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ABSTRACT
In this work, we investigate the problem concerning the presence of additional bodies grav-
itationally bound with the WASP-3 system. We present eight new transits of this planet
gathered between 2009 May and 2011 September by using the 30-cm telescope at the Crow
Observatory-Portalegre, and analyse all the photometric and radial velocity data published
so far. We did not observe significant periodicities in the Fourier spectrum of the observed
minus calculated (O − C) transit timing and radial velocity diagrams (the highest peak having
false-alarm probabilities of 56 and 31 per cent, respectively) or long-term trends. Combining
all the available information, we conclude that the radial velocity and transit timing techniques
exclude, at 99 per cent confidence limit, any perturber more massive than M � 100 Mearth

with periods up to 10 times the period of the inner planet. We also investigate the possible
presence of an exomoon in this system and determine that considering the scatter of the
O − C transit timing residuals a coplanar exomoon would likely produce detectable tran-
sits. This hypothesis is however apparently ruled out by observations conducted by other
researchers. In the case where the orbit of the moon is not coplanar, the accuracy of our transit
timing and transit duration measurements prevents any significant statement. Interestingly, on
the basis of our reanalysis of SOPHIE data we noted that WASP-3 passed from a less active
(log R′

HK = −4.95) to a more active (log R′
HK = −4.8) state during the 3 yr monitoring period

spanned by the observations. Despite the fact that no clear spot crossing has been reported for
this system, this analysis suggests a more intensive monitoring of the activity level of this star
in order to understand its impact on photometric and radial velocity measurements.

Key words: techniques: photometric – techniques: radial velocities – planets and satellites:
individual: WASP-3b – stars: activity.

1 I N T RO D U C T I O N

The field of exoplanets has been blessed in recent years by an im-
pressive flow of new exciting discoveries. As the sample of known
exoplanetary systems increases, several interesting characteristics
become evident, posing new challenging issues for theories of planet
formation and evolution. Given their short periods and large masses,
the so-called hot Jupiters were the first class of exoplanets being
discovered around solar-type stars (Mayor & Queloz 1995). Those
among them later found to transit in front of the disc of the star
(Charbonneau et al. 2000) also gained a special importance given

�E-mail: marco.montalto@astro.up.pt

that they allow us to acquire physical information such as the radius
and the density of the planet which would remain otherwise inacces-
sible. At the time of writing this paper, there were 187 known and
confirmed transiting planets,1 and 87 of them had a period smaller
than 10 d and a mass larger than 0.7 Mjup.

Several hypotheses were developed to explain the origin of
these objects involving scenarios where these giant planets, while
originally forming in remote regions of the planetary system,
were then moved to their actual position by means of different
possible mechanisms which can be essentially grouped in three
broad classes: (i) planet–protoplanetary disc interactions leading to

1 http://exoplanets.org/table (accessed on 2012 March 9).

C© 2012 The Authors
Monthly Notices of the Royal Astronomical Society C© 2012 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/427/4/2757/970956 by guest on 10 April 2024



2758 M. Montalto et al.

inward migration of the giant planet (Goldreich & Tremaine 1980;
Nelson et al. 2000); (ii) planet–planet scattering in multiplanetary
systems (Weidenschilling & Marzari 1996; Chatterjee et al. 2008;
Jurić & Tremaine 2008); (iii) Kozai-induced migration in inclined
planetary or binary stellar systems (Kozai 1962; Wu & Murray 2003;
Fabrycky & Tremaine 2007). While the first class of mechanisms
would produce in principle a smooth migration leading to circular-
ized orbits preserving the original alignment between the spin axis
of the star and the orbital angular momentum axis of the planet,
the other two processes may result in final eccentric orbits and
largely misaligned spin–orbit angles. As evidenced by exploiting
the Rossiter–McLaughlin (RM) effect (Rossiter 1924; McLaughlin
1924), most transiting exoplanets have spin–orbit angles perfectly
consistent with zero, but some of them present surprisingly large
misaligned angles (Triaud et al. 2010). These differences highlight
the fact that probably all these processes play a role in shaping the
structure of these systems (Nagasawa, Ida & Bessho 2008).

To further clarify the relative importance of these different theo-
retical scenarios and understand in which situations one mechanism
may prevail over the others, some additional and important related
questions need to be carefully examined. One of them concerns the
need to understand if these objects are actually isolated or if other
planets or even stellar companions are gravitationally bound with
the system. Despite the importance of this topic in the framework
of our understanding of hot-Jupiter planets, our knowledge is still
far from being complete.

In this paper, while attempting to shed new light on this problem,
we considered the case of the transiting hot Jupiter WASP-3b, col-
lecting all the photometric and radial velocity data acquired so far
as well as presenting our new photometric measurements. We used
this data base to investigate the presence of an additional companion
in this system.

WASP-3b is a hot-Jupiter planet with a mass of 2.00 ± 0.09 Mjup

revolving around a main-sequence star of spectral type F7–8V with
a period of ∼1.8 d. Its discovery was announced in 2008 by the
WASP Consortium (Pollacco et al. 2008) as a result of a photometric
campaign conducted with the robotically controlled WASP-North
Observatory located in La Palma and subsequent radial velocity
follow-up obtained with the SOPHIE spectrograph at the Obser-
vatory de Haute-Provence. The first photometry of WASP-3b was
presented in the discovery paper of Pollacco et al. (2008) which
used SuperWASP-N together with IAC 80-cm and Keele 80-cm
telescope data to refine the properties of the transiting object. Two
additional transits of WASP-3b were observed by Gibson et al.
(2008) with the RISE instrument mounted on the fully robotic 2-m
Liverpool Telescope. Tripathi, Winn & Johnson (2010) observed six
transits of WASP-3b at the 1.2-m FLOW telescope and at the 2.2-m
University of Hawaii Telescope. Joining their results with those of
Pollacco et al. (2008) and Gibson et al. (2008), they concluded that
a linear fit to the observed ephemerides was not satisfactory, and
that either the errors were underestimated or there was a genuine pe-
riod variation. Maciejewski et al. (2010) presented six new transits
gathered at two 1-m class telescopes (Jena and Rozhen), pointing
out that a periodic signal was present in the observed minus calcu-
lated (hereafter O − C) transit timing diagram, and that an outer
perturbing planet in the system could have best explained the ob-
servations. Later on, Christiansen et al. (2011) discussed eight new
transits of WASP-3b observed during the NASA EPOXI Mission
of Opportunity. Despite the high precision of their transit timing
measurements, these data have never been used so far to analyse
transit timing variations of WASP-3b. Recently, Littlefield (2011)
reported five additional transit measurements of WASP-3b which

were observed with the 11-inch Schmidt–Cassegrain Telescope at
Jordan Hall in the University of Notre Dame Campus. Despite the
larger uncertainties with respect to previous studies, the analysis
of Littlefield apparently provided an initial modest support to the
hypothesis of Maciejewski et al. (2010). Very recently, Sada et al.
(2012) obtained three additional light curves of WASP-3b observ-
ing with the KPNO visitor centre 0.5-m telescope and one with the
2.1-m KPNO telescope.

Here we present a study of eight new homogeneously observed
transits of WASP-3b. This paper is structured as follows. In Sec-
tion 2, we present our observations of WASP-3b. In Section 3, we
describe the reduction process. In Section 4, we derive the stellar
parameters of the host star. In Section 5, we describe our analysis
of the photometric data. In Section 6, we present the radial velocity
data. In Section 7, we describe our analysis of the radial velocity
data. In Section 8, we discuss the O − C transit timing diagram,
while in Section 9 we discuss the O − C radial velocity diagram.
In Section 10, we discuss our results. Finally, in Section 11, we
summarize our results and conclude.

2 OBSERVATI ONS

The data described here were acquired at the Crow Observatory-
Portalegre in Portugal. Eight different transits of WASP-3b were
observed as documented in Table 1. The telescope is a 30-cm aper-
ture Meade LX200 F10, reduced at F5.56 (1668 mm) focal length
yielding a total field of view of ∼28×19 arcmin2. The images were
acquired with a SBIG ST8XME camera whose technical character-
istics are reported in Table 2. The pixel scale is 1.1 arcsec pixel−1.

Table 1. Information on our observing runs.

Date Epoch Texp Airmass range No. of images

15/05/2009 196 90 2.016–1.002 178
13/04/2011 574 90 1.873–1.004 104
26/04/2011 581 90 2.055–1.005 123
02/06/2011 601 150 1.532–1.024 96
20/07/2011 627 150 1.029–2.019 98
13/08/2011 640 150 1.032–1.635 77
26/08/2011 647 150 1.002–1.644 77
08/09/2011 654 150 1.002–1.333 61

Table 2. Technical specifications of the acquisition camera.

Camera SBIG ST8XME specifications

CCD Kodak KAF-1603ME + TI TC-237
Pixel array 1530 × 1020 pixel
CCD size 13.8 × 9.2 mm

Total pixels 1.6 million
Pixel size 9 µm × 9 µm

Full well capacity ∼100 000 e−
Dark current 1 e− pixel−1 s−1 at 0 ◦C

Read-out specifications

Shutter Electromechanical
Exposure 0.12–3600 s

Resolution 10 ms
A/D converter 16 bits

A/D gain 2.17 e− ADU−1

Read noise 15 e− rms
Binning modes 1 × 1, 2 × 2, 3 × 3

Full frame download ∼4 s

C© 2012 The Authors, MNRAS 427, 2757–2771
Monthly Notices of the Royal Astronomical Society C© 2012 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/427/4/2757/970956 by guest on 10 April 2024



A new analysis of the WASP-3b system 2759

The exposure time was fixed either to 90 s or to 150 s; the overhead
was 4 s due to the full frame download time. A total of 814 images
were acquired and analysed. All of them were in the I-band filter.

3 DATA R E D U C T I O N

Bias subtraction and flat fielding were performed with our own
software in a standard manner. We constructed a master dark image
to identify defective pixels in the image and applied a bad pixel
correction algorithm which interpolated the values of the bad pix-
els with those of the surrounding pixels. Then we used DAOPHOT

(Stetson 1987) to derive initial aperture photometry and calculate
the point spread function (PSF) of our images. ALLSTAR was used to
refine magnitude estimates and centroid positions. We then selected
our best seeing image as astrometric reference frame. Coordinate
transformations among all the other frames and the reference were
calculated using DAOMATCH and DAOMASTER. We took the first 10 best
seeing images to construct a master high signal-to-noise ratio (S/N)
reference frame with MONTAGE2, and a master list of objects. After
that centroid positions and magnitudes were further refined using
ALLFRAME (Stetson 1994). Finally, we rederived aperture photometry
for each source after subtracting the PSF of all the other objects in
our images. After some experiments, we decided to set the aperture
radius for each frame to 2.3 times the value of the full width at
half-maximum of the corresponding PSF.

3.1 Corrected light curves

We then constructed the flux ratios between our target source
(WASP-3b) and several other surrounding comparison stars. We
used the first 20 brightest stars in our field of view, and calculated
a robust weighted average of their fluxes after removing any linear
differential extinction trend as measured in the out-of-transit seg-
ments of the light curves. Since the telescope has a German mount,
once it crosses the meridian it flips around the field of view of 180◦.
Once this event happened, we found that it was necessary to apply
two distinct normalizations before and after the meridian crossing
in order to match the photometric zero-points.

3.2 Time stamps

We report all the mid-exposure times of our measurements to the
Barycentric Julian Date (BJD) reference frame and barycentric dy-
namical time standard (TDB) using the online converter provided
by Jason Eastman2 (Eastman, Siverd & Gaudi 2010).

4 ST E L L A R PA R A M E T E R S

We used a combined spectrum of WASP-3 to derive spectroscopic
stellar atmospheric parameters, including its effective tempera-
ture and metallicity. The spectrum used is a stack of eight indi-
vidual spectra obtained between 2007 July and August (Pollacco
et al. 2008). The spectra were downloaded from the OHP–SOPHIE
archive. All spectra were obtained in the HE mode (R ∼ 40 000)
placing the fibre B on the sky. We used the spectrum in fibre B to
subtract any contamination light in fibre A (pointing to WASP-3),
after correcting for the relative efficiency of the two fibres. The final
spectrum has an S/N of the order of 100 in the 6500 Å region.

We used the methodology and line list described in Santos, Is-
raelian & Mayor (2004). In brief, after the measurement of the line

2 http://astroutils.astronomy.ohio-state.edu/time/utc2bjd.html

equivalent widths (EWs), the parameters are obtained making use of
a line list of 22 Fe I and nine Fe II lines and forcing both excitation
and ionization equilibriums. We refer to Santos et al. for details.
The analysis was done in LTE using a grid of Kurucz (1993) model
atmospheres and a recent version of the radiative transfer code MOOG

(Sneden 1973). The EWs were derived manually using the IRAF splot
task.

The final obtained stellar parameters are as follows: Teff = 6448 ±
123 K, log g = 4.49 ± 0.08 dex, ξt = 2.01 ± 0.40 km s−1 and
[Fe/H] = −0.02 ± 0.08 dex. As a double check, we also inde-
pendently derived the effective temperature of the star using the
line-ratio procedure described in Sousa et al. (2010). This procedure
uses a different line list, and the EWs are measured automatically
using ARES (Sousa et al. 2007). The effective temperature derived
using this method is 6432 ± 94 K, in perfect agreement with the
value mentioned above. These values are in agreement with the ones
presented in the planet announcement paper (Pollacco et al. 2008),
which derived a temperature of 6400 ± 100 K, a surface gravity of
4.25 ± 0.05 dex and a metallicity of 0.00 ± 0.20 dex.

5 TRANSI T ANALYSI S

We modelled the observed transits considering the analytical for-
mula of Mandel & Agol (2002). We adopted, in particular, the
following parametrization for the planetary distance to the stellar
centre normalized to the stellar radius (z):

z2(t) =
(

8π2G

3P

)2/3

ρ2/3
�

[
(t − T0)2 −

(
Td

2

)2]

+ (1 + r)2, (1)

where G is the gravitational constant, P is the orbital period of
the planet, ρ� is the mean stellar density, T0 is the time of transit
minimum, Td is the total transit duration (from the first to the fourth
contact) and r is the ratio of the planetary radius to the stellar radius.
We fit each light curve with the Levenberg–Marquardt algorithm
(Press et al. 1992). We made use of the partial derivatives of the flux
loss calculated by Pál (2008) as a function of the radius ratio r and
the normalized distance z.

The flux F of the star at each given instant of time t during the
transit (corresponding to the normalized distance z) was assumed
to be

F (z(t)) = FMA(z(t)) + A × Air (t) + B, (2)

where FMA is the flux loss predicted by the Mandel & Agol (2002)
formula, Air(t) is the airmass at instant t, and A and B are two pa-
rameters to account for a residual photometric trend with airmass
and a constant zero-point offset. We therefore assumed six free pa-
rameters: the time of transit minimum (T0), the airmass coefficient
(A), the constant zero-point B, the planet to star radius ratio (r), the
transit duration (Td) and the mean stellar density (ρ�). We assumed
a quadratic limb-darkening law whose coefficients were fixed inter-
polating the tables of Claret & Bloemen (2011) in correspondence
to the spectroscopic parameters of the star. This procedure yielded
the following coefficients in the I band: g1 = 0.2150 for the linear
term and g2 = 0.3034 for the quadratic term. The orbital period
of the planet was fixed as well at the value of P = 1.846 834 d
(Pollacco et al. 2008). For each iteration, the Levenberg–Marquardt
algorithm calculated the reduced χred of the fit defined as

χred =
√√√√ i=N∑

i=1

(Oi − Fi)2

N − Nfree
, (3)
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where Oi is the observed flux corresponding to the ith measurement,
Fi is the model-calculated flux as described above, N is the total
number of measurements and Nfree is the number of free parameters.
The Levenberg–Marquardt algorithm found the best solution by
means of χred minimization. This solution is however only a formal
solution; the best parameters and their uncertainties were then found
using a Markov chain algorithm as described below.

5.1 Uncertainties of the observations

To each measurement in our data sets, we associated an uncertainty
accordingly to the photon noise and the read-out noise as determined
by DAOPHOT. These errors were then added in quadrature to the
scatter of the residual fluxes of the comparison stars around our
derived mean averaged values (see Section 3.1), and then rescaled
in such a way that the best models we fit to the data produced a
χ2 = 1. As pointed out by Pont, Zucker & Queloz (2006), the
presence of correlated noise in the data strongly limits the precision
of the observations. The uncertainties calculated by DAOPHOT already
accounted for some obvious noise correlations. This is evident in
Fig. 1 where we plot the uncertainty of the measurements as a
function of airmass and seeing. This ensured that the transits are
fitted giving more weight to those measurements acquired under
the best observing conditions. Nonetheless, it may well be that
the noise in our data is correlated also with some other non-trivial
variables that our reduction did not take into account. In order to
verify this hypothesis, we created some mock light curves of our
model-subtracted light curves assuming that each simulated point
was distributed normally around zero but with a time-dependent
dispersion equal to the uncertainty of the corresponding real data.
We then compared the rms of the real and simulated light curves
averaged over time-scales between 10 and 30 min. The average ratio
of the dispersions of the real to the simulated data (σr/σs) was always
smaller than 1, with the exception of epoch 574 (σr/σs = 1.09)
and epoch 627 (σr/σs = 1.04) observations. For these two nights
we expanded our uncertainties by these factors, whereas for the
remaining nights we did not apply any other correction.

Figure 1. Noise correlation with atmospheric indicators relative to 2011
April 13.

5.2 Markov chain Monte Carlo analysis

A commonly used approach to derive parameter uncertainties in the
exoplanetary literature (e.g. Gazak et al. 2012) is based on Markov
chain Monte Carlo analysis. We implemented our own version of the
Markov chain algorithm along the following lines. For each transit
light curve we created five chains of 105 steps. Each chain is started
from a point 5σ away (in one randomly selected free parameter)
from the best-fitting solution obtained by the Levenberg–Marquardt
algorithm, where the σ values of the parameters considered are those
that are obtained by the same transit fitting algorithm as described
in Section 5. The χ2

old of the fit of this initial solution is recorded
and compared with the χ2

new obtained in the following step. The
following step is obtained by jumping from the initial position
to another one in the multidimensional parameter space randomly
selecting one of the free parameters and changing its value by
an arbitrary amount which is dependent on a jump constant and
the uncertainty σ of the parameter itself. Steps are accepted or
rejected according to the Metropolis–Hastings criterion. If χ2

new

is lower than χ2
old the step is executed, otherwise the execution

probability is P = e−�χ2/2, where �χ2 = χ2
new −χ2

old. In this latter
situation, a random number between 0 and 1 is drawn from a uniform
probability distribution. If this number is lower than P then the step
is executed, otherwise the step is rejected and the previous step is
repeated instead in the chain. In any case, the value of the χ2 of the
last step is recorded and compared with the one of the following
step up to the end of the chain. We adjusted the jump constants (one
for each parameter) in such a way that the step acceptance rate for
all the parameters was around 25 per cent. The convergence among
the five separate chains was checked by comparing the variances
within and between the different chains by means of the Gelman &
Rubin (1992) statistic. In all cases, the value of the Gelman–Rubin
statistic was within a few per cent from unity, indicating that the
chains were converged and well mixed. We then excluded the first
20 per cent of steps of each chain to avoid the initial burn-in phase,
and for each parameter we merged the remaining part of the chains
together. Then we derived the mode of the resulting distributions,
and the 68.3 per cent confidence limits defined by the 15.85th and
the 84.15th percentiles in the cumulative distributions.

We ran two separate groups of chains by first considering as
free parameters T0, A and B while retaining the others fixed at
the best values obtained by the Levenberg–Marquardt algorithm.
In the second step, we instead perturbed ρ�, Td and r while retain-
ing the remaining parameters fixed at the values obtained in the
first step. Perturbing all the parameters together leads in general to
unstable convergence in particular for the airmass and zero-point
coefficients, so we decided to split the procedure into two steps.
Fig. 2 shows our observed transits together with our best-fitting
models and residuals.

5.3 Mean stellar density

The mean stellar density is one of the most important parameters
that can be extracted from transiting planet light curves (Sozzetti
et al. 2007). It is interesting to compare the stellar density derived
from the analysis of our light curves to the value obtained from the
analysis of other data sets.

We then considered the precise transit light curve of WASP-3b
obtained by Tripathi et al. (2010) in the Sloan z′-band filter with
the University of Hawaii 2.2-m telescope. We chose this transit
because all the other transits of WASP-3b published so far (both
by Tripathi and by other authors) have been observed with smaller
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A new analysis of the WASP-3b system 2761

Figure 2. Observed transits of WASP-3b along with our best-fitting models and residuals.

telescopes, and because, the observations being carried out in a
near-infrared filter, the impact of limb darkening on the transit shape
should be lower than at shorter wavelengths. We performed on this
light curve the fit and the statistical analysis previously described,

obtaining final values for the parameters consistent with those of
Tripathi et al. (2010). For the mean stellar density, we obtained
ρ� = 0.50+0.15

−0.06 g cm−3. In contrast, the analysis of our light curves
favours a larger density of ρ� = 0.80 ± 0.07 g cm−3 by taking the
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Figure 2 – continued

mean average of the results reported in Table 3. We note that while
these estimates are consistent within 2σ , the value obtained from
our light curves is more similar to the one reported by Pollacco et al.
(2008), ρ� = 0.55+0.15

−0.05 ρ� = 0.77+0.21
−0.07 g cm−3, and Miller et al.

(2010), ρ� = 0.67+0.05
−0.06 ρ� = 0.94+0.07

−0.08 g cm−3.

5.4 Results

In Table 3, we reported for each transit our measured transit dura-
tions (Td) and planet to stellar radius ratios (r). In particular, we
observed a weighted average transit duration Td of 158 ± 1 min,
which is closer to the value reported by Pollacco et al. (2008),
Td = 159.8+1.3

−2.6 min, and Maciejewski et al. (2010), Td = 161.2 ±
2.3 min, than those reported by Tripathi et al. (2010), Td = 168.8 ±
0.7 min, and Gibson et al. (2008), Td = 165.2+1.2

−0.8 min.
Our weighted average planet to stellar radius ratio (r) is 0.1061 ±

0.0007 and it is consistent with the value reported by Maciejewski
et al. (2010), r = 0.108 ± 0.003, and Tripathi et al. (2010) for the
z′ filter, r = 0.1099+0.0006

−0.0010, but it is larger than the values given by
Pollacco et al. (2008), r = 0.1030+0.0010

−0.0015, and Gibson et al. (2010),
r = 0.1014+0.0010

−0.0008.
Table 4 lists the collection of transit timings of WASP-3b

presented in published papers, along with our new measure-
ments. Our timing errors lie between 80 and 233 s. Note that
Maciejewski et al. (2010) transit timings are expressed in BJD
based on Terrestrial Time (TT). The difference with respect to BJD
based on TDB is however negligible for our purposes (Eastman
et al. 2010). Transit timings of Pollacco et al. (2008), Tripathi et al.
(2010) and Gibson et al. (2010) have been corrected to account for
the conversion between HJD and BJDTDB.3

We considered all the transit ephemerides presented in Table 4
and recalculated the transit period by fitting a weighted linear least-
squares model to all the data obtaining

TC(E) = (245 4605.5601 ± 0.0002)

+ E × (1.846 834 ± 0.000 001), (4)

where E is the transit epoch. We then subtracted the model from the
observed ephemerides which gave the (O − C) residuals presented

3 Jason Eastman’s BJD Converter, http://astroutils.astronomy.ohio-state.
edu/time/.

in Table 4 and Fig. 3. Our measurements are consistent with the cal-
culated ephemerides with the exception of those relative to epochs
196 and 574. The reduced chi-squared value of the fit (

√
χ2

r ) is
equal to 2.30, obtained from all the 40 measurements reported in
Table 4 and considering two degrees of freedom.

In order to further check our measurements of ephemerides, we
applied the barycentric method (Szabó et al. 2006; Oshagh et al.
2012). This technique calculates the transit centre (TC) as the flux
weighted average epoch across the transit:

TC =
∑i=N

i=1 ti(1 − fi)∑i=N
i=1 (1 − fi)

, (5)

where f i is the normalized flux, ti is the time and N is the total
number of measurements within one transit. The transit fitting and
barycentric method results agree within 1.9σ (where σ is the average
of the uncertainties reported in Table 4) for all the transits with the
exception of the transit occurring at epoch 640 (3.7σ ). In any case,
we note that this transit is almost a partial transit which is at the
limit of applicability of the barycentric method.

6 R A D I A L V E L O C I T I E S

Radial velocities can be used together with transit timing variations
to place more stringent constraints on the presence of a perturbing
object in the WASP-3b system. We therefore gathered all the radial
velocity measurements of WASP-3b publicly available from the
Exoplanet Orbit data base.4 These measurements were presented
in Pollacco et al. (2008), Simpson et al. (2010) and Tripathi et al.
(2010), and in the following we first introduce these data sets in
more detail.

6.1 Available data sets

Pollacco et al. (2008) obtained seven radial velocity measurements
of WASP-3 using the SOPHIE spectrograph at the 1.93-m telescope
at Haute-Provence Observatory. The observations were performed
between 2007 July 2–5 and August 27–30. All the measurements
were acquired outside the transit. Simpson et al. (2010) acquired
26 spectra of WASP-3 during the transit occurring on the night of

4 http://exoplanets.org/
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A new analysis of the WASP-3b system 2763

Table 3. Best-fitting transit parameters.

Date Epoch (E) Slope (s) Constant (c) Rp/Rs (r) Duration (Td) Mean stellar density (ρ�)
(min) (g cm−3)

15/05/2009 196 0.000 60+0.000 74
−0.000 60 0.999 13+0.000 77

−0.000 94 0.095 06+0.003 09
−0.001 23 156.4+4.7

−2.3 1.057 40+0.020 47
−0.429 94

13/04/2011 574 −0.001 64+0.001 15
−0.001 72 1.000 68+0.002 03

−0.001 35 0.103 83+0.002 56
−0.001 10 145.4+3.2

−2.6 1.377 46+0.022 57
−0.451 32

26/04/2011 581 0.003 93+0.001 15
−0.002 68 0.995 71+0.002 25

−0.002 25 0.121 77+0.001 72
−0.003 19 166.0+5.0

−5.0 0.519 45+0.252 13
−0.063 03

02/06/2011 601 0.000 78+0.001 23
−0.001 85 0.998 82+0.001 87

−0.001 53 0.102 26+0.002 69
−0.001 34 162.1+5.0

−2.5 0.807 99+0.169 08
−0.244 22

20/07/2011 627 −0.002 23+0.001 06
−0.001 06 1.002 43+0.000 95

−0.001 42 0.109 04+0.001 28
−0.001 92 168.1+3.8

−2.3 0.824 58+0.094 06
−0.201 57

13/08/2011 640 −0.002 74+0.001 63
−0.001 63 1.002 08+0.001 49

−0.002 23 0.102 22+0.002 49
−0.001 66 157.8+5.1

−2.0 1.013 79+0.037 35
−0.354 86

26/08/2011 647 −0.000 80+0.001 50
−0.001 37 0.999 98+0.001 43

−0.001 75 0.105 34+0.002 67
−0.002 93 147.0+10.4

−4.2 1.092 65+0.226 01
−0.484 30

08/09/2011 654 −0.001 22+0.002 05
−0.003 08 1.000 56+0.003 12

−0.003 12 0.114 22+0.003 04
−0.002 03 163.8+5.4

−3.3 0.951 00+0.052 62
−0.315 70

Table 4. Collection of transit timing measurements of WASP-3b in chronological order.

Epoch Time of transit minimum �−(BJDTDB) �+(BJDTDB) (O − C) �−(O − C) �+(O − C) Reference
(BJDTDB − 245 0000) (d) (d) (s) (s) (s)

−250.0 4143.851 04 0.000 40 0.000 40 −46.0 35.0 35.0 Pollacco et al. (2008)
−2.0 4601.865 88 0.000 27 0.000 27 −44.0 23.0 23.0 Tripathi et al. (2010)
0.0 4605.560 30 0.000 35 0.000 35 21.0 30.0 30.0 Gibson et al. (2008)
12.0 4627.721 72 0.000 31 0.000 31 −30.0 27.0 27.0 Tripathi et al. (2010)
18.0 4638.804 03 0.000 31 0.000 31 83.0 27.0 27.0 Tripathi et al. (2010)
30.0 4660.965 09 0.000 21 0.000 21 1.0 18.0 18.0 Tripathi et al. (2010)
40.0 4679.432 69 0.000 50 0.000 50 −63.0 43.0 43.0 Christiansen et. al. (2011)
41.0 4681.279 11 0.000 40 0.000 40 −99.0 35.0 35.0 Christiansen et. al. (2011)
42.0 4683.127 40 0.000 35 0.000 35 27.0 30.0 30.0 Christiansen et. al. (2011)
43.0 4684.974 86 0.000 27 0.000 27 81.0 23.0 23.0 Christiansen et. al. (2011)
44.0 4686.820 53 0.000 59 0.000 59 −19.0 51.0 51.0 Christiansen et. al. (2011)
46.0 4690.513 81 0.000 55 0.000 55 −53.0 48.0 48.0 Christiansen et. al. (2011)
47.0 4692.361 17 0.000 43 0.000 43 −7.0 37.0 37.0 Christiansen et. al. (2011)
48.0 4694.207 11 0.000 42 0.000 42 −84.0 36.0 36.0 Christiansen et. al. (2011)
59.0 4714.522 84 0.000 36 0.000 36 −36.0 31.0 31.0 Gibson et al. (2008)
194.0 4963.844 36 0.000 72 0.000 72 −128.0 62.0 62.0 Tripathi et al. (2010)
194.0 4963.845 63 0.000 55 0.000 55 −18.0 48.0 48.0 Sada et al. (2012)
196.0 4967.536 51 0.000 57 0.000 85 −259.0 49.0 73.0 This work
201.0 4976.773 65 0.000 51 0.000 51 −3.0 44.0 44.0 Tripathi et al. (2010)
236.0 5041.412 71 0.000 49 0.000 49 −14.0 42.0 42.0 Maciejewski et al. (2010)
249.0 5065.419 95 0.000 59 0.000 59 −152.0 51.0 51.0 Maciejewski et al. (2010)
256.0 5078.348 73 0.000 58 0.000 58 −71.0 50.0 50.0 Maciejewski et al. (2010)
269.0 5102.359 33 0.000 56 0.000 56 81.0 48.0 48.0 Maciejewski et al. (2010)
289.0 5139.297 13 0.000 49 0.000 49 178.0 42.0 42.0 Maciejewski et al. (2010)
379.0 5305.510 82 0.000 39 0.000 39 60.0 34.0 34.0 Maciejewski et al. (2010)
403.0 5349.834 57 0.000 39 0.000 39 37.0 34.0 34.0 Sada et al. (2012)
403.0 5349.831 82 0.000 39 0.000 39 −200.0 34.0 34.0 Sada et al. (2012)
404.0 5351.683 20 0.001 10 0.001 10 192.0 95.0 95.0 Littlefield (2011)
430.0 5399.699 90 0.001 50 0.001 50 108.0 130.0 130.0 Littlefield (2011)
436.0 5410.780 20 0.001 30 0.001 30 47.0 112.0 112.0 Littlefield (2011)
450.0 5436.635 90 0.000 80 0.000 80 49.0 69.0 69.0 Littlefield (2011)
456.0 5447.715 50 0.000 80 0.000 80 −72.0 69.0 69.0 Littlefield (2011)
574.0 5665.646 27 0.000 69 0.000 56 305.0 60.0 48.0 This work
581.0 5678.570 65 0.001 06 0.000 87 6.0 92.0 75.0 This work
592.0 5698.883 58 0.000 60 0.000 60 −188.0 52.0 52.0 Sada et al. (2012)
601.0 5715.506 08 0.000 74 0.000 60 −102.0 64.0 52.0 This work
627.0 5763.525 52 0.000 70 0.000 47 50.0 60.0 41.0 This work
640.0 5787.533 79 0.000 80 0.000 80 1.0 69.0 69.0 This work
647.0 5800.461 12 0.001 13 0.001 70 −43.0 98.0 147.0 This work
654.0 5813.387 92 0.000 98 0.000 80 −133.0 85.0 69.0 This work
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2764 M. Montalto et al.

Figure 3. O − C times of transit minimum. Filled circles denote the previous
literature results, while open circles denote the new measurements presented
in this work.

2008 September 30. The observations were also obtained with the
SOPHIE spectrograph at the 1.93-m telescope at Haute-Provence
Observatory. These authors also reanalysed the seven measurements
presented in Pollacco et al. (2008) based on an updated version of
the SOPHIE pipeline. We therefore decided to use these data in our
study and not the original data presented in Pollacco et al. (2008).

Tripathi et al. (2010) obtained 33 radial velocity measurements
of WASP-3b with the High Resolution Spectrometer (HIRES; Vogt
et al. 1994) on the Keck I 10-m telescope at the W. M. Keck Obser-
vatory on Mauna Kea. The observations were acquired both during
the transit (on 2008 June 19, 21 and 2009 June 3) and outside the
transit on several other nights in 2008 and 2009.

7 A NA LY S I S O F T H E R A D I A L
V E L O C I T Y DATA

We analysed simultaneously all the radial velocity measurements
presented both by Tripathi et al. (2010) and Simpson et al. (2010).
Since many measurements were acquired during the transit, we fit
the data with a model describing both the Keplerian motion of the
host star and the RM anomaly. On the one hand, we modelled the
Keplerian motion as

RV = K̃
cos u + k√
1 − h2 − k2

+ γ, (6)

where K̃ is the radial velocity semiamplitude without the contribu-
tion of the eccentricity e, k = e cos ω, h = e sin ω, γ is the barycentric
radial velocity and u = ν + ω is the true argument of latitude with
ν the true anomaly and ω the argument of the pericentre.

On the other hand, we accounted for the RM anomaly following
Hirano et al. (2010) but including an improved treatment of the
RM effect during the partial phases of the transit (as detailed in
Appendix B):

RVRM = −df × vp

[
p − q

(
vp

v sin i

)2]
(7)

where df is the flux loss due to the transit of the planet in front
of the disc of the star, which we modelled as in Mandel & Agol

Table 5. Adopted values for the p and q parameters and for
the limb-darkening coefficients entering in the RM model.

p q g1 g2 Reference

1.51 0.44 0.596 0.215 Tripathi et al. (2010)
1.72 0.005 46 0.69 0.0 Simpson et al. (2010)

(2002), p and q are two parameters related to modellization of the
RM effect as proposed by Hirano et al. (2010) and were fixed to the
values adopted by Tripathi et al. (2010) and Simpson et al. (2010)
as reported in Table 5, vp is the average velocity of the star below
the area occulted by the planet (Hirano et al. 2010 and Appendix
B) and v sin i is the rotation velocity of the star.

We considered the following free parameters: K̃ , h, k, λ (the spin–
orbit angle), v sin i and γ . Both Tripathi et al. (2010) and Simpson
et al. (2010) distinguished two different groups of data in their own
data set to account for possible systematic radial velocity variations
during their observing runs. We decided to perform the fit twice, first
following the analysis of those authors and therefore allowing for
a total number of four different barycentric radial velocities. Then,
we redid the fit considering only two different barycentric radial
velocities for the Tripathi et al. (2010) and Simpson et al. (2010)
data sets. This second approach was intended to check for possible
long-term variations among the RV residuals that could have been
cancelled out by the adoption of a larger number of free parameters.
Then, in the end, we considered either nine or seven free parameters
for the two fits, respectively. We note that Tripathi et al. (2010) ex-
cluded from the fit three data points which were presenting a clearly
deviant radial velocity with respect to the remaining measurements.
This radial velocity spike was ultimately attributed by the authors to
residual moonlight unexpectedly leaking into the spectrograph and
therefore we neglected them hereafter. Additionally, Tripathi et al.
(2010) added in quadrature to the uncertainties of their data a value
equal to 14.8 m s−1 to account for jitter noise. Since, however, it is
not clear which is the origin of this noise, we did not apply this
correction.

The convergence towards the best-fitting solution was obtained by
means of a Levenberg–Marquardt algorithm, and the uncertainties
and the best-fitting values of the parameters by means of a Markov
chain Monte Carlo analysis as done for the photometric data. The
radial velocity measurements after subtraction of the barycentric
velocities, along with the best-fitting model and distinguished in
the four (two) different groups of data to which the different γ were
applied, are shown in Fig. 4 (upper panels). The result after the
subtraction of the RM anomaly is shown in the middle panels of
Fig. 4, and the residual velocities after subtracting the Keplerian
orbit also are shown in the bottom panels. Our best-fitting param-
eters are given in Table 6 along with the values obtained by other
authors. Our best-fitting model corresponds to

√
χ2

r = 1.5 for the
4γ solution and to

√
χ2

r = 1.6 for the 2γ solution. Our results are
in agreement with the literature values. The barycentric velocities
for the case of the 4γ solution are consistent with those derived by
Tripathi et al. (2010) and Simpson et al. (2010), and in the case of
the 2γ solution our values for each data set are in between the results
reported by those authors for their own data. We obtained a value of
the spin–orbit angle consistent with zero. We also note that the rota-
tion velocity we obtained for the 4γ solution (v sin i = 13.9+0.3

−0.5) is
perfectly consistent with the result of Miller et al. (2010) implying
v sin i = 13.9+0.03

−0.03. For the 2γ solution, we obtained instead a larger
value of the rotation velocity (v sin i = 14.5+0.3

−0.3).
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A new analysis of the WASP-3b system 2765

Figure 4. Radial velocity fit considering four and two values of γ as described in the text (left- and right-hand panels, respectively). Top panels: radial velocity
measurements along with our best-fitting models. Barycentric radial velocities are subtracted. Middle panels: all radial velocity measurements after subtraction
of the barycentric velocities and the RM anomaly. Bottom panels: radial velocity measurements after subtraction of the barycentric velocities, the RM anomaly
and the Keplerian orbit.
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2766 M. Montalto et al.

Table 6. Best-fitting parameters obtained from our reanalysis of the radial velocity measurements (TW: this work), and from the studies of Simpson et al.
(2010, SI10), Tripathi et al. (2010, TR10), Miller et al. (2010, MI10) and Pollacco et al. (2008, PO08).

v sin i λ K̃ k h γ 1 γ 2 γ 3 γ 4 Reference
(km s−1) (◦) (m s−1) (km s−1) (km s−1) (km s−1) (km s−1)

13.9+0.3
−0.5 −3+1

−2 282−5
+7 0.04+0.02

−0.01 0.03+0.01
−0.01 0.029+0.007

−0.002 0.048+0.003
−0.007 −5.453+0.005

−0.010 −5.483+0.01
−0.007 TW (4γ )

14.5+0.3
−0.3 −1.9+1.4

−0.9 287+3
−9 0.060+0.009

−0.024 0.035+0.007
−0.016 0.040+0.003

−0.004 − −5.469+0.007
−0.005 – TW (2γ )

15.7+1.4
−1.3 13+9

−7 276 ± 11 – – – – −5.458 ± 0.007 −5.487 ± 0.009 SI10

14.1+1.5
−1.3 3.3+2.5

−4.4 290.5+9.8
−9.2 – – 0.0335+0.0063

−0.0045 0.0476+0.0062
−0.0069 – – TR10

13.9+0.03
−0.03 5+6

−5 278.2+13.8
−13.4 – – – – −5.4599+0.0037

−0.0036 – MI10

13.4 ± 1.5 – 251.2+7.9
−10.8 – – – – −5.4887+0.0013

−0.0018 – PO08

8 A NA LY SIS O F TH E (O − C) TRANSIT
T I M I N G D I AG R A M

In the first step, we analyse whether or not a quadratic departure
from a linear fit is present in the transit timings. This could result
from the direct interaction with a perturber on an extended orbit
(Borkovits et al. 2011), or from the light travel timing produced
by the motion of the star also induced by a hypothetical distant
companion (Montalto 2010). This test can be performed following
the approach of Pringle (1975) which measures the improvement
of a fit by a quadratic parabola with respect to a simpler one by a
straight line. However, the quadratic coefficient obtained by least
squares is already zero within the error bars (−0.9 ± 3.5) × 10−9 d.
We thus conclude that there is no significant long-term quadratic
trend in the data.

Then, we follow the analysis of Maciejewski et al. (2010). We
compute a Lomb–Scargle periodogram on the transit timing vari-
ation (TTV) signal in order to detect a periodic oscillation that
would reflect the perturbation of a close-in undetected body in the
system. For that purpose, we use the generalized version (GLS)
of the Lomb–Scargle periodogram (Zechmeister & Kürster 2009).
Basically, the GLS fits a sinusoid to the data for each frequency by
using the least-squares method, as the Lomb–Scargle algorithm, but
in addition to that it allows for the presence of an additional constant
term. False-alarm probabilities (FAP) are estimated by computing
GLS periodograms on a large number of sets of artificial observa-
tions in which, for each epoch where a transit has been observed,
we replace the measured (O − C) by a random value normally
distributed around zero with a standard deviation equal to the un-
certainty of that point. The number of periodograms containing a
peak with a power above a given threshold out of the total num-
ber of trials represents our estimation of the FAP for that given
threshold.

Fig. 5(a) shows the GLS periodogram obtained when considering
only the transits used by Maciejewski et al. (2010, fig. 3). We obtain
a dominant peak at a frequency f TTV = 0.0145 cycle P−1, which
corresponds to PTTV = 127 d and a power of 0.61, as shown by the
arrow, in complete agreement with the result of Maciejewski et al.
(2010). Nevertheless, the FAP associated with that power is 27 per
cent. There is thus more than one chance out of four for this peak to
be fortuitous. For the sake of completeness, the FAP thresholds of
0.1, 10−2 and 10−3 are represented by three horizontal lines in the
two panels of Fig. 5. We did again the same analysis with all the
data of Table 4. The results are displayed in Fig. 5(b). In that case,
the peak with the highest power is now at f TTV = 0.0201 cycle P−1

with an FAP of 56 per cent. It thus seems that the TTV signal does
not contain any significant periodic oscillations.

(a) (b)

Frequency (cycl P−1)

po
w

er

0.030.020.010
Frequency (cycl P−1)

0.030.020.010

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

po
w

er

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

Figure 5. Periodograms of the TTV signal. (a) Considering only the data
used in Maciejewski et al. (2010). (b) Using all the data present in Table 4.
The horizontal lines (from bottom to top) give the FAP thresholds of 0.1,
10−2 and 10−3.

9 A NA LY SIS O F TH E (O − C ) R A D I A L
V E L O C I T Y D I AG R A M

We initially checked for the presence of either a linear or a quadratic
term in the (O − C) radial velocity residuals by using the Pringle
(1975) test. We considered the 2γ solution and obtained that in both
cases the coefficients are consistent with zero (0.000 01 ± 0.000 12
for the quadratic term and −0.030 ± 0.035 for the linear term).

A GLS periodogram was then computed. We considered ini-
tially the case of the residuals obtained fitting the 4γ solution (Sec-
tion 7). As seen in Fig. 6, no significant peaks can be found in
the periodogram. The highest peak is at 0.35 d and has an FAP of
31 per cent. Alternatively, considering the residuals obtained by the
2γ solution, we obtained the highest peak at 0.36 d with an FAP
of 39 per cent. The FAP of the peaks are estimated with a boot-
strapping method in the same way as in the previous section. The
only difference is that the artificial data are made by shuffling (with
repetition) the residuals instead of drawing random values from a
normal distribution.

Figure 6. Periodogram of the radial velocity residuals considering the 4γ

solution (left) and the 2γ solution (right). The continuous line denotes the
1 per cent FAP, while the dashed line denotes the time span of the observa-
tions.
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1 0 D I S C U S S I O N

Since the TTV signal does not present any long-term variations, or
short period oscillations, one cannot assert that the system actually
contains an additional planet. And, if such a companion does exist,
its orbital parameters and mass are poorly constrained due to the lack
of expected patterns in the current available data. Nevertheless, the
residuals of the fit are quite large (

√
χ2

r � 2.30 and
√

χ2
r � 1.5 for

transit and RV, respectively). As noticed also by other investigators
in the past, these values do not indicate a satisfactory fit to the
(O − C). The model is thus not complete. Several causes can be at the
origin of this result among which we consider here stellar activity,
the presence of an additional planet or exomoon and underestimated
timing uncertainties.

10.1 Stellar activity

A possible source of TTVs can be the activity of WASP-3. Indeed,
the existence of spots on the surface of the star, partially covered
by the planet during transits, should produce fluctuations in the
luminosity leading to some errors in the determination of the times
of transit minimum (e.g. Sanchis-Ojeda et al. 2011; Oshagh et al.
2012). Moreover, the spots, if they exist, should not be the same
between the beginning and the end of the observations given the long
time span that has been covered (∼4.5 yr). This would explain why
no periodic oscillation is detected. Tripathi et al. (2010) reported
fractional transit depth variations of the order of 7 per cent, even if
the same authors were not confident whether these variations were
genuine or due to systematics in their data. In addition, they report a
mean log R′

HK = −4.9 from their Keck spectra taken in 2008–2009.
On the other hand, we reanalysed the spectra taken with SO-

PHIE. From the 2007 observations (Pollacco et al. 2008) we derived
a log R′

HK value of −4.95, whereas the 2009–2010 observations
(Simpson et al. 2010) provided a higher value for the activity index
of log R′

HK = −4.80 (Boisse et al. 2010). Therefore, it appears that
the mean activity level of the star changed during these years ap-
proaching an active phase in 2010. Once considering also the upper
limit on the stellar age and the rotation period reported by Miller
et al. (2010, age < 2 Gyr and Prot = 4.3 d), the presence of active
regions on this star may not appear a rare circumstance. Despite no
clear evidence of starspot crossing having been reported yet, this
analysis clearly suggests a more intensive monitoring of the activity
level of WASP-3 in order to understand its impact on photometric
and radial velocity measurements.

10.2 Additional planet

We now give some constraints on the mass of a hypothetical
planetary perturber. For that, we use both the dispersion of the
O − C radial velocity and photometric diagrams. Concerning the
radial velocity residuals, we adopted here the results coming from
the 2γ solution, since no significant difference was found adopting
instead the 4γ solution.

10.2.1 Radial velocities

In the literature, two main approaches are used to find the detec-
tion limits in radial velocity data. One is based on the χ2- and
F-tests (e.g. Lagrange et al. 2009; Sozzetti et al. 2009) and another
is based on a periodogram analysis (Cumming, Marcy & Butler
1999; Endl et al. 2001; Cumming 2004; Narayan, Cumming & Lin
2005). Here, the second approach was chosen due to the number

of measurements which is considered high enough for a reliable
periodogram analysis.

For each period, a fake eccentric planetary signal is inserted in the
data, while the original data are treated as random noise. On these
new RV series, the power (in the periodogram) is calculated. The
semiamplitude of the fake signal is changed until the FAP level is
reached for all eccentricities e, times of periastron Tc and longitudes
of periastron � . In this paper, an FAP of 1 per cent, determined
with 1000 shuffled time series, is used. Fake signals are tested for
periods P between 1 and 20 d. The orbital elements of the eccentric
signals range, in 10 steps, as follows: 0 ≤ e ≤ 1, 0 ≤ Tc ≤ P

and 0 ≤ � ≤ 2π. The final semiamplitude can be transformed in
planetary mass and expresses the lower limit for detectable planets
at that period with these data:

Mp sin i = 1.2 × 10−3K
√

1 − e2

(
PM2

∗
2πG

)1/3

, (8)

with the planetary mass in Earth masses, the semiamplitude K in
m s−1, the period P in days, the stellar mass M∗ in solar masses and
the gravitational constant G in m3 kg−1 s−2. Therefore, the continu-
ous grey line in Fig. 7 denotes the limit in the perturber mass beyond
which a signal would have been detected in the radial velocity data
with a confidence limit equal to 99 per cent. The dashed lines show
the 1σ uncertainty range of the radial velocity detection limit.

10.2.2 Photometry

We exclude compact systems which lead to unstable evolutions.
Only circular and coplanar systems have been considered since they
provide the strongest constraints and because the projected spin–
orbit angle measure on WASP-3b by the RM effect is compatible
with zero as demonstrated above, suggesting that if a planetary
companion exists, the system is likely coplanar.

The radial velocity measurements are used to exclude any per-
turbers that would induce RV signal with an amplitude larger than
the 1 per cent FAP threshold. The same exercise has been performed
with the O − C of the transit timing measurements. For that, we
simulated a large number of O − C on a grid of parameters of the
perturber. We considered 400 periods Ppert ranging between 1.5 and
10 Ptransit (where Ptransit = P is the period of the transiting planet),
and 100 masses Mpert evenly distributed in logarithm between 0.01
and 5 MJ. For each period and mass, 60 simulations are performed
with different initial longitudes between 0◦ and 360◦. Among the 60
simulations, the one giving the periodogram with the lowest maxi-
mum amplitude is kept. If this amplitude is above the 1 per cent FAP
threshold determined in Section 8, then the corresponding perturber
should have been detected in the periodogram of the O − C (see
Fig. 5), otherwise the perturber can exist but it is not detectable.

Fig. 7 (left) shows the results. The hatched region, which extends
up to a period ratio of 1.5, delineates the chaotic orbits which are
excluded. The boundary of this region has been derived from the
stability criterion of Gladman (1993). The grey curve fixes the limit
of the perturber’s mass from the radial velocity measurements. Any
perturber in the grey region would induce a periodic RV signal with
a significant amplitude. And finally, the black regions delineate the
perturbers that produce TTVs with significant oscillating terms.
Combining all the information, it turns out that the radial velocity
technique excludes any perturber as massive as Jupiter up to a period
ratio of 10, and the TTV measurements provide stronger constraints
close to mean motion resonances.

In the second step, we focused on perturbers that do not pro-
duce any significant periodic RV signals or periodic TTV signals.
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2768 M. Montalto et al.

Figure 7. Left: constraints on the maximal mass of a perturber: 99 per cent confidence detection limits from periodograms of transit timing (black) and
radial velocity data (grey). The dashed lines denote the uncertainty range of the radial velocity detection region. The hatched lines indicate unstable orbits.
Right: reduced

√
χ2

r values resulting from the fit of the observed O − C timing residuals with our model. The calculation is extended over the radial velocity
undetectability region, but we also show the regions that produce a 3σ in black. Note that these regions overlap with the transit timing detectability regions of
the left-hand panel.

Such perturbers are located in the white region of Fig. 7 (left).
For those perturbers, we check whether they can reproduce the
O − C transit timing diagram or not. For that purpose, we use the
same grid of parameters as in Fig. 7 (left), and for each set of ini-
tial conditions, we compute the expected TTVs and the reduced χ2

with respect to the observations. The results are displayed in Fig. 7
(right). The hatched and the grey regions are the same as in Fig. 7
(left). The black regions correspond now to simulated TTVs above
the 3σ level. This threshold is obtained from the χ2 distribution with
33 degrees of freedom. It corresponds to χ2

r = χ2
r,min(1 + 1.821)

or
√

χ2
r = 2.95. The colour scale represents the

√
χ2

r from the
lowest values in red up to the 3σ threshold in dark violet. The
red circle shows the best fit to the observation with

√
χ2

r = 1.76.
However, such a perturber with a mass of 0.63 MJ should have
been detected in the radial velocity analysis. The best fit within the
undetectable perturbers is just below the RV detection threshold
with Mpert = 0.41MJ and Ppert = 5.63Ptransit, but the corresponding
reduced χ2 is only

√
χ2

r = 1.83. The improvement is very weak.
Moreover, from Fig. 7 (right), one can see that such values of the re-
duced χ2 are spread more or less randomly within the undetectable
region.

As noted by Maciejewski et al. (2010), the presence of an outer
companion less massive than WASP-3b but still on a short period
orbit would make the system quite unusual. Multiplanetary systems
containing at least a Jupiter-mass planet are indeed much wider,
and the less massive planet is usually the closest to the star (e.g.
Lissauer et al. 2011).

10.3 Exomoon

An exomoon is also supposed to generate a periodic oscillation in
the TTV. However, Maciejewski et al. (2010) have already discarded
this hypothesis since the transits do not show any duration variations
shifted in phase by π/2 with respect to the timing variations. Here,
we perform a more detailed analysis based on the results of Kipping
(2009).

First of all, we check that an exomoon can have a stable orbit.
If the moon is less than twice as dense as the planet, the minimum
distance of the moon is set by the Roche limit. Let ξ be the semimajor
axis of a hypothetical satellite divided by the Hill radius, i.e. as =

ξRH, where as is the semimajor axis of the moon and RH is the Hill
radius. According to Kipping (2009), ξ should satisfy the following
inequality:

χmin � ξ � 1

3
, (9)

where ξmin = 1/186 × (Ms/M⊕)−0.063(P/1 d)−2/3 represents the
Roche limit. In this expression, Ms is the mass of the satellite and
P is the orbital period of the planet. For an exomoon of the mass of
the Earth’s Moon, we get ξmin = 0.0047, and for an exomoon of the
mass of the Earth, ξmin = 0.0036. In both cases, χmin is lower than
1/3. For moons whose density is more than twice that of the planet,
the Roche limit would be inside the planet; therefore, the minimum
distance would correspond to the planetary radius and the above
inequality would be automatically satisfied. Therefore, an exomoon
can exist on a stable orbit around WASP-3.

Then, we estimate the maximal rms amplitude (δTTV) of TTV that
an exomoon on a coplanar circular orbit can produce. According to
Kipping (2009), this amplitude is given by

δTTV = 1√
2

P

2π

(
Mps

3M�

)1/3

μ(1 − μ)1/3ξ, (10)

with μ = Ms/Mps and Mps is the sum of the planet mass and the
satellite mass. Without any constraint on μ, the maximum of the
product μ(1 − μ)1/3 is attained for μ = 3/4, and is equal to 3/41/3.
However, by definition, the Moon should have a lower mass than the
planet. If the transit light curves are those of the planet, μ should be
lower than 1/2, and probably much lower. Let us assume that μ =
1/2; this will provide the upper limit of δTTV. If the planet has an
exomoon, the Keplerian orbit derived in the previous section is that
of the planet–satellite barycentre around the star. Thus, the fitted
mass corresponds to Msp. Using Msp/M� = 1.5×10−3, one obtains

δTTV ≤ 1√
2

1

24/3

P

2π

(
Msp

3M�

)1/3

ξ = 9.4 ξ [min]. (11)

For ξ = ξmax = 1/3, this leads to δTTV ≤ 3.1 min. The result is larger
than the observed rms of the O − C which is equal to 1.1 min. Thus,
a ‘satellite’ as massive as the planet (μ = 1/2) is able to produce
significant TTV with an amplitude comparable to the observed one.

We now assume that the observed O − C is only due to a hypo-
thetical satellite. Expecting that this satellite should have a much
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Figure 8. Transit durations against O − C transit timing residuals for the
new transits presented in this work. Overplotted is a representative signal
produced by an exomoon having Ms = 0.35MJ and period χ = 1/3.

smaller mass than the planet, we derive its mass for ξ = ξmax = 1/3
such that δTTV = 1.1 min. One gets μ = 0.14, which corresponds to
a mass ratio of Ms/Mp = 0.17, or Ms ≈ 0.35MJ. Thus, the lowest
mass satellite, on a circular orbit, that can account for the observed
rms of the O − C is still large. Assuming the same density as a giant
planet like Jupiter, the radius of this satellite should be 0.46RJ. Such
a big satellite, if it existed, would produce detectable transits in the
light curve. We also noticed that a search for additional transiting
objects in the NASA EPOXI mission WASP-3 light curve resulted
in a null detection (Ballard et al. 2011). However, we note that ac-
cording to Domingos, Winter & Yokoyama (2006) the value of the
critical semimajor axis could approach the value of 0.9309 in units
of the Hill radius, for retrograde moons. In this case, we can obtain a
more stringent constraint on the maximum mass of the moon which
could be equal to Ms/Mp = 0.04 or Ms ≈ 0.07 MJ. In Fig. 8, we
also show our transit durations against the O − C residuals. In the
case of an exomoon being responsible for the claimed TTVs, we
should expect the observations to trace an ellipse in this diagram
since the TTVs and the transit duration variations (TDVs) produced
by an exomoon are shifted in phase by π/2 (Kipping 2009). For
illustration, we overplot the expected signal that the above-
mentioned prograde satellite (Ms = 0.35MJ and χ = 1/3) should
generate. Evidently, given the large error bars of our measurements
it is not possible to explore this possibility, and additional more
accurate measurements are required for this analysis.

10.4 Underestimated uncertainties

It is difficult to ascertain up to which level different instruments,
observing conditions, reduction and transit fitting procedures may
affect the results reported in Table 4. To address this point, it would
be necessary to homogeneously reduce and analyse all the data col-
lected so far by all the different groups, an approach which is not
easy to put into practice. In principle, all the transits considered here
were presented in referred journals and this ensures that accurate
procedures like those reported here have been applied to estimate
transit timing errors. It is our opinion however that error underes-
timation cannot be completely ruled out. New observations will be
certainly welcome to clarify this problem.

1 1 C O N C L U S I O N S

In this work, we provided a thorough analysis on the presence of
additional bodies in the WASP-3 system. This analysis serves to

Table 7. An example of the material available as Supporting Information
with the online version of the paper (the light curves). The following data
are from the light curve of 2009 May 15.

BJDTDB−245 0000 Flux eFlux Airmass

4967.428677015 1.00462 0.00297 2.01600
4967.429880762 1.00018 0.00234 1.99700
4967.431130812 1.00254 0.00322 1.97800
4967.432346160 0.99567 0.00282 1.96000

. . . . . . . . . . . .

improve our understanding of close-in Jupiters and in particular to
clarify if these planets are indeed isolated or not.

In addition to the present eight new transits of WASP-3b acquired
at the Crow Observatory–Portalegre in Portugal, we reanalyse all
the photometric and radial velocity measurements acquired so far
for this system. We conclude that there is no convincing evidence
of additional planetary companions in this system; both the transit
timing and the radial velocity residuals do not present significant
periodicities (FAP of 56 and 31 per cent for the transit and ra-
dial velocity in the best case scenario, respectively) or long-term
trends.

Combining all transit timing and radial velocity information, we
obtained that any perturber more massive than M � 100M⊕ and with
period up to 10 times the period of the inner planets is excluded at
99 per cent confidence limit.

We also investigated the possible presence of an exomoon on this
system and determined that considering the scatter of the O − C
transit timing residuals a coplanar exomoon would likely produce
detectable transits; a hypothesis that can be ruled out by observa-
tions conducted by other researchers. In the case where the orbit of
the moon is not coplanar, the current accuracy of transit timing and
transit duration measurements prevents us from making any signif-
icant statement. For retrograde moons, the maximum mass allowed
at the critical semimajor axis is around 0.1 MJ.

Finally, on the basis of our reanalysis of SOPHIE data we noted
that WASP-3 passed from a less active (log R′

HK = −4.95) to a
more active (log R′

HK = −4.8) state between 2007 and 2010. De-
spite the fact that no clear spot crossing has been reported for this
system so far, we therefore pointed out the need for a more intensive
monitoring of the activity level of this star in order to understand
its impact on photometric and radial velocity measurements.

Our light curves are made available as Supporting Information
with the online version of the article. Table 7 presents an example
of the online material for the light curve of 2009 May 15.
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N OT E A D D E D I N P RO O F

We note that recently Nascimbeni et al. (2012) reported an in-
dependent analysis of the WASP-3 system, presenting also novel
photometric data. We did not include these data in our work; nev-
ertheless, the conclusions reached by those authors appear similar
to ours.
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Jurić M., Tremaine S., 2008, ApJ, 686, 603
Kipping D. M., 2009, MNRAS, 392, 181
Kozai Y., 1962, AJ, 67, 591
Kurucz R. L., 1993, in Dworetsky M. M., Castelli F., Faraggiana R., eds,

ASP Conf. Ser. Vol. 44, Peculiar versus Normal Phenomena in A-type
and Related Stars. Astron. Soc. Pac., San Francisco, p. 87

Lagrange A.-M., Desort M., Galland F., Udry S., Mayor M., 2009, A&A,
495, 335

Lissauer J. J. et al., 2011, ApJS, 197, 8
Littlefield C., 2011, preprint (arXiv:1106.4312L)
Maciejewski G. et al., 2010, MNRAS, 407, 2625
McLaughlin D. B., 1924, ApJ, 60, 22
Mandel K., Agol E., 2002, ApJ, 580, 171
Mayor M., Queloz D., 1995, Nat, 378, 355
Miller G. R. M. et al., 2010, A&A, 523, 52
Montalto M., 2010, A&A, 521, 60
Nagasawa M., Ida S., Bessho T., 2008, ApJ, 678, 498
Narayan R., Cumming A., Lin D. N. C., 2005, ApJ, 620, 1002
Nascimbeni V. et al., 2012, A&A, in press (arXiv:1210.3045)
Nelson R. P., Papaloizou J. C. B., Masset F., Kley W., 2000, MNRAS, 318,

18
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A P P E N D I X A : T H E N O R M A L I Z E D P L A N E T
DI STANCE

Here we derive the expression for the normalized planet distance z
presented in equation (1). Assuming a circular orbit and a constant
projected velocity (v) of the transiting planet on the plane of the
sky, at any given instant t during the transit the normalized distance
z can be written as

z2 =
(

b

R�

)2

+
(

v
t − T0

R�

)2

,

where b is the impact parameter, R� is the radius of the star and T0

is the time of transit minimum. At the time of the first or the fourth
contact, we have

z2 = (r + 1)2 =
(

b

R�

)2

+
(

v
Td

2 R�

)2

,

where r is the ratio of the radius of the planet to the radius of the
star and Td is the total transit duration (from the first to the fourth
contact). Assuming the projected velocity during the transit to be
identical to the orbital velocity, we can write

v =
√

GM�

a
,

where G is the gravitational constant, M� is the mass of the star,
a is the semimajor axis and we neglected the mass of the planet.
Eliminating in the first equation above the impact parameter derived
from the second, using the third Kepler law and introducing the
definition of the mean stellar density

ρ� = M�

(4/3)π R3
�

,

we obtain equation (1):

z2(t) =
(

8 π2 G

3 P

)2/3

ρ2/3
�

[
(t − T0)2 −

(
Td

2

)2]
+ (1 + r)2.

A P P E N D I X B : R M E F F E C T D U R I N G T H E
I N G R E S S A N D T H E E G R E S S

In this appendix, we introduce a new analytic representation of the
RM effect valid during the ingress and the egress of the transit, that
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Figure B1. Definition of the ψ0, φ0, ε and ξ angles introduced in the text.

is between the first and the second contact and between the third
and the fourth contact. During these phases, the formula presented
by Hirano et al. (2010) accounts for the velocity of the star below
the disc of the planet considering the value of the velocity at the
centre of the disc of the planet, and it is therefore valid for the small
planets approximation. We instead integrated the velocity profile
below the disc and calculated the average velocity which makes our
approach consistent with the calculation of Hirano et al. (2010) for
the remaining phases of the transit. This derivation is based on the
method described in Pál (2012).

Therefore, if we define X and Y as the coordinates of the centre
of the planet at a given instant during the transit, according to the
choice of parameters we adopted in this paper, we have

X = (1 − e sin ω)√
1 − e2

(
8π2G

3P

)1/3

ρ1/3
� (t − T0),

Y = (1 − e sin ω)√
1 − e2

√
(1 + r)2 −

(
8π2G

3P

)2/3

ρ
2/3
�

(
Td

2

)2

.

Then if λ is the spin–orbit angle projected on the plane of the sky,
in the rotated coordinate system whose vertical axis is aligned with
the projected spin axis of the star, the coordinates x and y are given
by

x = X cos λ − Y sin λ,

y = X sin λ + Y cos λ.

Let ψ0, φ0, ε and ξ be defined as in Fig. B1 with respect to the xy
rotated coordinate system, then

ψ0 = a tan2(y, x),

φ0 = ψ0 + π.

Assuming that the radius of the star is normalized to unity, one gets

ε = a cos

(
1 − r2 + z2

2z

)
,

ξ = a cos

(
r2 + z2 − 1

2rz

)
,

where

z =
√

x2 + y2.

Defining now the angles ψa, ψb, φa and φb as

ψa = ψ0 − ε,

ψb = ψ0 + ε,

φa = φ0 − ξ,

φb = φ0 + ξ,

and defining the following functions:

A(α, β, γ ) = 1

2
α2β sin γ + 1

2
αβ2

(
γ + 1

2
sin 2γ

)

+ 1

2
β3

(
γ + 1

3
sin3 2γ

)
,

B(α, β, γ ) = 1

2
αβ sin γ + 1

2
β2

(
γ + 1

2
sin 2γ

)
,

the subplanet velocity vp is given by

vp

v sin i
= Atot

Btot
, (B1)

where

Atot = A(0, 1, ψb) − A(0, 1, ψa) + A(x, r, φb) − A(x, r, φa),

Btot = B(0, 1, ψb) − B(0, 1, ψa) + B(x, r, φb) − B(x, r, φa).

During the full transit phase, equation (10) reduces to
vp

v sin i
= x, (B2)

which is equal to equation (A8) of Hirano et al. (2010).

S U P P O RT I N G I N F O R M AT I O N

Additional Supporting Information may be found in the online
version of this article:

Light curves. Data files for the light curves of 2009 May 15, and
2011 April 13, April 26, June 2, July 20, August 13, August 26 and
September 8.

Please note: Wiley–Blackwell are not responsible for the content or
functionality of any supporting materials supplied by the authors.
Any queries (other than missing material) should be directed to the
corresponding author for the article.
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