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ABSTRACT
The acceleration of a spherical dust particle as a result of interstellar gas flow depends on the
drag coefficient, which is, for a given particle and flow of interstellar gas, a specific function
of the relative speed of the dust particle with respect to the interstellar gas. We investigate
the motion of a dust particle in the case when the acceleration caused by the interstellar
gas flow (with the variability of the drag coefficient taken into account) represents a small
perturbation to the gravity of a central star. We present the secular time derivatives of the
Keplerian orbital elements of the dust particle under the action of the acceleration from the
interstellar gas flow, with linear variability of the drag coefficient taken into account, for
arbitrary orbit orientations. The semimajor axis of the dust particle is a decreasing function
of time for an interstellar gas flow acceleration with constant drag coefficient, and also for
such an acceleration with a linearly variable drag coefficient. The decrease of the semimajor
axis is slower for the interstellar gas flow acceleration with the variable drag coefficient. The
minimal and maximal values of the decrease of the semimajor axis are determined. In the
planar case, when the interstellar gas flow velocity lies in the orbital plane of the particle,
the orbit always approaches the position with the maximal value of the transversal component
of the interstellar gas flow velocity vector measured at perihelion.

The properties of the orbital evolution derived from the secular time derivatives are consistent
with numerical integrations of the equation of motion. The main difference between the
orbital evolutions with constant and variable drag coefficients lies in the evolution of the
semimajor axis. The evolution of the semimajor axis decreases more slowly for the variable
drag coefficient. This is in agreement with the analytical results. If the interstellar gas flow
speed is much larger than the speed of the dust particle, then the linear approximation of the
dependence of the drag coefficient on the relative speed of the dust particle with respect to the
interstellar gas is usable for most (not too close to zero) values of the molecular speed ratios
(Mach numbers).

Key words: celestial mechanics – interplanetary medium – ISM: general.

1 IN T RO D U C T I O N

Recent observations of debris discs around stars with asymmetric
morphology caused by the motion of the stars through clouds of
interstellar matter (Hines et al. 2007; Maness et al. 2009; Debes,
Weinberger & Kuchner 2009) have shown that the motion of a
star with respect to a cloud of interstellar matter is a common phe-
nomenon in galaxies. The orbital evolution of circumstellar dust par-
ticles has been investigated for many decades. Of the accelerations
caused by non-gravitational effects, those caused by electromag-

�E-mail: pavol.pastor@hvezdarenlevice.sk

netic and corpuscular radiation of the star are most often taken into
account. They are usually described by the Poynting–Robertson
(PR) effect (Poynting 1903; Robertson 1937) and the radial stel-
lar wind (Whipple 1955; Burns, Lamy & Soter 1979; Gustafson
1994), respectively. The acceleration acting on a spherical body
moving through a gas, derived under the assumption that the radius
of the sphere is small compared with the mean free path of the
gas, was published some time ago (Baines, Williams & Asebiomo
1965). However, the first attempt to describe the orbital evolution
of circumstellar dust particles under the action of an interstellar
gas flow was made relatively recently (Scherer 2000). Scherer cal-
culated the secular time derivatives of the angular momentum of
the particle and the Laplace–Runge–Lenz vector caused by the
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interstellar gas flow. When the interstellar gas flow velocity vector
lies in the orbital plane of the particle and the particle is under the
action of the PR effect, the radial stellar wind and an interstellar
gas flow, the motion occurs in a plane. For this planar case, the
secular time derivatives of the semimajor axis, the eccentricity and
argument of the perihelion are calculated in Klačka et al. (2009).
The secular time derivatives of all Keplerian orbital elements under
the action of an interstellar gas flow with constant drag coefficient
for arbitrary orbit orientation are calculated in Pástor, Klačka &
Kómar (2011).

In this paper, it is shown analytically that the secular semimajor
axis of a dust particle under the action of an interstellar gas flow
with constant drag coefficient always decreases. This result con-
tradicts the results of Scherer (2000). He came to the conclusion
that the semimajor axis of the dust particle increases exponentially
(Scherer 2000, p. 334). The decrease of the semimajor axis has been
confirmed analytically by Belyaev & Rafikov (2010) and numeri-
cally by Marzari & Thébault (2011) and Marzari (2012). Belyaev
& Rafikov (2010) investigated the motion of a dust particle in the
outer region of the Solar system behind the solar wind termination
shock. Belyaev & Rafikov (2010) used an orbit-averaged Hamilto-
nian approach to solve for the orbital evolution of a dust particle in
a Keplerian potential subject to an additional constant force. The
problem that they solved is known in physics as the classical Stark
problem. If the speed of the interstellar gas flow is much greater
than the speed of the dust grain in the stationary frame associated
with the central object, and if the speed of the interstellar gas flow
is also much greater than the mean thermal speed of the gas in the
flow, then the problem of finding the motion of a dust particle under
the action of the gravity of the central object and of the interstellar
gas flow reduces to the classical Stark problem. The secular solution
of the Stark problem presented in Belyaev & Rafikov (2010) was
confirmed and generalized using a different perturbative approach
in Pástor (2012).

In this paper, we take these studies a step further by taking into
account the variability of the drag coefficient in the acceleration
caused by the interstellar gas flow. An explicit form of the depen-
dence of the drag coefficient on the relative speed of the dust particle
with respect to the interstellar gas was derived previously in Baines
et al. (1965). Belyaev & Rafikov (2010) calculated the secular time
derivative of the semimajor axis using the constant and linear term
of an expansion of the magnitude of the force caused by the in-
terstellar gas flow (as a function of the relative speed of the dust
particle with respect to the interstellar gas) into a series centered
at the interstellar gas flow speed with respect to the Sun (the dust
particle with zero velocity with respect to the Sun). In this paper,
we calculate the secular time derivatives of all Keplerian orbital
elements with the linear term in the expansion taken into account.
We compare the orbital evolutions for constant, linear and explicit
dependences of the drag coefficient on the relative speed of the dust
particle with respect to the interstellar gas.

2 SE C U L A R E VO L U T I O N

The acceleration of a spherical dust particle caused by a flow of
neutral gas can be given in the form (Baines et al. 1965)

dv

dt
= −

∑
i

cDiγi |v − vF| (v − vF) . (1)

The sum in equation (1) runs over all particle species i. vF is the
velocity of the interstellar gas flow in the stationary frame associated
with the Sun, v is the velocity of the dust grain, cDi is the drag

coefficient, and γ i is the collision parameter. The drag coefficient
can be calculated from

cDi(si) = 1√
π

(
1

si

+ 1

2s3
i

)
e−s2

i

+
(

1 + 1

s2
i

− 1

4s4
i

)
erf(si)

+ (1 − δi)

(
Td

Ti

)1/2 √
π

3si

, (2)

where erf(si) is the error function erf(si) = 2/
√

π
∫ si

0 e−t2
dt , δi is

the fraction of impinging particles specularly reflected at the surface
(for resting particles, there is assumed diffuse reflection) (Baines
et al. 1965; Gustafson 1994), Td is the temperature of the dust grain,
and Ti is the temperature of the ith gas component. si is defined as
the molecular speed ratio

si =
√

mi

2kTi

U. (3)

Here, mi is the mass of the neutral atom in the ith gas component,
k is Boltzmann’s constant, and U = |v − vF| is the relative speed
of the dust particle with respect to the gas. The dependence of
the drag coefficient on si for specular (δi = 1) and diffuse (δi = 0)
reflection is depicted in Fig. 1. For diffuse reflection, we assume that
Td = Ti (Baines et al. 1965). The drag coefficient is approximately
constant for si � 1. However, if the inequality si � 1 does not
hold and changes of the relative speed U during the orbit are not
negligible, then cDi depends on U and cannot be approximated by
a constant value. Therefore, in this case it is necessary to take into
account the dependence of cDi on the relative speed U. For the
primary population of the neutral interstellar hydrogen penetrating
into the Solar system we obtain s1 = 2.6 using T1 = 6100 K (Frisch
et al. 2009) and U

.= |vF| = 26.3 km s−1 (Lallement et al. 2005) in
equation (3). Because the inequality s1 � 1 does not hold for this
value of the molecular speed ratio (Mach number), the variability of
the drag coefficient can have interesting consequences in the Solar
system. For the collision parameter, we can write

γi = ni

mi

m
A, (4)

where ni is the concentration of the interstellar neutral atoms of type
i, and A = πR2 is the geometrical cross-section of a spherical dust
grain of radius R and mass m. For si � 1, or, more precisely, if s2

i

Figure 1. Dependence of the drag coefficient cDi on the molecular speed
ratio si for the cases of specular and diffuse reflection (see text).

C© 2012 The Author, MNRAS 426, 1050–1060
Monthly Notices of the Royal Astronomical Society C© 2012 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/426/2/1050/973621 by guest on 20 M
arch 2024
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is negligible in comparison with si, it is possible to show that

cDi(si) = 8

3

1√
π

1

si

+ (1 − δi)

(
Td

Ti

)1/2 √
π

3si

. (5)

As a consequence, the acceleration of the dust particle is (Baines
et al. 1965)

dv

dt
= −

∑
i

8

3

1√
π

[
1 + (1 − δi)

(
Td

Ti

)1/2
π

8

]
γi

×
√

2kTi

mi

(v − vF) . (6)

Hence, for si � 1 the acceleration depends linearly on the relative
velocity vector v−vF. The case si � 1 will not be discussed further
in this parer.

We want to find the influence of an interstellar gas flow on the
secular evolution of a particle orbit. We assume that the dust particle
is under the action of the gravitation of the Sun and the flow of a
neutral gas. Hence, we have the equation of motion

dv

dt
= − μ

r3
r −

∑
i

cDiγi |v − vF| (v − vF) , (7)

where μ = GM�, G is the gravitational constant, M� is the mass
of the Sun, r is the position vector of the dust particle with respect
to the Sun, and r = |r|.

We will assume that the speed of the interstellar gas flow is much
greater than the speed of the dust grain in the stationary frame
associated with the Sun:

|v| = v � |vF| = vF. (8)

Therefore, we can write

U = |v − vF| =
√

v2 + v2
F − 2v · vF

≈ vF

(
1 − v · vF

v2
F

)
. (9)

In the above equation, we have considered only the terms to the first
order in v/vF. Using this approximation, we can also approximate
changes in the drag coefficient cDi in equation (2). We have

cDi(si) ≈ cDi(s0i) +
(

dcDi

dsi

)
si=s0i

(si − s0i)

≡ cDi(s0i) +
(

dcDi

dsi

)
si=s0i

√
mi

2kTi

(U − vF)

≈ c0i − ki

v · vF

vF
, (10)

where

s0i ≡
√

mi

2kTi

vF,

c0i ≡ cDi(s0i),

ki ≡
(

dcDi

dsi

)
si=s0i

√
mi

2kTi

. (11)

We can rewrite equation (7) using these two approximations in the
following form:

dv

dt
= − μ

r3
r −

∑
i

c0iγiv
2
F

[
v

vF

−vF

vF
+
(

1 + ki

c0i

vF

)
v · vF

v2
F

vF

vF

]
. (12)

This equation allows us to use the perturbation theory of celestial
mechanics to compute the secular evolution of a dust particle under
the action of an interstellar gas flow. For the secular time derivatives
of the Keplerian orbital elements caused by the interstellar gas flow,
we finally obtain (see Appendix A)

〈
da

dt

〉
= −

∑
i

2ac0iγiv
2
F

√
p

μ
σ

×
⎧⎨
⎩1 + 1

v2
F

(
1 + ki

c0i

vF

)

×
⎡
⎣I 2 − (I 2 − S2)

1 − √
1 − e2

e2

⎤
⎦
⎫⎬
⎭, (13)

〈
de

dt

〉
=

∑
i

c0iγivF

√
p

μ

⎡
⎣ 3I

2
+ σ (I 2 − S2)(1 − e2)

vFe3

×
(

1 + ki

c0i

vF

)(
1 − e2

2
−
√

1 − e2

)⎤⎦, (14)

〈
dω

dt

〉
=

∑
i

c0iγivF

2

√
p

μ

×
⎧⎨
⎩−3S

e
+ σSI

vFe4

(
1 + ki

c0i

vF

)

×
[
e4 − 6e2 + 4 − 4(1 − e2)3/2

]

+ C
cos i

sin i

[
3e sin ω

1 − e2
− σ

vF

(
1 + ki

c0i

vF

)

× (S cos ω − I sin ω)

]⎫⎬
⎭, (15)

〈
d�

dt

〉
=

∑
i

c0iγivFC

2 sin i

√
p

μ

⎡
⎣−3e sin ω

1 − e2

+ σ

vF

(
1 + ki

c0i

vF

)
(S cos ω − I sin ω)

⎤
⎦, (16)

〈
di

dt

〉
= −

∑
i

c0iγivFC

2

√
p

μ

⎡
⎣ 3e cos ω

1 − e2

+ σ

vF

(
1 + ki

c0i

vF

)
(S sin ω + I cos ω)

⎤
⎦, (17)

where p = a(1 − e2),

σ =
√

μ/p

vF
, (18)
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and the quantities

S = (cos � cos ω − sin � sin ω cos i) vFX

+(sin � cos ω + cos � sin ω cos i) vFY

+ sin ω sin ivFZ,

I = (− cos � sin ω − sin � cos ω cos i) vFX

+(− sin � sin ω + cos � cos ω cos i) vFY

+ cos ω sin ivFZ,

C = sin � sin ivFX − cos � sin ivFY

+ cos ivFZ (19)

are the values of A = vF · eR, B = vF · eT and C = vF · eN, at the
perihelion of the particle orbit (f = 0), respectively. For a complete
solution of this system of equations for σ = 0 (constant force), the
reader is referred to Pástor (2012).

3 D ISC U SSION

C = 0 for the special case when the velocity of the interstellar gas,
vF, lies in the orbital plane of the particle. In this planar case, we
find that the inclination and the longitude of the ascending node are
constant.

Equation (15) implies that the argument of the perihelion is con-
stant in the planar case (C ≡ 0) and if the orbit orientation is
characterized by S = 0.

The dependence of the drag coefficients on the relative speed of
the dust particle with respect to the interstellar gas is demonstrated
by the presence of terms multiplied by ki in equations (13)–(17). It
is convenient to define a new function

gi = 1 + ki

c0i

vF. (20)

In order to ascertain the influence of a non-constant drag coefficient
on the evolution of the particle orbit we will analyse the properties
of this function. We can write, see equations (11),

gi = 1 +
(

dcDi

dsi

)
si=s0i

s0i

c0i

= 1

c0i

[
1√
π

(
1

s0i

− 3

2s3
0i

)
e−s2

0i

+
(

1 − 1

s2
0i

+ 3

4s4
0i

)
erf(s0i)

]
. (21)

The graph of gi for the case of specular (δi = 1) and diffuse (δi =
0, Td = Ti) reflection is depicted in Fig. 2. The function gi is
an increasing function of s0i for s0i ∈ (0, ∞) (see Appendix B).
lims0i→0 gi = 0 and lims0i→∞ gi = 1. Hence, we can conclude that
gi ∈ [0, 1].

Equation (13) can be rewritten in the following form:〈
da

dt

〉
= −

∑
i

2ac0iγiv
2
F

√
p

μ
σ

×
⎡
⎣1 + 1

v2
F

(
1 + ki

c0i

vF

)
1 − √

1 − e2

e2

×
(
I 2

√
1 − e2 + S2

)⎤⎦. (22)

Figure 2. Dependence of gi on s0i for the cases of specular and diffuse
reflection.

Thus, the semimajor axis is a decreasing function of time. This
result, for ki = 0, was obtained previously in Pástor et al. (2011),
and generalized to the case ki �= 0 in Belyaev & Rafikov (2010). If
we use the properties of gi, then from equation (22) we can conclude
that the dependence of the drag coefficients on the relative speed
of the dust particle has a tendency to reduce the decrease of the
semimajor axis caused by the interstellar gas flow.

In order to find the orbit orientation with minimal and maximal
decrease of the semimajor axis, we analyse the second term in the
square brace in equation (22):

φ = 1

v2
F

(
1 + ki

c0i

vF

)
1 − √

1 − e2

e2

(
I 2
√

1 − e2 + S2
)

. (23)

Because the terms multiplied by S2 and I2 are both positive, we
obtain a minimal value of φ when S = 0 and I = 0. Therefore, if the
orbital plane is perpendicular to the interstellar gas flow velocity
vector, then the decrease of the semimajor axis is minimal (Fig. 3).
From equation (22), we obtain for S = 0 and I = 0 that〈

da

dt

〉
min

= −
∑

i

2ac0iγivF. (24)

The value of the minimal decrease is proportional to the semimajor
axis and independent of the orbit eccentricity.

Because the terms multiplied by S2 and I2 are both positive, we
obtain a maximal value of φ when C = 0. If C = 0, then S2+I 2 = v2

F.

Figure 3. An orbit orientation with minimal decrease of the semimajor axis.

C© 2012 The Author, MNRAS 426, 1050–1060
Monthly Notices of the Royal Astronomical Society C© 2012 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/426/2/1050/973621 by guest on 20 M
arch 2024



1054 P. Pástor

Figure 4. An orbit orientation with maximal decrease of the semimajor
axis.

Using this, the value of φ can be written as

φ = 1

v2
F

(
1 + ki

c0i

vF

)
1 − √

1 − e2

e2

×
[
v2

F

√
1 − e2 + S2(1 − √

1 − e2)
]
. (25)

Here, v2
F is constant. Therefore, we obtain the maximal value of

φ for an orbit orientation characterized by S2 = v2
F. Hence, the

maximal value of φ is

φ =
(

1 + ki

c0i

vF

)
1 − √

1 − e2

e2
=

(
1 + ki

c0i

vF

)
h(e). (26)

Therefore, if the interstellar gas flow velocity vector is parallel to the
line of apsides, then the decrease of the semimajor axis is maximal
(Fig. 4). For a given orbit, the maximal decrease of the semimajor
axis is〈

da

dt

〉
max

= −
∑

i

2ac0iγivF

[
1 +

(
1 + ki

c0i

vF

)

× 1 − √
1 − e2

e2

]
. (27)

The function h(e) defined in equation (26) is an increasing function
of the eccentricity (see Appendix C). Therefore, the decrease of the
semimajor axis is maximal for e = 1.

For the secular time derivatives of S, I and C, we obtain from
equation (19) and equations (15), (16) and (17) that〈

dS

dt

〉
=

∑
i

c0iγivFS

2

√
p

μ

×
{

− 3I

e
− σ

vF

(
1 + ki

c0i

vF

)

×
[
C2 − I 2

e4

(
e4 − 6e2 + 4 − 4(1 − e2)3/2

)]}
, (28)

〈
dI

dt

〉
=

∑
i

c0iγivF

2

√
p

μ

×
{

− 3eC2

1 − e2
+ 3S2

e
− σI

vF

(
1 + ki

c0i

vF

)

×
[
C2 + S2

e4

(
e4 − 6e2 + 4 − 4(1 − e2)3/2

)]}
, (29)

〈
dC

dt

〉
=

∑
i

c0iγivFC

2

√
p

μ

×
[

3eI

1 − e2
+ σ

vF

(
1 + ki

c0i

vF

)
(S2 + I 2)

]
. (30)

Equations (28)–(30) are not independent, because S〈dS/dt〉 +
I〈dI/dt〉 + C〈dC/dt〉 = 0 always holds. Equations (28)–(30), to-
gether with equations (13) and (14), represent the system of equa-
tions that determines the evolution of the particle’s orbit in space
with respect to the interstellar gas velocity vector. All orbits that
are created from rotations of one orbit around the line aligned with
the interstellar gas velocity vector and going through the centre of
gravity will undergo the same evolution determined by this system
of equations. If σ is small and I and e are not close to zero, we can
use the following approximate solution for S, I and C (see Pástor
et al. 2011):

S ≈ U

e
, (31)

C ≈ V√
1 − e2

(32)

and

|I | ≈
√

v2
F − U 2

e2
− V 2

1 − e2
, (33)

where U and V are constants.
Now, we want to find the evolution of the orbit position in the

planar case. For this purpose we can use equation (29), which deter-
mines the time evolution of I. Equation (29) implies, for the planar
case (C ≡ 0), that〈

dI

dt

〉
=

∑
i

c0iγivFS
2

2

√
p

μ

×
[

3

e
− σI

vF

(
1 + ki

c0i

vF

)
b(e)

]
. (34)

Here,

b(e) = e4 − 6e2 + 4 − 4(1 − e2)3/2

e4
. (35)

The function b(e) is a decreasing function of eccentricity for
e ∈ (0, 1] (see Pástor et al. 2011, Appendix B). The function b(e)
attains values from lime→0b(e) = −0.5 to b(1) = −1, for e ∈ (0, 1].
Because we have assumed that v � vF (see equation 8), we have
for the maximal speed of the dust particle in the perihelion of the
particle’s orbit (see equation A4)

vmax =
√

μ

p
(1 + e) � vF. (36)

Hence

σ =
√

μ/p

vF
≤

√
μ/p

vF
(1 + e) � 1. (37)

For I > 0, it is always the case that 〈dI/dt〉 > 0. Therefore, we will
assume that I < 0. For negative I, we can write

σI

vF

(
1 + ki

c0i

vF

)
b(e) ≤ σI

vF
b(e) ≤ −σ b(e) ≤ σ <

3

e
, (38)

as 1 + kivF/c0i ≤ 1, see the discussion after equation (21), −I ≤
vF, b(e) ∈ (−0.5, −1], and σ � 1. If we rearrange (38), then we
come to the conclusion that 〈dI/dt〉 > 0 also for I < 0. Therefore,
in the planar case, I is always an increasing function of time. Thus,
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in the planar case the orbit rotates into the position with a maximal
value of I. In this position, the line of apsides is perpendicular to
the interstellar gas flow velocity vector.

4 N U M E R I C A L R E S U LTS

4.1 Accelerations influencing the dynamics of dust grains
inside the heliosphere

For a correct description of the motion of micron-sized dust particles
inside the heliosphere, solar electromagnetic radiation and the solar
wind must also be considered.

4.1.1 Electromagnetic radiation

The acceleration of a dust particle with spherically distributed mass
caused by electromagnetic radiation to the first order in v/c is given
by the PR effect (Poynting 1903; Robertson 1937; Wyatt & Whipple
1950; Burns et al. 1979; Klačka 2004; Klačka et al. 2012b):

dv

dt
= β

μ

r2

[(
1 − v · eR

c

)
eR − v

c

]
, (39)

where eR = r/r and c is the speed of light in vacuum. The parameter
β is defined as the ratio of the electromagnetic radiation pressure
force and the gravitational force between the Sun and the particle
at rest with respect to the Sun:

β = 3L�Q̄′
pr

16πcμR

. (40)

Here, L� is the solar luminosity, L� = 3.842 × 1026 W (Bahcall
2002), Q̄′

pr is the dimensionless efficiency factor for radiation pres-
sure integrated over the solar spectrum and calculated for the radial
direction (Q̄′

pr = 1 for a perfectly absorbing sphere), and 
 is the
mass density of the particle.

4.1.2 Radial solar wind

The acceleration caused by the radial solar wind to the first order of
v/c and first order of v/u is given by equation (37) in Klačka et al.
(2012a):

dv

dt
= η

Q̄′
pr

β
u

c

μ

r2

[(
1 − v · eR

u

)
eR − v

u

]
. (41)

Here, u is the speed of the solar wind with respect to the Sun,
namely u = 450 km s−1. η is the ratio of solar wind energy to
electromagnetic solar energy, both radiated per unit of time:

η = 4πr2u

L�
N∑

i=1

nsw imsw ic
2, (42)

where msw i and nsw i, i = 1 to N, are the masses and concentrations
of the solar wind particles at a distance r from the Sun. η = 0.38
for the Sun (Klačka et al. 2012a).

4.1.3 Acceleration caused by solar gravity, solar radiation
and interstellar gas flow

In order to find the acceleration of a dust particle inside the he-
liosphere, we can sum the gravitational acceleration from the Sun,
the acceleration from the PR effect equation (39), the acceleration

from the solar wind equation (41), and the acceleration from the
interstellar gas equation (1):

dv

dt
= − μ

r2
(1 − β) eR

−β
μ

r2

(
1 + η

Q̄′
pr

)( v · eR

c
eR + v

c

)

−
∑

i

cDiγi |v − vF| (v − vF) . (43)

Here, it is assumed that (η/Q̄′
pr )(u/c) � 1.

4.2 Comparison of the solution of the equation of motion with
the solution of the system of equations constituted by the
secular time derivatives of the Keplerian orbital elements

We want to compare the solution obtained from equation (43) with
the solution of the system of equations constituted by the secular
time derivatives of the Keplerian orbital elements. To do this, we
need to add to the right-hand sides of equations (13)–(17) the secular
time derivatives of the Keplerian orbital elements caused by the PR
effect and the radial solar wind. Therefore, we solved the following
system of equations (Wyatt & Whipple 1950; Klačka et al. 2012a):〈

daβ

dt

〉
= −β

μ

c

(
1 + η

Q̄′
pr

)
2 + 3e2

β

aβ (1 − e2
β )3/2

−
∑

i

2aβc0iγiv
2
F

√
pβ

μ (1 − β)
σβ

×
⎧⎨
⎩1 + 1

v2
F

(
1 + ki

c0i

vF

)

×
⎡
⎣I 2

β − (I 2
β − S2

β )
1 −

√
1 − e2

β

e2
β

⎤
⎦
⎫⎬
⎭ ,

(44)

〈
deβ

dt

〉
= −β

μ

c

(
1 + η

Q̄′
pr

)
5eβ

2a2
β (1 − e2

β )1/2

+
∑

i

c0iγivF

√
pβ

μ (1 − β)

×
[

3Iβ

2
+ σβ (I 2

β − S2
β )(1 − e2

β )

vFe
3
β

(
1 + ki

c0i

vF

)

×
(

1 − e2
β

2
−
√

1 − e2
β

)]
, (45)

〈
dωβ

dt

〉
=

∑
i

c0iγivF

2

√
pβ

μ (1 − β)

×
{

−3Sβ

eβ

+ σβSβIβ

vFe
4
β

(
1 + ki

c0i

vF

)

×
[
e4
β − 6e2

β + 4 − 4(1 − e2
β )3/2

]

+Cβ

cos iβ

sin iβ

[
3eβ sin ωβ

1 − e2
β

− σβ

vF

(
1 + ki

c0i

vF

)

×(Sβ cos ωβ − Iβ sin ωβ )

]}
, (46)
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1056 P. Pástor
〈

d�β

dt

〉
=

∑
i

c0iγivFCβ

2 sin iβ

√
pβ

μ (1 − β)

×
⎡
⎣−3eβ sin ωβ

1 − e2
β

+ σβ

vF

(
1 + ki

c0i

vF

)

×(Sβ cos ωβ − Iβ sin ωβ )

⎤
⎦, (47)

〈
diβ

dt

〉
= −

∑
i

c0iγivFCβ

2

√
pβ

μ (1 − β)

×
⎡
⎣ 3eβ cos ωβ

1 − e2
β

+ σβ

vF

(
1 + ki

c0i

vF

)

×(Sβ sin ωβ + Iβ cos ωβ )

⎤
⎦. (48)

As the central acceleration, we used the Keplerian acceleration
given by the first term in equation (43), namely −μ(1 − β)eR/r2.
This is denoted by the subscript β in equations (44)–(48). In the
interstellar gas flow, we have taken into account the primary and
secondary populations of neutral hydrogen atoms and neutral he-
lium atoms. The primary population of neutral hydrogen atoms and
neutral helium atoms represents the original atoms of the interstellar
gas flow that penetrate into the heliosphere. The secondary popula-
tion of neutral hydrogen atoms comprises the former protons from
the interstellar gas flow that acquired electrons from interstellar
H◦ between the bow shock and the heliopause (Frisch et al. 2009;
Alouani-Bibi et al. 2011). We adopted the following parameters for
these components in the interstellar gas flow: n1 = 0.059 cm−3 and
T1 = 6100 K for the primary population of neutral hydrogen (Frisch
et al. 2009); n2 = 0.059 cm−3 and T2 = 16 500 K for the secondary
population of neutral hydrogen (Frisch et al. 2009); and finally n3 =
0.015 cm−3 and T3 = 6300 K for the neutral helium (Lallement et al.
2005). We have assumed that the interstellar gas velocity vector is
equal for all components and identical to the velocity vector of the
neutral helium entering the Solar system. The neutral helium enters
the Solar system with a speed of about vF = 26.3 km s−1

(Lallement et al. 2005), and arrives from the direction of λecl = 254.◦7
(heliocentric ecliptic longitude) and βecl = 5.◦2 (heliocentric ecliptic
latitude; Lallement et al. 2005). Thus, the components of the veloc-
ity in ecliptic coordinates with the x-axis aligned towards the actual
equinox are vF = −26.3 km s−1 [cos (254.◦7) cos (5.◦2), sin (254.◦7)
cos (5.◦2), sin (5.◦2)]. We want also to demonstrate the influence of a
variable drag coefficient on the secular orbital evolution of the dust
particle’s orbit. Therefore, we solved equation (43) and the system of
equations (44)–(48) in two cases, namely one with variable drag co-
efficients and one with constant drag coefficients. The variable drag
coefficients for equation (43) were calculated from equation (2). We
assumed that the atoms were specularly reflected at the surface of
the dust grain (δi = 1). As the initial conditions for a dust particle
with R = 2 μm, mass density 
 = 1 g cm−3 and Q̄′

pr = 1, we used
aβin = 60 au, eβin = 0.2, ωβin = 120◦, �βin = 30◦ and iβin = 20◦. The
initial true anomaly of the dust particle was f βin = 180◦ for equa-
tion (43). The results are depicted in Fig. 5. The solid lines denote
the solution of equation (43), and the dashed lines denote the solu-
tion of equations (44)–(48). The black lines represent variable drag
coefficients, and the grey lines represent constant drag coefficients.
The solution of equations (44)–(48) with constant drag coefficients

can be obtained by putting ki = 0 in equations (44)–(48). Fig. 5
shows that the solution of the equation of motion (equation 43) is
in good accordance with the solution of the system of equations
constituted by the secular time derivatives of the Keplerian orbital
elements equations (44)–(48), for both variable and constant drag
coefficients. The semimajor axis decreases faster for the constant
drag coefficients. This is in accordance with the properties of the
function gi (see the discussion after equation 21 and equation 22).
The numerical solutions depicted in Fig. 5 represent the cases for
which equation (8) holds. In these cases, the influence of the vari-
able drag coefficient in the acceleration caused by the interstellar
gas flow on the orbital evolution of the dust particle is not large and
in some cases can be neglected (as can be seen in Fig. 5).

4.3 Validity of the linear approximation at various
Mach numbers

Fig. 6 compares solutions of equation (43) (black line) with solu-
tions of equations (44)–(48) (grey line). The variability of the drag
coefficient in equation (43) is given by equation (2). We used an
artificial interstellar gas flow that consists only of neutral hydrogen
atoms with concentration n1 = 0.1 cm−3. The hydrogen gas veloc-
ity vector with respect to the Sun is vF = (10 km s−1, 25 km s−1,
5 km s−1). In order to visualize the influence of the molecular speed
ratio (Mach number) on the orbital evolutions, we used three tem-
peratures: T1 = 500 K (solid line), T1 = 5000 K (dashed line) and
T1 = 50 000 K (dotted line). These parameters correspond to Mach
numbers (the first equation in equations 11) s01 = 9.5, s01 = 3.0
and s01 = 1.0. The condition s01 � 1 does not hold for any of
these values. Therefore, the derivation of equations (44)–(48) using
the acceleration caused by the interstellar gas flow described by
equation (1) is correct (the condition for the validity of equation 6,
s01 � 1, is not fulfilled). As the initial conditions for a dust particle
with R = 2 μm, 
 = 1 g cm−3 and Q̄′

pr = 1, we used aβin = 60 au,
eβin = 0.2, ωβin = 120◦, �βin = 30◦ and iβin = 20◦. The initial true
anomaly of the dust particle is f βin = 180◦ for equation (43). Fig. 6
shows that the orbital evolution under the action of the PR effect,
radial solar wind and interstellar gas flow is well described by the
solution of equations (44)–(48) for the various values of the Mach
number. The fact that the evolution of the dust particle under the
action of an interstellar gas flow with a larger temperature is faster
is caused by the proportionality of the secular time derivatives to
c01. c01 is larger for an interstellar gas flow with a larger temperature
[see the first and the second equations in equations (11) and Fig. 1 or
Appendix B].

5 C O N C L U S I O N

We have investigated the orbital evolution of a spherical dust grain
under the action of an interstellar gas flow. The acceleration of the
dust particle caused by the interstellar gas flow depends on the drag
coefficient, which is a well determined function of the relative speed
of the dust particle with respect to the interstellar gas (Baines et al.
1965). We assumed that the acceleration caused by the interstellar
gas flow is small compared with the gravitation of a central object,
that the speed of the dust particle is small in comparison with the
speed of the interstellar gas flow, and that the molecular speed ratios
of the interstellar gas components are not close to zero. Under
these assumptions, we derived the secular time derivatives of all
Keplerian orbital elements of the dust particle under the action
of the acceleration caused by the interstellar gas flow, with linear
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Orbital evolution with interstellar gas flow 1057

Figure 5. A comparison of the solution of the equation of motion (solid lines) with the solution of the system of differential equations constituted by the
secular time derivatives of the Keplerian orbital elements (dashed lines). The solutions with variable (black lines) and constant (grey lines) drag coefficients
are compared.

variability of the drag coefficient taken into account, for arbitrary
orientations of the orbit.

If the variability of the drag coefficient is taken into considera-
tion in the acceleration, then the secular decrease of the semimajor
axis is slower. The secular decrease of the semimajor axis is slow-
est for orbit orientations characterized by the perpendicularity of
the orbital plane to the interstellar gas velocity vector. The nega-
tive secular time derivative of the semimajor axis is in this case
independent of the eccentricity of the orbit. The secular decrease
of the semimajor axis is, for a given orbit, fastest in the planar
case (when the interstellar gas velocity vector lies in the orbital
plane) with the interstellar gas velocity vector parallel to the line
of apsides. For such orbits, with various eccentricities, the secular
decrease of the semimajor axis is fastest for the orbit with largest
eccentricity.

Regarding the secular evolutions of the eccentricity, the argu-
ment of perihelion, the longitude of the ascending node, and the

inclination, we found that the variability of the drag coefficient has
a tendency to compensate the influence of the terms multiplied by σ ;
see equations (14)–(17). The terms multiplied by σ originate from
the dependence of the acceleration caused by the interstellar gas
flow on the velocity of the dust particle with respect to the central
object.

If we consider only the influence of the interstellar gas flow on the
orbit of the dust particle, then the product of the secular eccentricity
and the magnitude of the radial component of vF measured in the
perihelion is approximately constant during the orbital evolution.
A simple approximative relation also holds between the secular
eccentricity and the magnitude of the normal component of vF

measured at perihelion.
In the special case when the interstellar gas flow velocity lies

in the orbital plane of the particle and the particle is under the
action of the PR effect, the radial solar wind and an interstellar
gas flow, the orbit approaches the position with the maximal value

C© 2012 The Author, MNRAS 426, 1050–1060
Monthly Notices of the Royal Astronomical Society C© 2012 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/426/2/1050/973621 by guest on 20 M
arch 2024



1058 P. Pástor

Figure 6. Orbital evolution under the action of the PR effect, radial solar wind and interstellar gas flow, obtained from numerical solution of equation (43)
(black lines) and from numerical solution of the system of differential equations (44)–(48) (grey lines). We used interstellar gas with three temperatures: T1 =
500 K (solid lines), T1 = 5000 K (dashed lines) and T1 = 50 000 K (dotted line).

of the magnitude of the transversal component of vF measured at
perihelion.

We found, by numerically integrating the equation of motion
with a variable drag coefficient, that the linear approximation of
the dependence of the drag coefficient on the relative speed of the
dust particle with respect to the interstellar gas is usable for most
(not too close to zero) values of the molecular speed ratios (Mach
numbers), if the interstellar gas flow speed is much larger than the
speed of the dust particle.
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A P P E N D I X A : D E R I VATI O N O F TH E
S E C U L A R T I M E D E R I VAT I V E S O F TH E
K E P L E R I A N O R B I TA L E L E M E N T S

We want to find the secular time derivatives of the Keplerian or-
bital elements (a, semimajor axis; e, eccentricity; ω, argument of
perihelion; �, longitude of the ascending node; i, inclination). We
will assume that the acceleration caused by the interstellar gas flow
can be used as a perturbation to the central acceleration caused
by the solar gravity. We use the Gaussian perturbation equations
of celestial mechanics (see e.g. Murray & Dermott 1999; Danby
1988). Therefore we need to determine the radial, transversal and
normal components of the acceleration given by the second term in
equation (12). The orthogonal radial, transversal and normal unit
vectors of the dust particle in a Keplerian orbit are (see e.g. Pástor
2009)

eR = (cos � cos(f + ω) − sin � sin(f + ω) cos i,

sin � cos(f + ω) + cos � sin(f + ω) cos i,

sin(f + ω) sin i) ,
(A1)

eT = (− cos � sin(f + ω) − sin � cos(f + ω) cos i,

− sin � sin(f + ω) + cos � cos(f + ω) cos i,

cos(f + ω) sin i) , (A2)

eN = (sin � sin i, − cos � sin i, cos i), (A3)

where f is the true anomaly. The velocity of the particle in an
elliptical orbit can be calculated from

v = dr
dt

= d

dt
(reR)

= r
e sin f

1 + e cos f

df

dt
eR + reT

df

dt
, (A4)

where

r = p

1 + e cos f
(A5)

and p = a(1 − e2). In this calculation, Kepler’s Second Law,
df /dt = √

μp/r2, must be used. Now, we can easily verify that

(v − vF) · eR = vFσe sin f − vF · eR

= vFσe sin f − A, (A6)

(v − vF) · eT = vFσ (1 + e cos f ) − vF · eT

= vFσ (1 + e cos f ) − B, (A7)

(v − vF) · eN = −vF · eN = −C, (A8)

where

σ =
√

μ/p

vF
. (A9)

Using the notation defined in equations (A6)–(A8) and equa-
tion (A4), we can write

v · vF = σvF[B + e(A sin f + B cos f )]. (A10)

If we denote the components of the interstellar gas flow velocity
vector in the stationary Cartesian frame associated with the Sun as
vF = (vFX, vFY , vFZ), then we obtain

A sin f + B cos f = (− cos � sin ω

− sin � cos ω cos i)vFX

+(− sin � sin ω

+ cos � cos ω cos i)vFY

+ cos ω sin ivFZ = I . (A11)

Hence,

v · vF = σvF(B + eI ). (A12)

For radial (aR), transversal (aT) and normal (aN) components of the
perturbation acceleration, we obtain from the second term in equa-
tion (12), equations (A6)–(A8), and equation (A12) the expressions

aR = −
∑

i

c0iγiv
2
F

⎧⎨
⎩ A

vF

[
σeI

vF

(
1 + ki

c0i

vF

)
− 1

]

+ σ

[
e sin f + AB

v2
F

(
1 + ki

c0i

vF

)]⎫⎬
⎭, (A13)

aT = −
∑

i

c0iγiv
2
F

⎧⎨
⎩ B

vF

[
σeI

vF

(
1 + ki

c0i

vF

)
− 1

]

+ σ

[
1 + e cos f + B2

v2
F

(
1 + ki

c0i

vF

)]⎫⎬
⎭, (A14)

aN = −
∑

i

c0iγivFC

⎡
⎣σeI

vF

(
1 + ki

c0i

vF

)
− 1

+ σ
B

vF

(
1 + ki

c0i

vF

)⎤⎦. (A15)

Now we can use the Gaussian perturbation equations of celestial
mechanics to compute the time derivatives of the orbital elements.
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1060 P. Pástor

The time average of any quantity g during one orbital period T can
be computed using

〈g〉 = 1

T

∫ T

0
gdt =

√
μ

2πa3/2

∫ 2π

0
g

(
df

dt

)−1

df

=
√

μ

2πa3/2

∫ 2π

0
g

(√
μp

r2

)−1

df

= 1

2πa2
√

1 − e2

∫ 2π

0
g r2df , (A16)

where Kepler’s Second Law,
√

μp = r2df /dt , and Kepler’s Third
Law, 4π2a3 = μT 2, were used. This procedure is used in order to
derive equations (13)–(17).

A P P E N D I X B: B E H AV I O U R O F gi

We define

gi(s) = l(s)

cDi(s)
, (B1)

where

l(s) = 1√
π

(
1

s
− 3

2s3

)
e−s2 +

(
1 − 1

s2
+ 3

4s4

)
erf(s), (B2)

In order to find the behaviour of l(s), we can write

dl(s)

ds
= 1

s5

[
6s√
π

e−s2 + (−3 + 2s2
)

erf(s)

]
, (B3)

dl1(s)

ds
= d

ds

[
6s√
π

e−s2 + (−3 + 2s2
)

erf(s)

]

= 4 s

(
− 2s√

π
e−s2 + erf(s)

)
, (B4)

dl2(s)

ds
= d

ds

(
− 2s√

π
e−s2 + erf(s)

)

= 4s2

√
π

e−s2 ≥ 0. (B5)

Because dl2(s)/ds ≥ 0, l2(s) is an increasing function of s for s ∈ (0,
∞). The value of l2(0) = 0. Therefore l2(s) is positive for s ∈ (0, ∞).
If l2(s) is positive, then dl1(s)/ds > 0. Therefore l1(s) is an increasing
function of s. The value of l1(0) = 0. Thus, l1(s) is positive for s
∈ (0, ∞). If l1(s) is positive, then dl(s)/ds > 0. Because dl(s)/ds >

0, the function l(s) is an increasing function of s for s ∈ (0, ∞).
lims→0l(s) = 0 and lims→∞l(s) = 1.

We now find the behaviour of cDi(s). We can write

dcDi(s)

ds
= 1

s5

[
− 2s√

π
e−s2 + (

1 − 2s2
)

erf(s)

−s3 (1 − δi)

(
Td

Ti

)1/2 √
π

3

]
, (B6)

dcDi1(s)

ds
= d

ds

[
− 2s√

π
e−s2 + (

1 − 2s2
)

erf(s)

−s3 (1 − δi)

(
Td

Ti

)1/2 √
π

3

]

= −4 serf(s) − s2 (1 − δi)

(
Td

Ti

)1/2 √
π

≤ 0. (B7)

Because dcDi1(s)/ds ≤ 0, cDi1(s) is a decreasing function of s for s
∈ (0, ∞). The value of cDi1(0) = 0. Therefore cDi1(s) is negative
for s ∈ (0, ∞). If cDi1(s) is negative, then dcDi(s)/ds < 0. Because
dcDi(s)/ds < 0, the function cDi(s) is a decreasing function of s for
s ∈ (0, ∞). lims→0cDi(s) = ∞ and lims→∞cDi(s) = 1.

l(s) is an increasing function of s, and cDi is a decreasing func-
tion of s for s ∈ (0, ∞). Both l(s) and cDi(s) are positive. There-
fore, the function gi(s) = l(s)/cDi(s) is an increasing function of
s for s ∈ (0, ∞).

A P P E N D I X C : B E H AV I O U R O F h

We have

h(e) = 1 − √
1 − e2

e2
. (C1)

In order to find the behaviour of h(e), we can write

dh(e)

de
= 2 − e2 − 2

√
1 − e2

e3
√

1 − e2
, (C2)

dh1(e)

de
= d

de

(
2 − e2 − 2

√
1 − e2

)

= −2e + 2e√
1 − e2

≥ 0. (C3)

Because dh1(e)/de ≥ 0, h1(e) is an increasing function of the eccen-
tricity. The value of h1(0) is 0. Therefore, h1(e) is positive for e ∈
(0, 1]. If h1(e) is positive, then dh(e)/de > 0. Because dh(e)/de > 0,
the function h(e) is an increasing function of the eccentricity for e
∈ (0, 1].
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