use the N-body method in which the continuum density
field of dark matter is represented by a finite number of discrete
particles interacting by a smoothed Newtonian two-body potential.
It is evidently of importance to control as much as possible for their
precision and reliability. Specifically, beyond issues of numerical
convergence, it is important to understand the limits imposed on
the accuracy of results by the use of a finite number of particles to
represent the theoretical continuum density field, and the associated
introduction of a smoothing scale (or equivalent) in the gravitational
force. This latter scale, ¢, clearly imposes a lower limit on the spatial
resolution, so in order to optimize resolution the question is how
small a value of ¢ may be employed for a given number of particles
and starting redshift. This question has been the subject of some
controversy, notably concerning whether values of ¢ smaller than
the initial interparticle distance may be employed (see e.g. Splinter
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et al. 1998; Knebe et al. 2000; Power et al. 2003; Heitmann et al.
2005; Joyce, Marcos & Baertschiger 2008; Romeo et al. 2008).

In this paper we discuss one way in which cosmological N-body
codes may be tested for their reliability which has not been explored
previously. The idea is based on the simple observation that, applied
to the simulation of an ‘isolated’ overdensity (i.e. a finite system of
size much smaller than that of the periodic simulation box), a cos-
mological simulation should be equivalent, in physical coordinates,
to one performed in open boundary conditions without cosmologi-
cal expansion. Indeed the only differences between the two should
arise from possible differences in the force smoothing and finite size
effects, both of which are variables on which the physical results
of a cosmological simulation should not depend. Even without a
direct comparison with simulations in open boundary conditions,
the desired collisionless nature of cosmological simulations can be
tested for by probing whether an isolated virialized structure, corre-
sponding to a collisionless equilibrium, remains stable in physical
coordinates.

By ‘isolated’ we mean that there is no other mass in the periodic
box other than the structure considered, which itself evolves in a
region of a size small compared to that of the box. The structure is
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therefore isolated but for the interaction with its ‘copies’ included
in the infinite system over which the force is summed. We illustrate
with a set of numerical simulations how this required equivalence
of the evolution in codes with and without expansion can be used to
actually determine whether a given choice of numerical parameters
for cosmological simulations is appropriate. We focus in particular
on the choice of the smoothing length in the force, and show that
the test allows one to determine a range of appropriate values.

To avoid possible confusion it is probably useful to underline
the distinction between stable clustering as we study it here, and
the same term as it is frequently discussed in cosmological simula-
tions (see e.g. Efstathiou et al. 1988; Smith et al. 2003): it can be
postulated (Peebles 1980) that, in the strongly non-linear regime,
structures evolve as if they were isolated from the rest of the mass
in the universe. If this ‘stable clustering hypothesis’ is valid (to a
good approximation, on average) it leads, when matched with linear
theory, to very specific predictions for the nature of the correlations
in the non-linear regime.! Here, in contrast, we will consider by
construction the evolution only of a single structure, for which sta-
ble clustering must be observed if the simulation is reproducing the
desired physical limit.

The paper is organized as follows. In the next section we show
explicitly how cosmological codes used to simulate isolated over-
densities in an expanding universe are related, in an appropriate
limit, to non-expanding codes. We then discuss the particular limit
of virialized haloes for which the stationarity in a non-expanding
code corresponds to stable clustering in physical coordinates in the
expanding code. In the following section we illustrate and investi-
gate the test using a set of simulations in an Einstein—de Sitter (EdS)
universe, which differ only in the smoothing length employed. We
then also consider a set of simulations in which only the box size is
varied. In the subsequent section we compare the test with the so-
called Layzer—Irvine (LI) test for the evolution of the energy in cos-
mological simulations. In Section 5 we discuss what can be inferred
from our results about the role of different possible discreteness ef-
fects in producing the observed deviations from stable clustering,
and what can be concluded about dependences of these deviations
on the relevant parameters (particle number, force smoothing, box
size). In the following section we specify in a ‘recipe’ form how
the test could be employed practically by simulators to test choice
of numerical parameters in cosmological simulations. We conclude
with a brief discussion of possible variants on the tests and some
more general comments.

2 EVOLUTION OF AN ISOLATED
OVERDENSITY IN COSMOLOGICAL
N-BODY CODES

Dissipationless cosmological N-body simulations (see e.g.
Kravtsov, Klypin & Khokhlov 1997; Springel, Yoshida & White
2001; Teyssier 2002; Bagla 2005, for a review) solve numerically
the equations

d’x; dx; 1

2H— = —F,, 1
dr? + dr a’ M

! Specifically starting from power-law initial conditions it leads to the
prediction of a ‘stable clustering hierarchy’ characterized by a power-law
correlation function of which the exponent can be determined (Peebles
1980).
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where

P

X, —X;

Fim—Gm}_ o g el =D, ?
j# ! :

x; are the comoving particle coordinates of the i = 1... N particles
of equal mass m, enclosed in a cubic box of side L, and subject to
periodic boundary conditions, a(t) is the appropriate scale factor for
the cosmology considered and H(t) = a/a is the Hubble constant.
The function W, is a regularization of the divergence of the force at
zero separation — below a characteristic scale, €, which is typically
fixed in comoving units. For simplicity we will drop this function
in this section as it plays no role for our considerations here.

The superscript ‘P’ in the sum in equation (2) indicates that it
runs over the infinite periodic system, i.e. the force on a particle is
that due to the N — 1 other particles and all their copies. The sum,
as written, is formally divergent, but it is implicitly regularized by
the subtraction of the contribution of the mean mass density. This is
physically appropriate, in an expanding universe, as the mean mass
density sources the expansion (see e.g. Peebles 1980).

2.1 Equations of motion a single ‘isolated’ structure
in physical coordinates

Let us now consider the case illustrated schematically in Fig. 1
where the N particles are contained within a spherical volume, €2,
of radius R, with R < L/4 (where L is the side of the cube). The
latter condition is sufficient to ensure that the distance between any
particle i and any other particle j in 2 is less than that separating i
from any copy of j in the infinite periodic system. The force on a
particle i may then be written as

F,=F+F, 3)
where
Q Xi —Xj
F,:—szlx__x_3 4)
j# ! /

Figure 1. Schematic representation of the case studied in this paper: a
single structure of N particles confined in a region of characteristic size
small compared to the side of the cubic cosmological simulation box (dark
line).
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is simply the direct one over the N — 1 other particles in the volume
2, and

Xi—Xx; —nL
Fi=D Fy==6m) ) o —uip ®
J#i J#i A0
is the force due to all the particles in the copies, labelled by all
vectors of non-zero integers n, and where we have |x; — x;| <
L/2 < |nL]. Note that F,-Q is clearly finite and well defined, while
each sum over n giving F?j is now formally divergent, but again
implicitly regulated by the subtraction of the mean density.

To calculate Ffj we observe that it corresponds simply to the
force on a single particle displaced by (x; — x;) off an infinite
perfect lattice of lattice spacing L. It is straightforward to show (see
Gabrielli et al. 2006) that, expanding in Taylor series in (x; — x ;)
about x; — x; = 0, we have

c 47'[G,00
Y 3N
where py = mN/L? is the total mean mass density (and thus p,/N the
mean mass density of the lattice of the particle j and its copies). The
leading non-zero ‘dipole’ term on the right-hand side in equation
(6) is arepulsive term which arises from the subtraction of the mean
mass density to regulate the sum: it is precisely the force arising
from the mass contained in a sphere of radius |x; — x ;| of constant
mass density —po/N. We do not write explicitly the sums for the
subsequent (quadrupole and higher multipole) terms, but they are
manifestly convergent and suppressed by positive powers of (R/L)

compared to the dipole term.

As the sum over x; in F; vanishes because we have chosen
(without loss of generality) to place the centre of mass of the N
particles in €2 at the origin of our coordinates, retaining only the
dipole term in F; the equations of motion (1) we obtain

(xi = %)+ 0 (Ix: = x, /L"), ©)

47'EG;O()

Xi—Xj X,
1
3 )

dzx,- +2de, B Gm
dr? dr —

@)

3 _x.3
a ,-74_,-|xl x|

where the sum is now only over the N — 1 particles in 2. Assuming
an EdS cosmology, for which

a 4nG £o

a__ , @®)

a 3a3

these equations (2) may be written, in physical coordinates r; =
a(t)x;, simply as

dr; ri—r;
I:—G i J , 9
dr? mz|ri—r-|3 ©)

i.e. as the equations of motion of N isolated purely self-gravitating
particles.?

Thus, when a cosmological code is used to simulate an isolated
structure in an expanding universe, it should reproduce the same
result, in physical coordinates, as that obtained for such a structure
in open boundary conditions without expansion. This identity is
valid up to

(1) finite size corrections, arising from the use of a finite (periodic)
box in cosmological simulations (and which vanish in the limit
R/L — o0);

2 In the case of a cosmology with matter and a cosmological constant A,
we obtain in physical coordinates an additional repulsive term arising from
A. This can easily be incorporated in the considerations which follow, but
we consider here for simplicity the case A = 0, i.e. the EAS cosmology.

(ii) eventual differences due to force softening in the two type of
codes (which we have neglected above).

Any dependence of results on the box size or force smoothing is
unphysical in cosmological codes. Thus these codes can be tested by
using them to simulate isolated structures and comparing the results
obtained to those for the same initial conditions in open boundary
conditions and without expansion.

2.2 Virialization and stable clustering

Results for the detailed evolution from arbitrary initial conditions in
open boundary conditions and without expansion can be obtained
in general only from numerical simulation. However, even without
performing such simulations, it is possible to do tests of cosmolog-
ical codes which are based on well established generic features of
the evolution in open boundary conditions. One such feature, for
a very wide class of simple initial conditions, is the evolution to
a virial equilibrium in a few dynamical times (see e.g. Heggie &
Hut 2003). These equilibria are, in the limit N — oo, stationary
states corresponding to time-independent solutions of the collision-
less Boltzmann equation. In a finite N system they evolve away from
this equilibrium, on a very long time-scale diverging with N, due to
collisional effects. The stationarity of these states in the collision-
less limit corresponds, in a cosmological code, to ‘stable clustering’
of the virialized system.

It follows that by studying the stability of the evolution obtained
from appropriate initial conditions, we can test cosmological codes
both for effects arising from the finite size of the box, and force
smoothing, as well as for collisional effects. These are precisely the
principle undesired effects introduced by using the N-body method
to solve the (continuum, infinite system) cosmological problem of
formation of structure, and present even in the idealized limit that
the numerical integration of the equations of motion is arbitrarily
accurate. Thus by testing for the validity of stable clustering in such
aregime we can test for the capacity of N-body codes to reproduce
correctly the relevant physical limit. It is such a test which we will
focus on in what follows.

3 NUMERICAL STUDY OF THE TEST

To illustrate the test we use the GADGET code® (Springel et al. 2005),
which can be used to perform both cosmological simulations, and
simulations without expansion (in both open and periodic boundary
conditions). For our cosmological simulations we consider, for sim-
plicity, evolution in an EdS background. All our simulations here
are for N = 10" particles.

3.1 Initial conditions and choice of units

The initial conditions we study here are the following: the N =
10* particles are randomly distributed in a spherical volume of
radius R = 0.1L, and assigned random velocities sampled from
a probability distribution which is uniform in a cube centred at

zero velocity. These velocities are then normalized so that b = —1,
where
2K,
b=="2F (10)
Up

3 See http://www.mpa-garching.mpg.de/gadget/
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is the virial ratio, and K, and U,, are the peculiar kinetic energy and
peculiar potential energy, respectively. These are defined by

szizi:mw,-ﬁ, (1D
where v; = a(z)% is the particle peculiar velocity, i.e.

v = a(z‘)d;: = (Lrt" — H(r; (12)
and

Up = i ,2# mg(lxi — x;1), (13)

where g(r) is the exact (GADGET) two-body potential. Thus, modulo
force smoothing, U, is equal to the Newtonian potential energy in
physical coordinates, and we will therefore refer to it as the physical
potential energy.*

Our motivation for this choice is that it is a simple one which,
although out of equilibrium, rapidly settles to a virial equilibrium.
We note that it corresponds, in the cosmological simulations, to an
initial density fluctuation of amplitude

§= PR 240, 14
where p( is the mean (comoving) mass density of the universe. Thus
it can be thought of, roughly, as representing an almost virialized
spherical halo at its formation time, which is then evolved forward
in isolation from the rest of the mass in the universe.> In our conclu-
sions we will briefly discuss other initial conditions which it would
be relevant to study in testing cosmological simulations.

The results we report require only choice of units for length and
energy: for the former we will take units defined by L = 1, and for
the latter units in which (3GM?/5R) = 1, i.e. in which the initial
continuum limit potential energy is (minus) unity.

We note that equation (14) implies that, at expansion factor a,
starting froma = 1 att =ty = 1//67tG py, we have

4
t—to=[a"* =1ty = Ex/ﬁ[ay2 — 1z ~ 6.6[a** — 1]z,
(15)

where 1. = +/37/32 Gp is the collapse time for a cold uniform
sphere with mass density p.

Our expanding simulations are evolved up to a scale factor a =
20, unless otherwise indicated. This means our study is (roughly)
of haloes of N = 10" particles which formed at a redshift less than
about 20. Note that equation (15) implies that a = 20 corresponds
to several hundred dynamical times of the halo. For N = 10* par-
ticles this is sufficiently long, as we will see, to see evidence large
deviations from stable clustering in all our simulations.

4 Note that g(r) differs from the exact two-body potential used in the dy-
namical evolution, because of the modifications associated with the periodic
boundary conditions; often the nomination ‘peculiar potential energy’ is
used for U, defined as in equation (13) but including this modification in
8(r).

3 The virial condition » = —1 as given indeed corresponds, to a very
good approximation, to the more evident condition in physical coordinates:
2K, = —U, implies v> ~ GM /R, from which it follows that v}/ H?r? ~ 8,
i.e. the peculiar velocity is large compared to the Hubble flow velocity.
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Table 1. Names and corresponding values of ¢ of simu-
lations with N = 10* particles. L is the box size and £ =

LN~1/3,

Name e/L e/l
sl 3.7 x 1073 0.0008
s2 5.0 x 1073 0.001
s3 8.0 x 1072 0.0016
s4 1.0 x 1074 0.002
s5 3.7 x 1074 0.008
s6 5.0x 1074 0.01
s7 3.7 x 1073 0.08

3.2 Parameters of expanding simulations

We consider a set of simulations (of N = 10* particles) with the
values of smoothing & shown in Table 1. In GADGET the smoothed
two-body potential has a complicated functional form which is a
spline interpolation between the exact Newtonian potential — above
a separation of 2.8¢ — and a potential of which the first derivative
vanishes at zero separation. The value of ¢ we quote is the value
of the parameter with this name in the code. At this separation the
smoothed potential is approximately 75 per cent of it Newtonian
value, while at £/2 it is down to approximately 50 per cent.

The values of the parameters controlling precision of the time
stepping and force calculations are given in Appendix A, as well as
a discussion of tests we have performed for the sensitivity of our
results to variation of these parameters.

Each row in Table 1 gives the name of a simulation and the cor-
responding value of ¢ in units of the box size L. Also given is the
ratio of & to £ = LN~'/3. The latter corresponds to the initial grid
spacing of a cosmological simulation with the same mean (comov-
ing) matter density. The initial mean nearest neighbour separation
A, on the other hand, is given by®

4R\ R
A=055(—— ~09¢—, (16)
() =ose1
ie.e/A ~9¢/L since R =0.1L.

We thus consider in all our simulations, as in many large cosmo-
logical simulations, a smoothing which is fixed in comoving units.
As we will discuss a little more in our conclusions, our test can
of course be applied with any other smoothing prescription, e.g.
fixed smoothing in physical coordinates or adaptative smoothing.
The motivation for the range of ¢ we have chosen to study, which
extends to values significantly smaller to those typically used in
large cosmological simulations, is the following.

(i) An upper cut-off on ¢ is imposed by the fact that this scale
must be sufficiently small so that gravitational mean field forces
may be well approximated. This requires simply that

& K R, an

where Ry is the characteristic scale on which the mass density in
the structure varies (in the continuum limit). The value of ¢ in
87 corresponds to &€ &~ 0.04R. Given that ¢ is fixed in comoving
coordinates, while stable clustering will lead to a structure with
R, o< 1/a, this simulation (run up to a = 20) will clearly be expected
to manifest the effects of the violation of the bound (17).

© This expression is derived from the value for an infinite Poisson distribu-
tion (for which the exact nearest neighbour distribution is known, see e.g.
Gabrielli et al. 2004).
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We note that even the largest value of ¢ we consider corresponds
to a value significantly smaller than £. Indeed such a choice is
unavoidable if one wishes to resolve the non-linear evolution of
structures with a modest number of particles in a cosmological
simulation. As mentioned in our introduction, the use of ¢ < ¢
has been the source of discussion and controversy in the literature,
notably as at early times it leads inevitably to effects which should
be absent in the desired mean-field limit (see e.g. Splinter et al.
1998; Joyce et al. 2008; Romeo et al. 2008). Our present test,
which considers only the strongly non-linear regime subsequent to
collapse and virialization, clearly cannot give us any information
or constraint on the accuracy with which collisionless behaviour
is reproduced in the early time evolution. We will return briefly to
these issues in our conclusions.

(ii) A lower cut-off on the other hand is dictated in principle only
by numerical limitations: without such a cut-off hard two-body
collisions will occur, with (arbitrarily) large accelerations requiring
integration with correspondingly small time-steps (for a discussion
see e.g. Knebe et al. 2000). Given that a two-body collision is soft
if (Gm/sv?) < 1, where v; is the initial relative velocity and s the
impact factor, a naive estimate of the condition on softening to
suppress hard collisions is & > (Gm/v?), where v is the typical
speed of a particle in the system. For a virialized system of N
particles of size R, we have Nv2 ~ GmN?/R;. Thus we estimate

> R/N. (18)

The value of ¢ in sl corresponds approximately to this estimated
lower bound at the beginning of the simulation. Note that, in contrast
to the upper bound equation (17), an evolution corresponding to
stable clustering (with Ry ~ 1/a) will improve progressively the
satisfaction of the condition equation (18).

Given that the goal of N-body simulations is to reproduce the
collisionless limit, in which hard two-body collisions should clearly
play no role, the imposition of the lower bound (18) is clearly
justified. Indeed we note that simple estimates of the minimal &
required to reproduce the collisionless limit suggest that much larger
values of ¢ may be necessary. If one assumes, for example, that ¢
should be large enough so that the force from a single particle
is always subdominant with respect to the mean field force, one
obtains

&> RN"'2. (19)

An even more restrictive condition, which might possibly be rele-
vant, is that ¢ should be at least of order the average interparticle
distance, i.e.

e> RN/, (20)

As we will discuss further below, although we do not do so here the
test we develop could in principle be used to determine which (if
any) of these scalings is the right one for the minimal ¢.

3.3 Evolution in open boundary conditions

As discussed above, the test we explore here, for stability in physical
coordinates of a virialized structure, does not necessarily require
direct comparison with the same initial conditions evolved in open
boundary conditions. Such comparison constitutes, however, a more
stringent test, and, as we will see, can be used to derive more precise
quantitative conclusions about the choice of numerical parameters.

le+08 E

1e+07

1e+06

E le+05
<

10000

1000

100

0.01 0.1

Figure 2. Density profile (and, inset, virial ratio) at indicated times for our
chosen initial conditions when evolved in open boundary conditions (and
without expansion).

We have therefore evolved the initial conditions described above
in open boundary conditions without expansion.” The values of the
numerical parameters we have used, and tests we have performed
for the stability of these results, are given in Appendix A. Shown
in Fig. 2 is the initial and evolved density profile obtained at the
indicated times in a simulation in open boundary conditions and
without expansion. In inset is shown the evolution of the virial ratio
b (defined as equation 10, taking a(f) = 1). After a few dynamical
times the system has settled down ‘gently’ to a macroscopically sta-
ble virialized configuration, with small residual fluctuations about
it. Below we will use a smooth fit to the profile at 127 as a tem-
plate for the profile of the collisionless equilibrium established in
open boundary conditions from these initial conditions. We will
then compare this template with the profile of the virial equilib-
rium obtained in the cosmological code. In absence of collisional
effects, finite size effects or other numerical effects, the two should
coincide. Note that one could also perform a test in which the open
system is evolved to the considerably longer times on which col-
lisional effects play a role, and compare this with the evolution in
the expanding case. This, however, is not a test we explore here
as our focus is on testing the collisionless nature of cosmological
simulations.

3.4 Evolution in cosmological code

3.4.1 Virial ratio

In Fig. 3 are shown for the indicated simulations, the evolution, as a
function of redshift, of the virial ratio, as defined by equations (10),
(11) and (13).

For all the simulations, except s7, the virial ratio evolves qual-
itatively as would be expected if the system evolves as in open
boundary conditions: they show low-amplitude coherent oscilla-
tions which decay gradually indicating virialization (corresponding
to b = —1). Further we have checked that there is good quan-
titative coherence between the amplitude and time-scale of these
oscillations, and those found in open boundary conditions (inset of
Fig. 2): using equation (15) we see that the temporal range of the
latter corresponds just to evolution up to a ~ 2 in the expanding

7 See e.g. Worrakitpoonpon (2011) and Sylos Labini (2012) for a more
detailed study of this case.
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Figure 3. Evolution of the virial ratio b (as defined in the text) up to scale
factor a = 20 for the different simulations in Table 1.

case. We will consider below the exact degree of agreement between
the density profiles obtained in the expanding simulations and the
non-expanding case.

The fact that s7 behaves so differently — deviating clearly from a
behaviour like that in the other cases at a ~ 5 — can be attributed,
as anticipated above, to the violation of the constraint (17): we
have ¢/Rs =~ 0.04 initially, which means that, if the structure does
indeed remain fixed in physical coordinates, at a ~ 5 the effective
mean-field force due to all particles is very different to its Newtonian
value. For s6, on the other hand, with a smoothing about seven times
smaller than in s7, we expect to have ¢/R; ~ 0.1 at a = 20, still
small enough so that the Newtonian value of the mean field potential
is well approximated by the smoothed potential. In this latter case,
however, even from a A~ 10 the virial ratio already appears in Figs 2
and 3 to show a slight tendency to increase at the larger values of a.

3.4.2 Potential energy

In Fig. 4 are shown the evolution of the physical potential energy
U,. If the structure, once virialized, remains stable in physical co-
ordinates we should have U, = constant. Further, of course, if the
smoothing plays no role, this constant value should be the same in
all the simulations. We observe that only the behaviour observed
for the simulations s5 and s6 appears to be consistent with stable
clustering of the virialized structure, and even in these two cases a

2 L
1 10
a

Figure 4. Evolution of the potential energy U}, of the structure (in physical
coordinates) for the indicated simulations in Table 1.
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slight deviation is apparent at the end of simulated redshift range,
from a ~ 18. These plots thus indicate that at most in the corre-
sponding narrow range of ¢ can the behaviour required in the desired
continuum limit be reproduced by the N-body method.

3.4.3 Density profiles

Let us now examine whether this conclusion is borne out by fur-
ther analysis of the evolved configurations. Shown in Fig. 5 are the
measured density profiles at the indicated scale factors in each of
the simulations. The results confirm strongly what can be antici-
pated from the analysis of the potential energy: the profiles agree
increasingly poorly in time, with s7 and sl clearly giving profiles
completely different to those obtained in the other cases. s4, on the
other hand, shows a much smaller discrepancy with the remaining
two, s5 and s6. These latter two simulations agree very well with
one another, except at the very last plot where a slight difference
may be observed. We note that, compared to these cases, the sim-
ulations with a smaller ¢ have a denser more concentrated core,
while for s7, which has a larger value of ¢, the opposite behaviour
is observed. This is very consistent with our comments above about
this latter simulation: ¢ is so large that mean field forces are very
reduced compared to the exact Newtonian mean field, leading to a
much less condensed structure.

3.4.4 Rescaled density profiles

It can be seen qualitatively from the previous figures (which are
plotted in comoving coordinates) that the comoving size of the
structures does indeed decrease, with a corresponding increase in
their density. To see whether the behaviour is quantitatively in agree-
ment with that associated with stable clustering, we show in Fig. 6
the evolution of the profile in physical coordinates for the simula-
tions indicated, i.e. we plot in each case n(r) = n(x)/a’ as a function
of r = ax. In this representation stable clustering corresponds to an
invariant profile. We also show in these plots the template for the
profile of the collisionless equilibrium obtained from a simulation
of the open non-expanding case, as described in Section 3.3. The
insets in the plots show the results in each expanding simulation
normalized to this profile.

The results confirm what has been anticipated above from the
examination of the behaviour of U, and the comparison of density
profiles, but also give additional constraints: s5 and s6 reproduce
stable clustering considerably better than any of the other simula-
tions, but s5 also clearly does better than s6, which shows a deviation
between a = 15 and 20. Thus, of the full range of ¢ considered,
s5 is closest to optimal, while all others lead to quite measurable
deviations from the continuum limit behaviour. We see very clearly
in these plots again the marked qualitative difference between the
cases of a smoothing which is too large and one which is too small.
In the former case the structure obtained is very much less dense
and more extended than it should be, while in the latter case it is
very much more compact, with a density profile which steepens
towards the centre. These differences, as we will discuss further
in the final section below, clearly correspond to the very different
effects at play in the two cases.

We note that the conclusions in the previous paragraph can be
drawn even without the direct comparison with the non-expanding
density profile: in other words, when stability is observed in a
given expanding universe simulation, the (stable) profile obtained
is always consistent with the correct one. The comparison with the
non-expanding profile, shown in the inset of each figure gives a
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Figure 5. Density profiles in comoving coordinates as measured in the indicated simulations from Table 1, at the different indicated scale factors.

more quantitative measure of the deviation of the corresponding
expanding universe simulation from the correct behaviour. Note
that these insets have been cut in all cases at r = 0.1, since in all
cases there are very significant deviations beyond this radius, which
is reflected also clearly in clear deviations from stable clustering.
Indeed we note that in all cases the very outer part of the profile
extends very significantly further than in open boundary conditions.
In most cases this corresponds to a very small fraction of the total
mass, except in the case of s7 (with the largest smoothing) for which
the characteristic size of the whole structure is, as we have noted,
very much larger than it should be.

3.5 Test for box size dependence

The simulations in the previous section are of fixed box size. The
fact that they evolve differently is, by construction, due only to the
different force smoothing. However when we compare the profiles
obtained to the template in open boundary conditions (determined at
very early times and taken to be representative of collisionless evo-
lution), differences may also arise because of the periodic boundary
conditions. As we have explained the differences with respect to
the open system should be suppressed by powers of R/L and thus
vanish as the size of the system becomes small compared to the box
size. By varying the box size we can test both whether finite size
effects may be observed, and whether they are, as we have assumed,
small for R/L = 0.1.

To do so we have run the set of simulations in Table 2. The
simulation s5RO0.1 is identical to the simulation s5 considered above,
except that it has been run for a longer time, up to a = 33 (rather
than a = 20). The other four simulations are for the same number

of particles, N = 10*, and differ only in their initial size R. Because
the overdensity & represented by these initial conditions depends on
R (cf. equation 14), the relation equation (15) between the physical
time elapsed and the scale factor a is modified. More precisely, in
units of the characteristic time of the isolated structure 7, a given
elapsed time ¢ — #, corresponds to a fixed value of R=3/2 (a*/? — 1).
The scale factor a = aepq in Table 2, up to which the corresponding
simulation has been run, has been chosen so that R—/2 (a7 — 1)
is equal in all cases, i.e. all simulations are run up to the same time
in units of ..

The choice of ¢ given in Table 2 have been made by scaling the
value in s5 in proportion to R (and the mean interparticle distance).
As ¢ is fixed in comoving coordinates, it evolves in physical coordi-
nates in proportion to a(t), and therefore as a function of (t — #) /7
in a manner which depends on the box size. Thus the dependence
on box size in the evolution of these systems can arise not just from
contributions to the gravitational force due to the periodic copies,
but also through possible differences in the dynamics due to the dif-
ferences in force smoothing in each case. Apart from such effects
their evolution should be identical when analysed in physical units
(of length and time).

In Fig. 7 is shown the evolution of the potential energy U, nor-
malized to the modulus of its initial value, for the five simulations,
as a function of the appropriately normalized time determined by
equation (15), and the evolution of the virial ratio in the inset. In
Fig. 8 is shown the density profile in each of the five simulations,
at the time in each case corresponding to @ = 10 in the simulation
s5 (and s5RO.1).

Very strong dependence on the box size is manifest for the
two largest systems (of which the initial diameter is equal to,
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Figure 6. Density profiles in physical coordinates at the different indicated values of a. Each figure corresponds to the single indicated simulation. Also shown
in each case is a smooth fit to the profile (labelled OBC) obtained in an open non-expanding simulation at # = 127 . In the inset plots of the profiles normalized

by this latter profile are given.

Table2. Parameter of simulations with N = 10* particles
for various different initial system size R (in units of the
side of the periodic box). The ratio ¢/R is the same as
that in the simulation s5 in Table 1. The parameter aeng

is defined in the text.

Name £ Qend
s5R0.3 1.1 x1073 100
s5R0.2 74 x 1074 67
s5R0.1 3.7 x 1074 33
s5R0.05 1.65 x 107+ 16.8
s5R0.025 8.25 x 107 8.6

respectively, 0.4 and 0.6 of the box size): both the energy of the virial
equilibrium attained, and the density profiles, are very significantly
different to those in the other cases. The smaller systems, on the
other hand, show a clear convergence for these quantities (and which
we have seen for the case s5R0.1 agree well with those obtained
in the open case). The differences at late times in the deviations
towards higher values of U, associated (as can be seen in the inset)
with deviations from satisfaction of the virial condition, may clearly
be attributed to the differences in the force smoothing noted above:
a larger box size corresponds, at a given (f — #))/Ty, to a larger
scale factor a, and therefore to a larger smoothing with respect to
the size of the system. Indeed in the simulation s7 we saw (Fig. 4)
that significant deviation in the behaviour of U, already at a ~ 2-3.
The simulations here have €/R; initially exactly 10 times smaller
than in s7, and so would be expected to show deviations in the range
a ~ 20-30 as is observed.
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Figure 7. Evolution of the potential energy U, for the simulations in Table
2 with N = 10*, normalized to initial absolute value of Up.
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Figure 8. Density profiles for the simulations in Table 2 with N = 10*, at
the normalized time corresponding to a = 10 in s5RO0.1.

Thus for the quantities we have focused on above the effects
due to the finite box size in the system of the initial size we have
considered appear indeed to be very small. We note, however, that
considerable box size dependence is manifest even for the smaller
boxes in other quantities. The amplitude of the oscillations dur-
ing the initial relaxation to virial equilibrium is very significantly
larger than in the smaller systems, for which the amplitude appears
to converge approximately. This suggests that the corresponding
modes of oscillation of the structure about the virial equilibrium
are enhanced very significantly by the gravitational coupling to the
periodic copies.
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Figure 9. LI test for the simulations in Table 1. See text for the definition
of A(a).

4 COMPARISON WITH THE LAYZER-IRVINE
TEST

One possible test of the accuracy of a cosmological code is the so-
called Layzer—Irvine (LI) test, derived from the equation of the same
name which describes the variation of total energy in an expanding
universe (see e.g. Peebles 1980). Unlike energy conservation in
non-expanding simulations, it is, however, a test which is rarely
employed in practice by cosmological simulators as a control on
their code, because it is not evident how to quantify the violation
of the LI equation which may be tolerated.® Given that the test
discussed in this paper is an independent one on the correctness of
cosmological codes in a specific regime, it can in principle be used
to ‘calibrate’ the LI test in this context. Likewise it is interesting to
see whether it may be useful to employ both tests together.

In terms of the quantities defined above, the LI equation may be
written as (Peebles 1980)

d

dr [a(Ky + Up)| = —aK,. b

We thus define the quantity

A@) = a(Ky + Up) + [ Ky da
K,(1) + Uy(1)

, (22)

which should be equal to unity.?

In Fig. 9 is shown the evolution of A(a) for the simulations
s1—s7. We observe immediately that the two simulations in which
A(a) remains close to unity are precisely those, s5 and s6, which
have been singled out by our test above as reproducing best the

8 The GapGET2 user guide, for example, states that ‘the cosmic energy
integration is a differential equation, so a test of conservation of energy in
an expanding cosmos is less straightforward that one may think, to the point
that it is nearly useless for testing code accuracy’.

9 The LI test remains applicable in this form for the infinite periodic sys-
tem, if Uy, is calculated with the corresponding two-body potential. As this
makes no significant difference to the results we give below, we continue
to use U, as considered elsewhere in the paper (i.e. calculated without this
modification to the two-body potential).
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required behaviour. On the contrary, all the other simulations which
showed much greater deviation from stable clustering also show
larger deviations from unity of A(a). More precisely, in all cases
where deviation of A(a) from unity by more than a few per cent
is observed, the stable clustering test showed the results for the
clustering in the system were completely incorrect and unphysical.

The correlation between the information we deduced from Fig. 4
and what we observe in Fig. 9 is very evident, and the reason for it
very simple: the requirement that U, be constant is, when the virial
condition b = —1 is satisfied, equivalent to the condition that both
K,, and therefore also the sum U,, + K, corresponding to the energy
in physical coordinates, is constant. In this case, as can be seen from
equations (21) and (22), the LI test is also satisfied. Thus it is clear
that the very strong deviations from stable clustering observed for
the simulations s1-s4 stem from a poor integration of the equations
of motion, with very significant violation of energy conservation.
As discussed in Section 3.2, such numerical difficulties are expected
to arise due to the precision requirements of integrating accurately
the hard two-body collisions present when ¢ becomes very small.
We note that our results are very consistent with those of Knebe
et al. (2000) who have studied in detail the effects of such poorly
integrated hard collisions: they lead to an artificial injection of
energy into the system, increasing its size as some particles are sent
into spurious higher energy orbits. We observe here indeed quite
distinctly these effects both in the behaviour of the energy (which
increases) and the profiles which stretch out further than they should
(compared to stable clustering).

For the very small ¢ considerably greater precision than that
employed (see Appendix A) would be required to attain numerical
convergence. We note that our results do suggest that, at given
numerical precision, a lower bound on ¢ may be expressed in a
simple form like equations (18)—(20), i.e. that the minimal € required
scales linearly the size of the structure R;: in Fig. 4 each of the
simulations s1-s3, which have the same maximum time-step, shows
an approximate plateau in U, starting from a scale factor a which
increases roughly in proportion to 1/e. Given that we observe in
these simulations that R, ~ 1/a, this behaviour of U, indicating
energy conservation, therefore sets in approximately at a fixed value
of ¢ /R, in line with bounds of the form of equations (18)-(20). A
study of simulations with different N would be required to establish
which (if any) of the proposed scalings is the correct one.'”

We underline that the LI test for an expanding simulation is, just
as the test for the constancy of U, a weaker test than the test for the
stability of clustering: the latter tests for the collisionless nature of
the evolution, which is a different (and stronger) requirement than
energy conservation. In practice, however, the breakdown of energy
conservation is often due to the difficulty of integrating numerically
with sufficient accuracy the collisional dynamics (specifically, hard
two-body collisions), and therefore the breakdown of the collision-
less approximation is associated with the violation of energy con-
servation. Such an association can always be ‘undone’, in principle,
by increasing sufficiently the accuracy of the numerical integration.
In practice, however, it is very difficult to disentangle the two ef-
fects, and indeed studies up to now of two-body collisionality in
cosmological simulations (e.g. Knebe et al. 2000; Binney & Knebe
2002; Power et al. 2003) have not done so.

In conclusion we find that the LI test is a very useful and relevant
one in the context of the present test of cosmological simulations.
Quite simply deviations of the dimensionless parameter A defined

10 Knebe et al. (2000) propose bounds based on the same simple argument
given above for equation (18).
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above by more than a few per cent appear always to be indicative
of a grossly incorrect evolution. The crucial difference with respect
to its use for a full cosmological simulation, which, as mentioned,
has been found to be problematic, arises from the difference in
initial condition: for the very cold and almost perfectly uniform
initial conditions of cosmological simulations the denominator in A
approaches zero, which makes it difficult to calibrate the test.

5 NATURE OF DISCRETENESS EFFECTS
AND PARAMETRIC SCALINGS

Our results above establish that the tests considered can clearly
detect and measure discreteness effects in N-body simulations, i.e.
deviations of the results of such simulations from the desired con-
tinuum limit.

We discuss now briefly what conclusions may be drawn about the
nature of these discreteness effects. More specifically we discuss
what we can conclude about the parametric dependences of these
effects.

Discreteness effects here can be divided into two categories as
follows:

(i) ‘numerical discreteness effects’ arising from limitations on
precision in the integration of the N-body system with a given
smoothed two-body potential;

(ii) ‘physical discreteness effects’ arising from the use of a finite
particle density, finite force smoothing and a finite periodic box.

The former are related to the choice of the numerical parameters
controlling accuracy of the force calculation and time stepping in
the code, while the latter are related to the number of particles N,
the size of the force smoothing & and the size of the box L.!' The
two kinds of effects are in practice interrelated since the numerical
precision required will depend typically on the values of the ‘phys-
ical’ discreteness parameters. However, in order to understand the
effects at play in cosmological simulation, it is useful to separate
them in this way. One can then consider, on the one hand, the issue
of numerical convergence at fixed values of N, ¢ and L, and, on the
other hand, the scalings with N, ¢ and L, of the deviations from the
desired physical behaviour, assuming ‘perfect’ numerical conver-
gence. It is the latter we consider here. Our results in Section 3.5
showed up clearly the presence of effects related to the box size L,
which, in line with expectations, decrease strongly as L increases
compared to the size of the simulated structure. We do not pursue
further tests here to establish exactly the associated scalings, but
instead focus on the other two parameters.

Our results show clearly, as anticipated, that for larger values of
the smoothing, deviation from the collisionless self-gravitating limit
arises predominantly from the associated loss of spatial resolution.
This was most easily ‘diagnosed’ by the behaviour of the virial ratio,
which deviated clearly away from b = —1 towards less negative
values. As discussed in Section 3.5 the behaviours observed are
very consistent with the simple bound equation (17), with significant
deviations becoming easily visible (in potential energy and profiles)
roughly when (¢/R;) ~ 0.1. Using the fact that Ry o< 1/a, we deduce

'T'We do not consider here the starting redshift z; for a simulation which is a
parameter introduced in the N-body discretization and on which discreteness
effects may depend (see e.g. Joyce et al. 2008; Knebe et al. 2009). As we
study here the evolution only of non-linear structures from the time they
form, we cannot constrain z; which can affect the evolution prior to this
time.
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that the scale factor at which we see the effects of the finite resolution
start to significantly modify the structure is

R
res ~ 1071 =, (23)
&

where R is the size of the structure at a = 1 (and the result is
valid for the case we consider where ¢ remains fixed in comoving
coordinates).

The very large deviations from stable clustering we have observed
in our simulations with very small ¢ are, as we have discussed,
apparently due to poor integration of hard two-body collisions. This
problem is clearly diagnosed very well using analysis of the U, or
even more clearly using the LI test. As mentioned, such effects have
been diagnosed and discussed in some detail notably in Knebe et al.
(2000).

In principle, as we have discussed, two-body collisionality, when
integrated accurately, can also contribute to the deviations from
stable clustering we observe. Indeed in our simulations s5 and s6,
which satisfy quite precisely the LI test, we see clear deviations
which are similar qualitatively to those observed in the case of
poorly integrated collisions: tails in the density profiles which be-
come more extended in time and a hint of steepening of the inner
density profile. It is straightforward in our case to estimate the time-
scale for such two-body effects using the well-known results for
the case of an open virialized system in a non-expanding space.
In this case numerical studies (see e.g. Farouki & Salpeter 1982,
1994; Theis 1998; Theis & Spurzem 1999; Diemand et al. 2004;
Gabrielli, Joyce & Marcos 2010) have shown that the time-scales
for evolution of collisionless equilibria are very consistent with
the those estimated analytically (originally by Chandrasekhar, see
Chandrasekhar 1943) for two-body collisions, given by

Tobody ~ KN T, (24)

where 7. is a characteristic crossing time for the structure, and « is a
numerical factor incorporating the ‘Coulomb logarithm’.'> Modulo
box size effects, which we have seen are small, the only difference
between these open systems and the one we are studying should arise
from the difference in the smoothing, which in our cosmological
code simulations is fixed in comoving coordinates and therefore
varies in time (increases) in physical coordinates. The two-body
relaxation time is, however, only logarithmically sensitive to the
lower cut-off in the two-body interaction, and temporal variation of
the smoothing ¢ will lead therefore to modification of the numerical
pre-factor « in the calculation, with at most very weak dependence
on N. Using equation (15) with equation (24) we thus estimate that
two-body relaxation will start to cause deviations in our numerically
well converged test simulations (i.e. s5 and s6 above) when

k(g) 2/3
Aapody ™~ % N ,

where we have taken 7. ~ 7.

Values of « of order those measured in open simulations (with
smoothing fixed in physical coordinates), typically a little smaller
than unity, thus give an estimate for asyoqy quite consistent with the
hypothesis that two-body collisionality should account for the ob-
served deviations from stable clustering in the simulations in which
the energy is conserved well. We note that these results also ap-
pear to be very consistent with studies such as Power et al. (2003)

(25)

12 This logarithmic factor is simply log (R/g) when ¢ is larger than the
minimal impact factor required for the validity of the soft collision approx-
imation. This calculation is for the case of a time-independent smoothing.

and Binney & Knebe (2002) which have detected such effects in
cosmological simulations. Clearly however a full study of the N de-
pendence of the results of our test, which we do not undertake here,
would be required to establish whether the scaling equation (25)
is indeed observed. It would be instructive to couple such a study
also to one including analysis with other indicators of collisionality
(e.g. measures of diffusion in velocity space like those employed
in Diemand et al. 2004, or using two mass species as in Binney &
Knebe 2002).

An important practical question in numerical simulation is
whether there is an optimal value of force smoothing in cosmo-
logical N-body simulations. The question may be posed either with
respect to some set of numerical constraints (quantified e.g. in terms
of bounds on the numerical parameters controlling accuracy of in-
tegration), or in abstraction from such limitations. The relations
equation (25) and equation (23) can be clearly combined, in princi-
ple, to provide a prescription for an optimal value of the latter kind:
although we have not determined explicitly, it is clear that x(¢) is
a monotonically (a priori logarithmically) increasing function of ¢,
while the coefficient in equation (23) is monotonically decreasing.
Thus by varying ¢ at fixed N an optimal value can be found which
maximizes the scale factor at which discreteness effects modify
the evolution. A much more extensive study, notably of N depen-
dence, would clearly be necessary to determine the scaling with N of
such an optimum. It would be interesting to determine, in particular,
whether it turns out to be that derived by Merritt (1996) and Dehnen
(2001) from simple considerations of the optimization of the repre-
sentation of the continuum (mean field, Newtonian) forces. It would
evidently be interesting also to compare with optimization criteria
derived in various numerical convergence studies in the literature
(e.g. Power et al. 2003; Diemand et al. 2004).

6 PRACTICAL GUIDE TO USE OF THE TEST

The numerical study we have reported establishes that the test con-
sidered can provide non-trivial constraints on the accuracy of cos-
mological simulations. To facilitate the exploitation of the test in
practice by cosmological simulators we now summarize in a recipe
form how it could be implemented. The results of such tests will, as
we discuss, inevitably depend strongly on the details of the particu-
lar simulations (cosmological model, time and length scales probed,
quantities of interest and desired level of precision, etc.). We there-
fore do not attempt to summarize the information which can be
obtained from the test in some simple set of rules. Instead we pro-
pose to simulators an instrument they can use to assess themselves
the reliability of the results of their codes.

Let us suppose a simulator intends to run a (dissipationless) cos-
mological simulation, which has N, particles of mass m in a box
of side Ly. An initial perturbation spectrum P(k) is given at the
starting redshift z;, and a cosmological model specifying the scale-
factor [e.g. A cold dark matter (ACDM)]. Based on criteria at his
disposal, he chooses a set of numerical parameters (time-step and
force accuracy criteria, smoothing €). The test we have considered
for the accuracy of simulation of haloes containing N particles (and
of mass M = mN) can be generalized as follows.

(1) Consider a simulation identical for all numerical parameters
to the full simulation, except for the box size, which is rescaled so
that

N3
L=Ly|— . 26
() -
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This condition means that the mean matter density of the universe
is equal to that in the full simulation, and therefore, in particular,
the ratio &/ has the same value as in the full simulation.

(2) Distribute the N particles in a spherical region of radius R =
L(3py/4mp,)'/?, where p, is the initial density of the halo. For
pyv ~ 200p, this corresponds to R &~ (.1 (as in our simulations
s1-s7 above).

(3) Assign velocities with some simple velocity distribution (e.g.
uniform or Gaussian) and normalize them so that the initial virial
ratio is unity.

(4) Run the cosmological code (with the chosen numerical pa-
rameters) starting from z,(M), the (estimated) maximum redshift
for virialization of a halo of mass M in the model studied.

(5) Check that the potential energy U, and virial ratio b display
the expected physical behaviour (low amplitude decaying oscilla-
tions about a constant value). Systematic deviation of the virial ratio
from b = —1 towards less negative values indicates that the upper
resolution on smoothing is violated. Plot also the parameter A(a)
for the LI test. If deviations from unity are at the level of more than
a few per cent, the parameter choices are inappropriate to simulate
over the corresponding time-scale.

(6) To obtain more precise limits on the precision of halo profiles
(in the cases where the previous tests are reasonably well satisfied)
apply first the test for stability of clustering. Further quantitative
limits can be obtained by comparison with the equilibrium pro-
file obtained from a high-resolution simulation of the same initial
conditions in open boundary conditions.

Our simulations s1—s7 reported above test the case N = 10* for a
range of values of ¢ (and other numerical parameters) up to redshift
of about 20. Following the prescription above we would exclude all
but s5 and s6 using the analysis of the energies and LI test beyond
a redshift of a few (cf. Figs 4 and 9). The conclusion of our further
analysis (step 6) above was that significant departures from stable
clustering (and from the equilibrium template) were observable,
increasing as a function of redshift. Beyond aredshift of order 10, we
could conclude, for example, that 50 per cent precision on profiles
of haloes over two decades in scale is not attainable with N = 10*.
To determine how many particles (and what numerical parameters)
would lead to such a level of precision could be determined by
performing the test for larger N.

Several variants of the test as described above could provide
further or more precise constraints.

(i) Different initial conditions could be used in steps 2 and 3. In
particular rather than a structure close to, but not at, virial equilib-
rium, one could take instead a structure which is already at equilib-
rium. Such an initial condition could be prepared numerically, or
set up directly using the Eddington formula (see e.g. Kazantzidis,
Magorrian & Moore 2004; Muldrew, Pearce & Power 2011). It
would be interesting notably to study equilibrium haloes with pro-
files like those typically measured in simulations [e.g. Navarro—
Frenk—White (NFW) haloes]. Alternatively initial conditions could
be obtained directly from the full cosmological simulation by ex-
tracting typical haloes at about the time they virialize. Techniques
to do this have been developed in the context of convergence studies
in which individual haloes are identified and resimulated at higher
resolution(see e.g. Power et al. 2003 and references therein).

(ii) To separate out possible effects arising from the box size, the
test could be repeated in boxes of different sizes, and specifically in a
box of side Ly. These are important in particular when comparison
with a simulation in open boundary conditions is made. As the
change in the box size leads to a change in the mean density (by
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a factor of N/N, for the case of a box of size L), this must be
accounted for in applying the test. As discussed in Section 3.5,
in an EdS cosmology this can done, modulo effects due to the
force smoothing, by a simple rescaling of the time. If the role of
smoothing is the focus of the test, and/or the cosmology employed
is non-scale-free (e.g. ACDM) the code would need to be modified
‘by hand’ to impose the evolution of the scale factor corresponding
to the cosmological simulation.

(iii) Another variant of the test would be, using further the frame-
work of the spherical collapse model for halo formation, to start
from the time of turn-around. At this time the spherical overden-
sity is already sufficiently large (~5-6) that one should be able to
consider the system to a good approximation as isolated. The initial
condition would thus be taken as a uniform or quasi-uniform sphere
with physical velocities equal to zero. Given that the scale R in step
1 would be comparable to the box size, it would be appropriate also
to study simulations in a larger box as discussed in the previous
paragraph.

7 CONCLUSIONS AND DISCUSSION

The central point of this paper is the introduction of a simple test on
the reliability of cosmological N-body simulations in the non-linear
regime. We have shown with a very simple implementation of the
test that it can constrain strongly the choice of the unphysical pa-
rameters introduced by the N-body method, given desired precision
criteria on the properties of virialized structures. More specifically
we have illustrated that the test can determine a window for an
appropriate force smoothing ¢ for simulations with a given time-
stepping accuracy, and any given N in a virialized structure. At
larger ¢ the loss of resolution was clearly seen to be the dominant
effect, while at small ¢ the effects of two-body collisionality become
the primary cause of deviation. In contrast to most other methods
explored previously in the literature these effects are detected and
quantified by comparing the evolution of the test simulation with
an exact behaviour, rather than by a comparison between different
codes.

We have not attempted here, and indeed it is not our goal, to try
to use the test to derive some set of simple short-hand rules that
could be used to, say, choose ¢ in a given cosmological simulation
(or compared with other prescriptions which have been given in
the literature). Rather it is the simulator who should apply the test
to derive what his constraints are, with respect to his own preci-
sion requirements. Nevertheless, it is interesting to comment a little
more on what our specific test, of simulations with fixed comoving
softening, indicates. Smoothing in simulations with fixed comoving
softening are characterized by the sole parameter ¢/¢. We can com-
pare the smoothings we have considered (Table 1) to typical values
employed in large volume cosmological simulations: the smooth-
ing in s5, s6 and s7 correspond, respectively, to ¢ /¢ &~ 1/125,1/100
and 1/12, while e.g. Springel et al. (2005) use ¢/¢ ~ 1/50, and
Smith et al. (2003) e/¢ =~ 1/16. From the results discussed above
it is clear that application of the test for these specific values can
give very strong indications of the reliability and/or precision of
the properties of haloes in such simulations. Indeed we note that,
using equation (14), our approximate derived constraint equation
(23) for the redshift range over which a structure of N particles may
be resolved, can be rewritten as

?
res ~ 10—2g N3, @7
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Thus, for example, at f ~ 1072 resolution constraints become rel-
evant for all objects of less than N ~ 10° formed at or before a
redshift of 10.

Comparing this with equation (25), in which the factor «(¢) has
a priori very weak (logarithmic) dependence on N, leads to the
conclusion that, for given e/¢, two-body collisionality will be
the dominant discreteness effect at small N, while for larger N it is
the resolution limit associated with € which is the relevant one. Thus,
for an ¢ /¢ which remains fixed in comoving coordinates, there is an
inevitable trade-off between resolution and the introduction of spu-
rious discreteness effects. We have considered solely simulations
with fixed comoving softening, but the test can be applied without
modification (as described in detail in that last section) to any other
kind of code. Indeed it could provide very useful constraints on
optimal smoothing strategies in codes with an adaptative smooth-
ing, which indeed aim to optimize spatial resolution while keeping
two-body collisionality under control (see e.g. Knebe et al. 2000).

We finally remark that while the test discussed here can, as we
have shown, provide constraints on the parameters which must be
respected in order to reproduce the desired continuum limit, it does
not show that satisfaction of these constraints guarantee the same
property, i.e. the test provides necessary, but not sufficient, con-
ditions to guarantee the correctness of the numerical results. First
the test only constrains the choice of parameters in the strongly
non-linear regime. This means, notably, that it cannot say anything
about the appropriateness of the use of a ¢ < ¢, which has been
shown to introduce discreteness effects in the early time evolution,
and which may or may not distort the subsequent evolution (Splinter
etal. 1998; Knebe et al. 2000; Joyce et al. 2008; Romeo et al. 2008).
Nor can it, as noted, provide constraints on the choice of the start-
ing redshift of simulations (Joyce et al. 2008; Knebe et al. 2009).
Further, even in the non-linear regime, it is clear that considerable
caution should be adapted in supposing the constraints derived from
this test guarantee a faithful representation of the collisionless evo-
lution: it shows that haloes with less than some number of particles
will necessarily suffer from effects of discreteness which modify
strongly their density profiles: as we have seen in our study, the use
of a smoothing which is slightly too small leads at the end of the
simulation to a completely incorrect profile. Further the character-
istic physical scale of this modification is the size of the structure,
which has no direct relation to the smoothing scale ¢. In the case
of an inappropriately large & (simulation s7 above) we saw that a
halo can even be very considerably larger than it should be. How
the presence of such spurious clustering modifies the evolution of
the whole system is very unclear. Indeed given that clustering in
currently favoured cosmological models is hierarchical in nature,
the possibility that such error may feed through different scales is a
major concern.
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APPENDIX A: FURTHER DETAILS
ON SIMULATIONS

Besides the choice of £ on which we have focused above, simulation
with GADGET requires one to fix several other numerical parameters.
In our choices we have followed the guidelines given by the Gap-
GET user’s guide, and also performed several tests indicate that our
results appear to be reasonably stable with respect to these choices.
Specifically we have considered the following.

(i) ErrTolIntAccuracy, a dimensionless parameter which controls
the accuracy of the time-step criterion. The value suggested by the
GADGET user’s guide is 0.025, and we have done numerical tests in
various cases reducing it by a factor of 10 without any detectable
difference in the results reported here.

(i) MaxSizeTimestep, which specifies the maximum allowed
time-step for cosmological simulations as a fraction of the cur-
rent Hubble time. According to the GADGET user’s guide a value
of 0.025 is usually accurate enough for most cosmological runs.
We have found our results to be stable in tests using considerably
smaller values, down to as small as 107> in some cases.

(iii) ErrTolTheta is the accuracy criterion (the opening angle 6)
of the tree algorithm if the standard Barnes and Hut (BH) opening
criterion is used. The suggested value is 0.7 and we have considered
values down to 0.1, again finding stable results in the tested cases.

We have also performed some tests comparing different realiza-
tions of the initial conditions in various cases, again with stable
results.
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We emphasize that despite these numerous tests, we have come
to the conclusion through our analysis using the test studied in
the paper that the four simulations with smaller ¢ are in fact not
numerically converged, and are characterized by very significant
violations of energy conservation due to poorly integrated two-body
collisions. Thus sufficient further extrapolation of the numerical
parameters beyond what we have considered must lead to very
different results in these cases.

For completeness we give in Table A1 the values of the numerical
parameters used in the simulations reported in the body of the paper.
For the non-expanding simulation in open boundary conditions we
have used (see also Sylos Labini 2012 for further details), a force
softening ¢ = 0.007R. This means that ¢ is very much smaller at
all times than the size of the structure. In addition we have chosen
n = 0.01, and have used the new GaDGET cell opening criterion
with a high force accuracy of oy = 0.001. Energy is conserved to
within less than 1073 up to 127.. In Joyce, Marcos & Sylos Labini
(2009) extensive tests of the dependence on & were performed, for
the much more constraining case of evolution from the same initial
condition but with initial velocities set to zero. These tests lead to
the conclusion that no sensible dependence is observed up to this
time (notably in the density profile) unless the ratio £/R; becomes
large.
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Table Al. Values of the three numerical parameters
(ErrTollntAccuracy, MaxTimeStep and ErrTolTheta)
adopted in each of the simulations reported in the text.

Simulation ETIA MaxTimeStep  ErrTolTheta
sl 0.025 0.01 0.7
s2 0.0025 0.01 0.7
s3 0.0025 0.01 0.7
s4 0.025 0.0001 0.7
s5 0.025 0.0001 0.7
s6 0.025 0.00001 0.1
s7 0.025 0.0001 0.7

sIN5e4 0.025 0.01 0.7
sINle5 0.025 0.01 0.7
s5Nle3 0.025 0.0001 0.7
s6N1e3 0.025 0.00001 0.1

This paper has been typeset from a TEX/IATEX file prepared by the author.
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