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ABSTRACT
In this paper, we investigate the action of solar wind on an arbitrarily shaped interplanetary
dust particle. The final relativistically covariant equation of motion of the particle also contains
the change of the particle’s mass. The non-radial solar wind velocity vector is also included.
The covariant equation of motion reduces to the Poynting–Robertson effect in the limiting
case when a spherical particle is treated, when the speed of the incident solar wind corpuscles
tends to the speed of light and when the corpuscles spread radially from the Sun. The results
of quantum mechanics have to be incorporated into the physical considerations, in order to
obtain the limiting case.

If the solar wind affects the motion of a spherical interplanetary dust particle, then p′
out =

(1 − σ ′
pr/σ

′
tot) p′

in. Here, p′
in and p′

out are the incoming and outgoing radiation momenta (per
unit time), respectively, measured in the proper frame of reference of the particle, and σ ′

pr and
σ ′

tot are the solar wind pressure and the total scattering cross-sections, respectively.
An analytical solution of the derived equation of motion yields a qualitative behaviour

consistent with numerical calculations. This also holds if we consider a decrease of the
particle’s mass. Using numerical integration of the derived equation of motion, we confirm
our analytical result that the non-radial solar wind (with a constant value of angle between
the radial direction and the direction of the solar wind velocity) causes outspiralling of the
dust particle from the Sun for large values of the particle’s semimajor axis. The non-radial
solar wind also increases the time the particle spirals towards the Sun. If we consider the
periodical variability of the solar wind with the solar cycle, then there are resonances between
the particle’s orbital period and the period of the solar cycle.

Key words: celestial mechanics – solar wind – interplanetary medium – zodiacal dust.

1 IN T RO D U C T I O N

For many decades, the Poynting–Robertson (P–R) effect has been
used to model the orbital evolution of dust grains under the action
of the electromagnetic radiation (of the central star; e.g. Poynting
1903; Robertson 1937; Wyatt & Whipple 1950; Dohnanyi 1978;
Kapišinský 1984; Jackson & Zook 1989; Leinert & Grün 1990;
Gustafson 1994; Dermott et al. 1994; Reach et al. 1995). It has been
found that the solar wind operates in a similar way. The action of the
solar wind on the motion of an interplanetary dust particle (IDP)
has been discussed, in a heuristic way, for example, by Whipple
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pastor@hvezdarenlevice.sk (PP); usarlako@savba.sk (LK)
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(1955). He also mentioned the results of laboratory experiments: the
intense bombardment of a material by energetic corpuscles destroys
the material, an effect known as ‘sputtering’. Current opinion is that
the solar wind has two different effects: (i) the motion of a dust
particle is influenced by the incident solar wind; (ii) the corpuscular
sputtering decreases the mass of the particle (e.g. Whipple 1955;
Dohnanyi 1978; Kapišinský 1984; Leinert & Grün 1990). There
have been attempts to better understand the physics of the action of
the solar wind on the motion of a dust particle. A first attempt was
made by Robertson & Noonan (1968, pp. 122-123), who formulated
the relativistically covariant equation of motion of a particle under
the action of the solar wind. However, their result does not reveal
any destruction of the particle. A more realistic view has been
presented by Klačka & Saniga (1993), who also suggested a space–
time formulation of the problem. As a result, corpuscular sputtering
is an indispensable part of the equation of motion for the action
of solar wind on an IDP. A relativistically covariant form of the
equation of motion with corpuscular sputtering has not yet been
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presented in the literature. In this paper, we generalize the results
of Klačka & Saniga (1993) by deriving a relativistically covariant
equation of motion with corpuscular sputtering included. Using
the results of Klačka & Saniga (1993), Klačka (1994) derived the
equation of motion to the first order of v/u, where v is the speed of the
dust grain with respect to the Sun and u is the speed of the solar wind
with respect to the Sun. In general, the solar wind velocity vector can
be non-radial. The non-radial component of the solar wind velocity
vector has also been considered in the equation of motion to the first
order of v/u (Klačka 1994). Klačka et al. (2008) and Pástor et al.
(2009a) used the acceleration caused by the non-radial solar wind
to the second order in v/u. The acceleration in Klačka et al. (2008)
and Pástor et al. (2009a) was used without one term of the second
order in v/u, as follows from the covariant formulation presented in
this paper. We explicitly present the complete acceleration caused
by the non-radial solar wind to the second order in v/u. Klačka et al.
(2008) used the acceleration from the P–R effect and the non-radial
solar wind in order to obtain the properties of the orbital evolutions
of dust particles near to (or captured in) a mean-motion resonance
with a planet. Pástor et al. (2009a) analysed in detail all possibilities
of the secular evolutions of eccentricity in a mean-motion resonance
with a planet under the action of the P–R effect and the non-radial
solar wind.

In this paper, we present a space–time formulation of the action of
the solar wind on an arbitrarily shaped IDP. We derive the equation
of motion in a relativistically covariant form. Moreover, in order to
be physically correct, the results of quantum theory are also taken
into account. The results of the paper are consistent with the results
of Klačka (2008a,b) for electromagnetic radiation. Our theoretical
derivations hold for any solar wind velocity vector, and the result
can easily be applied to other stars with stellar winds.

We present the application of the derived equation of motion to
a spherical IDP in the form of the orbital evolution of the parti-
cle. While submicrometre dust particles are driven mainly by the
Lorentz force (the motion of charged particles in the interplane-
tary magnetic field; Dohnanyi 1978, Leinert & Grün 1990, Dermott
et al. 2001), collisions among particles are important for particles
that have radii larger than ≈100 μm (Grün et al. 1985; Dermott et al.
2001). We deal with the orbital evolution of a μm-sized spherical
IDP, when the effects of solar gravity, solar electromagnetic radia-
tion and solar wind (solar corpuscular radiation) are relevant. The
radial solar wind is usually used. However, the newest observations
(Bruno et al. 2003) show that the velocity vector of solar wind cor-
puscles is non-radial and that the angle between the velocity vector
and the radial direction is practically independent of heliocentric
distance. We compare the orbital evolution of a spherical IDP for
the standard approach to the time-independent radial solar wind and
for the more real solar wind model. We also take into account the
effect of the decrease of the mass of the IDP.

In Section 2, we derive the relativistically covariant equation of
motion of an arbitrarily shaped particle under the action of solar
wind (including the non-radial component of the solar wind veloc-
ity). In Section 3, we summarize important equations for the P–R
effect. In Section 4, we give the equation of motion of the spherical
particle under the action of solar corpuscular and electromagnetic
radiation and solar gravity. In Section 5, we deal with the secular
evolution of the particle’s orbital elements under the action of so-
lar radiation (electromagnetic and corpuscular – solar wind), in an
analytical way. In Section 6, we provide a detailed treatment of the
numerical results, and we compare the results for the conventional
time-independent radial solar wind with those obtained for the more
real solar wind model.

2 E QUAT I O N O F MOT I O N : S O L A R W I N D
EFFECT

In this section, we derive the relativistically covariant equation of
motion of an IDP. Our derivation enables us to understand the
physics of the action of the solar wind on the motion of a dust
particle (compared with the heuristic explanation from Whipple
1955 and the space–time formulations presented by Robertson &
Noonan 1968, pp. 122–123 and Klačka & Saniga 1993).

We show that corpuscular sputtering is an indispensable part of
the action of the solar wind on the IDP, so sputtering cannot be
considered as an another effect of the solar wind. Moreover, the
non-radial solar wind velocity vector can easily be incorporated
into the final equation of motion. Finally, the covariant formulation
yields the P–R effect in the limiting case when the speed of the
solar wind corpuscles tends to the speed of light. The limiting case
is fulfilled assuming that the total cross-section of the interaction
between the solar wind corpuscles and the IDP is given by the results
of quantum theory and not by classical non-quantum physics.

We also present the results with an accuracy of the order of (v/u)2,
where v is the speed of the particle with respect to the Sun and u is
the solar wind speed with respect to the Sun. These results are used
in the practical modelling of the orbital evolution of interplanetary
dust grains in Sections 4 and 5.

2.1 Incident radiation

Let us introduce two inertial reference frames. The first is the proper
reference frame of a particle moving with velocity v around the Sun.
The particle is at rest in its proper frame of reference. The quantities
measured in this frame are denoted by a prime. The second frame
is associated with the Sun. This frame is the ‘stationary reference
frame’.

We suppose that all corpuscles of the solar wind are of the same
mass m1 and of the same velocity u (or u′ in the proper reference
frame of the particle). Thus, for the four-momentum of each of the
corpuscles in the proper reference frame of the IDP, we can write

p′μ
1 =
(

E′
1

c
; p′

1

)
= m1

[
γ
(
u′) c; γ

(
u′) u′] . (1)

Here, c is the speed of light and

γ
(
u′) = 1√

1 − u′2/c2
(2)

is the Lorentz factor. Similarly, in the stationary reference frame,
each of the corpuscles has the following four-momentum

p
μ
1 =
(

E1

c
; p1

)
= m1 [γ (u) c; γ (u) u] . (3)

If a beam of such solar wind corpuscles hits the dust grain, then
the energy and momentum incident on the particle per unit time in
its proper frame are

E′
in = σ ′

totn
′u′E′

1 and p′
in = σ ′

totn
′u′ p′

1, (4)

respectively. Here, n′ is the concentration of the solar wind corpus-
cles and σ ′

tot is the total scattering cross-section of the IDP. Using
equation (1), we can rewrite the equations of equation (4) in the
form of the incident four-momentum per unit time

p′μ
in = σ ′

totn
′u′
(

E′
1

c
; p′

1

)

= 1

c
σ ′

totn
′u′E′

1

(
1;

u′

c

)
. (5)
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Solar wind and motion of dust grains 945

If we introduce the flux density of the incident energy (the energy
flow per unit area perpendicular to the beam of solar wind corpuscles
per unit time)

S ′ = n′u′E′
1, (6)

then equation (5) can be rewritten as follows:

p′μ
in =

(
E′

in

c
; p′

in

)
,

p′μ
in = 1

c
S ′σ ′

tot

(
1;

u′

c

)
. (7)

With a four-vector B ′μ = (B ′0; B′) in the proper reference frame,
the components of the four-vector in the stationary reference frame
are given by the following generalized special Lorentz transforma-
tion

B0 = γ (v)

(
B ′0 + v · B′

c

)
,

B = B′ +
{

[γ (v) − 1]
v · B′

v2
+ γ (v)

c
B ′0
}

v, (8)

or inverse

B ′0 = γ (v)

(
B0 − v · B

c

)
,

B′ = B +
{

[γ (v) − 1]
v · B
v2

− γ (v)

c
B0

}
v.

(9)

Here, v is the velocity of the proper reference frame with respect to
the stationary reference frame, and v = |v|.

Now, using equations (7) and (8), we obtain

p0
in = 1

c
S ′σ ′

totγ (v)

(
1 + v · u′

c2

)
,

pin = 1

c2
S ′σ ′

tot

[
u′ +

{
[γ (v) − 1]

v · u′

v2
+ γ (v)

}
v

]
. (10)

We have to express the primed quantities (except for σ ′
tot) on the

right-hand sides of the equations in equation (10), i.e. S ′ = n′u′E′
1

and u′, using the unprimed quantities measured in the stationary
reference frame of the Sun. We obtain the energy E′

1 from the
Lorentz transformation of p

μ
1 to the proper reference frame of the

IDP as

E′
1 = γ (v)

(
E1 − v · p1

)
= γ (v)

(
1 − v · u

c2

)
E1 = ωE1, (11)

where we have defined the quantity

ω ≡ γ (v)
(

1 − v · u
c2

)
. (12)

We obtain the other quantities from the transformation of the four-
vector of the current density jμ = (nc; nu) to the corresponding
four-vector j ′μ = (n′c; n′u′). The transformation yields

n′ = ωn and u′ = 1

ω
α, (13)

where the vector

α ≡ u +
{

[γ (v) − 1]
v · u
v2

− γ (v)
}

v, (14)

has the magnitude

α =
[
u2 + γ 2 (v) v2 − 2γ 2 (v) v · u + γ 2 (v)

( v · u
c

)2
]1/2

.

(15)

Thus, u′ = α/ω and the flux density of energy is

S ′ = αω

u
S, S ≡ nuE1, (16)

according to equations (6), (11) and (13).
Finally, using equations (10), (12), (13), (14) and (16), we obtain

p0
in = 1

c
σ ′

totS
αω

u

1

ω
,

pin = 1

c
σ ′

totS
αω

u

1

ω

u
c
. (17)

The incident four-momentum of solar wind per unit time is

pμ
in = 1

c
σ ′

totS
αω

u
ξμ, ξμ ≡

(
1

ω
;

1

ω

u
c

)
. (18)

2.2 Reaction of the dust particle to the incident solar wind

The incident solar wind corpuscule can be reflected from the surface
of the IDP, or it can cause the erosion/destruction of the IDP and
decrease its mass, or, in general, similar processes such as reflection,
absorption and diffraction can occur. The particle’s loss of energy
(per unit time) in the proper reference frame of the IDP can be
written as E′

out − E′
in. Thus, E′

out can be written as an x′-part of the
incident energy per unit time. The relation

E′
out = x ′E′

in (19)

holds for the outgoing energy. In order to express the outgoing mo-
mentum, we declare the orthonormal vector basis { f ′

j ; j = 1, 2, 3}
in the proper reference frame of the particle and three velocity vec-
tors {u′

j = u′ f ′
j ; j = 1, 2, 3} corresponding to these unit vectors.

We suppose that u′
1 ≡ u′. Now, the outgoing momentum per unit

time is

p′
out = p′

in − σ ′
tot

S ′

c

3∑
j=1

σ ′
pr,j

σ ′
tot

u′
j

c

=
(

1 − σ ′
pr

σ ′
tot

)
p′

in − σ ′
tot

S ′

c

3∑
j=2

σ ′
pr,j

σ ′
tot

u′
j

c
, (20)

where σ ′
pr,j (j = 1, 2, 3; σ ′

pr,1 ≡ σ ′
pr) are pressure cross-sections

(there is an analogy with optics; see Klačka 2008a,b).
The outgoing four-momentum per unit time is given by equations

(7), (19) and (20):

p′μ
out =

(
E′

out

c
; p′

out

)
, (21)

p′μ
out =

⎡
⎣ 1

c
σ ′

totS
′x ′;
(

1 − σ ′
pr

σ ′
tot

)
p′

in − σ ′
tot

S ′

c

3∑
j=2

σ ′
pr,j

σ ′
tot

u′
j

c

⎤
⎦.

For the outgoing four-momentum per unit time in the stationary ref-
erence frame, using equation (16), the generalized special Lorentz
transformation of p′μ

out gives

p
μ
out = 1

c
σ ′

totS
αω

u
x ′ U

μ

c

+
(

1 − σ ′
pr

σ ′
tot

)
1

c
σ ′

totS
αω

u

(
ξμ − Uμ

c

)

− σ ′
tot

S

c

αω

u

3∑
j=2

σ ′
pr,j

σ ′
tot

(
ξ

μ
j − Uμ

c

)
, (22)
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where

Uμ = [γ (v)c; γ (v)v] (23)

is four-velocity of the IDP. The other four-vectors are

ξ
μ
j =

(
1

ωj

;
1

ωj

uj

c

)
,

ωj ≡ γ (v)
(

1 − v · uj

c2

)
,

uj =
[
γ (v)

(
1 + v · u′

j

c2

)]−1

×
[

u′
j +
{

[γ (v) − 1]
v · u′

j

v2
+ γ (v)

}
v

]
,

j = 1, 2, 3, (24)

and ω1 ≡ ω, ξ
μ
1 ≡ ξμ, and u1 ≡ u.

2.3 Equation of motion

Now we can write the equation of motion of the IDP under the
action of the solar wind in a relativistically covariant form:

dpμ

dτ
= pμ

in − p
μ
out. (25)

Using equations (18) and (22), equation (25) yields

dpμ

dτ
= 1

c
σ ′

totS
αω

u

×
{

σ ′
pr

σ ′
tot

ξμ −
[
x ′ −

(
1 − σ ′

pr

σ ′
tot

)]
Uμ

c

}

+ σ ′
tot

S

c

αω

u

3∑
j=2

σ ′
pr,j

σ ′
tot

(
ξ

μ
j − Uμ

c

)
, (26)

where pμ = mUμ is the four-momentum of the IDP of mass m and
τ is the proper time of the particle.

Using

dpμ

dτ
= d

dτ
(mUμ) = dm

dτ
Uμ + m

dUμ

dτ
, (27)

equation (26) yields not only the acceleration of the particle, but also
the change of the particle’s (rest) mass, as a result of the interaction
of the IDP with the solar wind. On the basis of equations (12), (18),
(23), (26) and (27), the change of the mass is given by the expression
(UμUμ = c2, Uμ dUμ/dτ = 0)

dm

dτ
= − 1

c2
σ ′

totS
αω

u

(
x ′ − 1

)
. (28)

We can easily verify that equation (28) corresponds to the famous
Einstein equation dm/dτ = (E′

in − E′
out)/c

2, if equations (4) and
(19) are also used.

Equations (26)–(28) yield for the four-acceleration of the IDP

dUμ

dτ
= σ ′

pr

S

mc

αω

u

(
ξμ − Uμ

c

)

+ σ ′
tot

S

mc

αω

u

3∑
j=2

σ ′
pr,j

σ ′
tot

(
ξ

μ
j − Uμ

c

)
. (29)

In the further treatment, we consider the case σ ′
pr,j ≡ 0 for j = 2,

3. This corresponds to a dust particle with a spherically distributed
mass. As a consequence, the equation of motion will be of the form

dpμ

dτ
= 1

c
σ ′

totS
αω

u

{
σ ′

pr

σ ′
tot

ξμ−
[
x ′−
(

1− σ ′
pr

σ ′
tot

)]
Uμ

c

}
, (30)

and the four-acceleration will be

dUμ

dτ
= σ ′

prS

mc

αω

u

(
ξμ − Uμ

c

)
. (31)

The total scattering cross-section for the spherical particle is given
in Appendix A. The change of the particle’s mass is given by equa-
tion (28). The conventional approach is that the force, resulting from
the solar wind bombardment, considers only the fixed mass of the
particle (e.g. Mukai & Yamamoto 1982).

2.4 Equation of motion to the second order in v/u

In the approximation to the first order in v/c, we can replace the
space-like part of the four-acceleration of the IDP by acceleration
dv/dt , where t is the time measured in the stationary reference
frame (associated with the Sun). Furthermore, using equations (3),
(12), (15), (16), (18) and (23), we can express the right-hand side of
equation (31) in the approximation to the second order in v/u. We
obtain

dv

dt
= A′nm1u

2

m

⎡
⎣(1 − v · û

u

)
û − v

u

+ 1

2

v2

u2
û + v · û

u

v

u
− 1

2

(v · û)2

u2
û

⎤
⎦,

A′ = πR2 = σ ′
pr, (32)

where û ≡ u/u is the unit vector in the direction of the solar wind.
Let us introduce the orthogonal coordinate system associated

with the orbital plane of the IDP and determined by unit vectors
eR (radial vector), eT (transversal vector) and eN = eR×eT (normal
vector). We can write (Klačka 1994)

û = γReR + γTûT, (33)

where

γR = cos ε, γT = sin ε (34)

and

ûT = 1

N
k × eR = 1

N
(eT cos i − eN cos 
 sin i) ,

N =
√

(cos i)2 + (cos 
)2 (sin i)2. (35)

The quantity ε is an angle between the radial direction and the real
direction of the solar wind. The unit vector k corresponds to the
solar rotation angular velocity vector. The inclination of the orbital
plane of the IDP with respect to the solar equatorial plane is i.
Finally, 
 is a position angle of the IDP (an angle measured from
the ascending node of the orbit of the IDP to its actual position).

Inserting equations (33) and (35) into equation (32), and using the
decomposition of the velocity vector into its radial and transversal
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components, v = vReR + vTeT, we obtain

dv

dt
= A′nm1u

2

m

[(
XγR − Y

vR

u

)
eR

+
(

XγT
cos i

N
− Y

vT

u

)
eT

− XγT
cos 
 sin i

N
eN

]
,

X = 1 − γR
vR

u
− γT

cos i

N

vT

u
+ 1

2

v2

u2

−1

2

(
γR

vR

u
+ γT

cos i

N

vT

u

)2

,

Y = 1 − γR
vR

u
− γT

cos i

N

vT

u
. (36)

The angle ε is small; its value lies between 2◦ and 3◦ (Bruno et al.
2003). Thus, we can neglect terms proportional to γ 2

T and γ T(v/u)2.
Similarly, we put γ R ≈ 1. Then

dv

dt
= A′nm1u

2

m

{(
1 − 2

vR

u

− γT
cos i

N

vT

u
+ 1

2

v2
T

u2
+ v2

R

u2

)
eR

+
[(

1 − vR

u

)
γT

cos i

N
− vT

u
+ vRvT

u2

]
eT

−
(

1 − vR

u

)
γT

cos 
 sin i

N
eN

}
. (37)

3 EQUATI O N O F MOTI O N :
E L E C T RO M AG N E T I C R A D I ATI O N EF F E C T

Until now, we have dealt with the action of the solar wind on
the motion of an IDP. The role of solar electromagnetic radiation
cannot be neglected in the motion of the IDP in the Solar system.
The relativistically covariant equation of motion for an arbitrarily
shaped IDP under the action of a parallel beam of photons is (Klačka
2008a,b)

dpμ

dτ
=

3∑
j=1

(
w2

1SelmgC̄
′
pr,j

c2
+ 1

c
F ′

e,j

) (
cb

μ
j − Uμ

)
. (38)

Here, pμ is the four-momentum of the particle of mass m, the four-
vector of the world-velocity of the particle is given by equation (23)
and the four-vectors b

μ
j , j = 1, 2, 3 are given as

b
μ
j =
(

1

wj

;
ej

wj

)
,

wj = γ (v)
(

1 − v · ej

c

)
,

ej =
[
γ (v)

(
1 + v · e′

j

c

)]−1

×
[

e′
j +
{

[γ (v) − 1]
v · e′

j

v2
+ γ (v)

c

}
v

]
,

j = 1, 2, 3. (39)

Here, {e′
j ; j = 1, 2, 3} is the orthonormal vector basis in the proper

reference frame of the particle and {ej ; j = 1, 2, 3} is the corre-
sponding vector basis in the stationary frame; e1 corresponds to

the radial direction (i.e. the Sun–particle direction). Selmg is the flux
density of the electromagnetic radiation and C̄ ′

pr,j (j = 1, 2, 3) are
the spectrally averaged cross-sections of radiation pressure

C̄ ′
pr,j =

∫ ∞
0 I (λ) C ′

pr,j (λ) dλ∫ ∞
0 I (λ) dλ

, j = 1, 2, 3, (40)

where I(λ) is the flux of monochromatic radiation energy. If
C̄ ′

pr,2 = C̄ ′
pr,3 ≡ 0, then equation (38) reduces to the P–R effect

(Poynting 1903; Robertson 1937; Klačka 2008a,b; Klačka et al.
2009). This is because, in this case, the components of the thermal
emission force F ′

e,j (j = 1, 2, 3) are also equal to zero (Mishchenko
2001; Mishchenko, Travis & Lacis 2002). We can easily verify that
equation (38) yields dm/dτ = 0 (i.e. that the mass of the particle is
conserved, under the action of electromagnetic radiation).

To the first order in v/c, equation (38) yields

dv

dt
= Selmg

mc

3∑
j=1

C̄ ′
pr,j

[(
1 − 2

v · e1

c
+ v · ej

c

)
ej − v

c

]

+ 1

m

3∑
j=1

F ′
e,j

[(
1 + v · ej

c

)
ej − v

c

]
,

ej =
(

1 − v · e′
j

c

)
e′

j + v

c
, j = 1, 2, 3. (41)

It is worth emphasizing that the values of the radiation pressure
cross-sections C̄ ′

pr,j , j = 1, 2, 3, depend on the particle’s orientation
with respect to the incident radiation (i.e. their values are time-
dependent, in general). The general equation of motion, represented
by equation (38) or equation (41), differs from the P–R effect.
Equations (38)–(41) hold for arbitrarily shaped particles. Krauss
& Wurm (2004) have presented experimental evidence that non-
spherical dust grains move in a different way to spherical particles.

As is usual in studies of the Solar system, we restrict ourselves to
the P–R effect, as for the effect of solar electromagnetic radiation.
Thus, instead of equation (41), we use

dv

dt
= SelmgA

′Q̄′
pr,1

mc

[(
1 − v · e1

c

)
e1 − v

c

]
, (42)

where a dimensionless efficiency factor of radiation pressure Q̄′
pr,1

is defined by the relation Q̄′
pr,1 = C̄ ′

pr,1/A
′. The values of Q̄′

pr,1 can
be calculated according to Mie (1908); see also van de Hulst (1981)
and Bohren & Huffman (1983).

3.1 Electromagnetic radiation effect as a special case of the
solar wind effect

The transformations (i) u → ce1, (ii) S ′ = Sαω/u → S ′
elmg =

Selmgw
2
1 (Klačka 2008b), (iii) σ ′

pr,j → C̄ ′
pr,j (j = 1, 2, 3) and (iv) x′

= 1 (Klačka 2008b) reduce equation (26) into equation (38) without
thermal emission terms (F ′

e,j ≡ 0 for j = 1, 2, 3). This means that
our theory for the electromagnetic radiation effect without thermal
emission is consistent with the theory for the corpuscular radiation
effect.

4 E QUAT I O N O F MOT I O N : S O L A R
R A D I AT I O N A N D S O L A R G R AV I T Y

Let us consider a spherical body orbiting the Sun under the action of
solar radiation, i.e. solar corpuscular (solar wind) and electromag-
netic radiation. The effect of the solar electromagnetic radiation on
the motion of a spherical particle corresponds to the P–R effect.
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948 J. Klačka et al.

4.1 Solar electromagnetic radiation effect

It is useful to introduce a β-parameter, defined as the ratio of the
radial component of the radiation force and the gravitational force
between the Sun and the particle with zero velocity:

β = L	A′Q̄′
pr

4πcmμ
, μ ≡ G

(
M	 + m

) .= G M	. (43)

L	 = 3.842 × 1026 W (Bahcall 2002) is the luminosity of the Sun,
Q̄′

pr ≡ Q̄′
pr,1, G is the gravitational constant and M	 is the mass of

the Sun. For a homogeneous spherical particle, we can write

β = 5.760 × 102
Q̄′

pr

R(μm)(kg m−3)
, (44)

where R is the radius of the particle and  is the mass density of
the particle. Conventionally, it is assumed that β = const: neither
the optical properties nor the mass of the IDP change. We do not
restrict ourselves to the validity of this assumption.

Now, on the basis of the decomposition of the velocity vector
v = vReR + vTeT and equation (43), we can rewrite equation (42)
as(

dv

dt

)
P−R

= β
μ

r2

[(
1 − 2

vR

c

)
eR − vT

c
eT

]
. (45)

Here, r is the heliocentric distance of the IDP and the relation
Selmg = L	/(4πr2) is used. This is the acceleration of the IDP
under the action of the P–R effect.

4.2 Solar wind effect

Let us replace the fraction before the curly braces in equation (37)
by the following new quantities:

A′nm1u
2

m
≡ η

Q̄′
pr

β
u

c

μ

r2
. (46)

Here, η is conventionally a constant with a value of 0.22 (Whip-
ple 1967; Dohnanyi 1978) or 0.30 (Gustafson 1994; Abe 2009).
The solar wind speed u values of 350 km s−1 (Dohnanyi 1978) or
400 km s−1 (Gustafson 1994) are used to model the orbital evolution
under the action of solar wind.

Let us look at the numerical values of η and u on the basis of the
solar physics data. In order to calculate the value of η, we need the
values of n, u and E1, on the basis of equation (16). The average
values near the orbit of the Earth (1 au) are (Hundhausen 1997,
p. 92): proton density n1 = 6.6 cm−3; electron density n2 = 7.1
cm−3; He2+ density n3 = 0.25 cm−3; flow speed u = 450 km s−1.
For the average value of S for the solar wind (subscript ‘sw’) at 1
au, equation (16) yields

Ssw = u

3∑
i=1

niE1i
.= c2u

3∑
i=1

nimi = 515.642 kg s−3.

Moreover, we take into account that niu (1 au) = 〈ni〉〈u〉 (1 au)
(1 − 0.15cos ϕ)2, ϕ = 2π[t − tmax]/T , where T = 11.1 yr and tmax

is the time of the solar cycle maximum (Svalgaard 1977, chap. 13).
This result, together with equations (3) (γ (u)

.= 1), (16), (32), (43)
and (46) yields Ssw = Selmg (A′/σ ′

pr)η and

η = η0 (1 − δ cos ϕ)2 , u = u0 (1 − δ cos ϕ) ,

η0 = 0.38, δ = 0.15, u0 = 450 km s−1,

ϕ = 2π
t − tretard − tmax

T
, T = 11.1 yr, (47)

if we put σ pr = A′ and Selmg (1 au) = L	/[4π(1 au)2], L	 = 3.842 ×
1026 W. The value of T represents the average value of the solar
cycle period (e.g. Foukal 2004, p. 366). The retarded time tretard is
of the order of r/u0, which is only a better approximation to reality
than the omission of this term.

4.2.1 More exact solution

In reality, we need to know the concentration n(r, t) and solar wind
velocity u(r, t), when the dust grain is situated at the position of
heliocentric distance r at time t. More precise information can be
obtained from the continuity equation (the radial component of the
velocity u is approximated by the magnitude u)

∂n

∂t
+ 1

r2

∂
(
r2nu
)

∂r
= 0, (48)

if r �= 0. Using the observational fact n = const u/r2 (Svalgaard
1977, chap. 13), we obtain

∂u

∂t
+ ∂u2

∂r
= 0, (49)

if r �= 0. Using the boundary condition

lim
r→0

u(r, t) = u0

[
1 − δ cos

(
2π

t − tmax

T

)]
, (50)

the quasi-linear partial differential equation (49) can be solved.
Equation (49) is known as the Burgers equation:

∂u

∂t
+ u

∂u

∂x
= 0,

(e.g. Ševčovič 2008, pp. 40–42). If the boundary condition

u(x = 0, t) = χ (t)

is given, then the solution of the Burgers equation is

u(x, t) = χ

[
t − x

u(x, t)

]
.

The last non-linear algebraic equation can be solved by an iteration
method, e.g.

u = χ

(
t − x

u0

)
+ lim

k→∞
vk,

vk+1 = χ

[
t − x

χ (t − x/u0) + vk

]
− χ

(
t − x

u0

)
,

v1 = 0.

On the basis of the known solution of the Burgers equation,
equations (49) and (50) yield

u(r, t) = u0

[
1 − δ cos

{
2π

t − r/ [2u(r, t)] − tmax

T

}]
. (51)

A comparison with equation (47) shows that the retarded time is
tretard = r/(2u).

The non-linear algebraic equation (51) can be solved using the
iteration method presented above, or by using the following iteration

uk+1(r, t) = u0

[
1 − δ cos

{
2π

t − r/ [2uk(r, t)] − tmax

T

}]
, (52)

because the right-hand side of equation (51) is a contrac-
tive/contraction function for the case u2 > πu0rδ/T and the helio-
sphere is characterized by the condition r < 150 au (approximately).
We can put u1(r, t) = u0.
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4.2.2 Summary

Using the definition of equation (46), on the basis of equations (47)
and (51), we can summarize

A′nm1u
2

m
≡ η

Q̄′
pr

β
u

c

μ

r2
,

u(r, t) = u0

[
1 − δ cos

{
2π

t − r/ [2u(r, t)] − tmax

T

}]
,

η(r, t) = η0

[
u(r, t)

u0

]2

, η0 = 0.38,

δ = 0.15, u0 = 450 km s−1, T = 11.1 yr. (53)

We can also use

n ≡ n(r, t) = n0

[
u(r, t)

u0

] [
1 au

r(au)

]2

.

These results represent a more realistic model than the model that
is conventionally used, because it takes into account more observa-
tional facts (Svalgaard 1977; Hundhausen 1997).

For more simple cases, equation (47) is used with tretard = r/(2u0)
or tretard = 0. Shock waves do not exist in these simple cases. The
shock waves are generated by the solution of the Burgers equation,
which is considered in equation (53). As pointed out in the comment
to equation (52), the shock waves are not realized in the Solar
system.

We put i = 0 in equation (37). Then, the acceleration of the IDP
caused by the solar wind has the form(

dv

dt

)
SW

= η

Q̄′
pr

β
μ

r2

{(u

c
− 2

vR

c

)
eR − vT

c
eT

− γT

[ vT

c
eR −

(u

c
− vR

c

)
eT

]

+ 1

2

v2
T

uc
eR + vR

c

v

u

}
. (54)

4.3 Equation of motion

The gravitational acceleration from the Sun is −(μ/r2)eR. In order
to obtain the final equation of motion of the IDP, we sum the gravi-
tational acceleration from the Sun, equations (45) and (54) and we
obtain

dv

dt
= − μ

r2

(
1 − β − η

Q̄′
pr

β
u

c

)
eR −

(
1 + η

Q̄′
pr

)
β

μ

r2

×
(

2
vR

c
eR + vT

c
eT

)
+ η

Q̄′
pr

β
μ

r2

{
−γT

vT

c
eR

+ γT

(u

c
− vR

c

)
eT + 1

2

v2
T

uc
eR + vR

c

v

u

}
.

(55)

For the constant solar wind and the dust particle for which
(η/Q̄′

pr)(u/c)  1, we can neglect the solar wind pressure term
(η/Q̄′

pr)β(u/c)(μ/r2) eR with respect to the solar electromagnetic
radiation pressure term β(μ/r2) eR in equation (55). However, for
the (time-)variable solar wind (equation 47), the variable term

(η/Q̄′
pr)β(u/c)(μ/r2) eR can be dominant with respect to other vari-

able terms caused by the solar wind. Therefore, the term cannot be
neglected. Hence, we use equation (55) for the variable solar wind
and we use equation (55), with the neglected solar wind pressure
term, for the constant solar wind. For both the constant and the vari-
able solar wind, we can neglect the solar wind pressure term with
respect to the solar electromagnetic radiation pressure term when
calculating the orbital elements, if (η/Q̄′

pr)(u/c)  1. Therefore,
we introduce a new central acceleration −μ(1−β) eR/r2 for the cal-
culation of orbital elements (i.e. the gravitational acceleration from
the Sun reduced by the solar electromagnetic radiation pressure).

From equation (28) we can easily see that the mass-loss rate
per unit surface for a spherical dust grain is independent of the
particle radius. This is in accordance with the results of Whipple
(1955), Dohnanyi (1978) and Mukai & Schwehm (1981). Moreover,
equation (28) can be rewritten in a form describing the decrease of
the particle radius R:

dR

dt
= −K

r2

|u − v|
u

(1 − δ cos ϕ)2 ,

u = u0 (1 − δ cos ϕ) , δ = 0.15, u0 = 450 km s−1,

ϕ = 2π
t − tretard − tmax

T
, T = 11.1 yr, (56)

Here, K is a constant characterizing the decrease of the radius of
the particle; we also used equation (47) (see also the text between
equations 47 and 54). Equation (34) also has to be used: u = uû. We
can use equation (56) as an approximation to the process of erosion
of the particle because of the solar wind corpuscles. Because β is
a function of R (Q̄′

pr is also a function of R), equations (47), (55)
and (56) have to be solved simultaneously, together with the Mie
calculations, yielding Q̄′

pr for a given R.
The approximation of a constant flux can be described by the

approximations

η
.= η0 = 0.38, u

.= u0 = 450 km s−1. (57)

If we neglect the terms of the second order in v/u and the solar wind
pressure term in equation (55), the equation of motion of the dust
particle, under the action of constant radial solar wind (γ T ≡ 0) and
the P–R effect in the Sun’s gravitational field equation of motion, is

dv

dt
= − μ

r2
(1 − β) eR

−
(

1 + η0

Q̄′
pr

)
β

μ

r2

(
2
vR

c
eR + vT

c
eT

)
. (58)

An analytical approach to the solution of equations (47), (55)
and (56) is presented in Section 5. Detailed numerical solutions are
given in Section 6.

5 SE C U L A R E VO L U T I O N O F A PA RT I C L E ’ S
O R B I TA L E L E M E N T S U N D E R T H E AC T I O N
O F S O L A R R A D I ATI O N : A NA LY T I C A L
APPROACH

We have obtained the complete equation of motion in Section 4.
Our task in this section is to gain a qualitative understanding of the
orbital evolution of an IDP.
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950 J. Klačka et al.

5.1 Calculation of secular time derivatives of orbital elements

Let us use the perturbation equations of celestial mechanics in the
following forms:

daβ

dt
= aβ

1 − e2
β

{
2
√

pβ

μ (1 − β)

× [aReβ sin fβ + aT

(
1 + eβ cos fβ

)]
+ β̇

1 − β

(
1 + e2

β + 2eβ cos fβ

)}
;

deβ

dt
=
√

pβ

μ (1 − β)

×
[
aR sin fβ + aT

(
cos fβ + eβ + cos fβ

1 + eβ cos fβ

)]

+ β̇

1 − β

(
eβ + cos fβ

)
;

dωβ

dt
= −
√

pβ

μ (1 − β)

1

eβ

×
(

aR cos fβ − aT sin fβ

2 + eβ cos fβ

1 + eβ cos fβ

)

+ 1

eβ

β̇

1 − β
sin fβ. (59)

Here, pβ = aβ (1 − e2
β ), f β is the true anomaly of the IDP and ωβ

is the argument of perihelion of the particle’s orbit; the dot over
β denotes differentiation with respect to time. It is assumed that
the longitude of the ascending node is time-independent. The in-
dex β denotes that a quantity is calculated for central acceleration
−[μ(1 − β)/r2]eR. Other terms on the right-hand side of equa-
tion (55) with the neglected solar wind pressure term constitute the
non-gravitational disturbing acceleration. Moreover, aR and aT are
the radial and transversal components of the disturbing acceleration,
respectively. Equations (59) are consistent with equations (12) and
(14) of Klačka (1993a) and equations (32), (34) and (37) of Klačka
(1993b), if M = M	(1 − β). Using equation (55) and the following
expressions

vR =
√

μ (1 − β)

pβ

eβ sin fβ,

vT =
√

μ (1 − β)

pβ

(
1 + eβ cos fβ

)
, (60)

we obtain

aR = −2

(
1 + η

Q̄′
pr

)
β

μ

r2

√
μ (1 − β) /pβ

c
eβ sin fβ

+ η

Q̄′
pr

β
μ

r2

1

c

{
−γT

√
μ (1 − β)

pβ

(
1 + eβ cos fβ

)

+ μ (1 − β) /pβ

u

×
[

1

2

(
1 + 2eβ cos fβ + e2

β cos2 fβ

) + e2
β sin2 fβ

]}
,

aT = −
(

1 + η

Q̄′
pr

)
β

μ

r2

√
μ (1 − β) /pβ

c

(
1 + eβ cos fβ

)

+ η

Q̄′
pr

β
μ

r2

1

c

[
γTu − γT

√
μ (1 − β)

pβ

eβ sin fβ

+ μ (1 − β) /pβ

u
eβ

(
1 + eβ cos fβ

)
sin fβ

]
. (61)

We obtain the secular evolution of the orbital element g by the time
averaging of dg/dt over one orbital period P, i.e.〈

dg

dt

〉
≡ 1

P

∫ P

0

dg

dt
dt

= 1

a2
β

√
1 − e2

β

1

2π

∫ 2π

0
r2 dg

dt

(
fβ

)
dfβ. (62)

We have used the second and third Kepler laws

r2 dfβ

dt
=√μ(1 − β)pβ − dωβ

dt
− d�β

dt
cos iβ

.=√μ(1 − β)pβ

and

a3
β

P 2
= μ(1 − β)

4π2
,

where ωβ is the argument of perihelion and �β is the longitude of
the ascending node.

The quantity β̇ is a function of the radius R of the particle. Using
an approximation β = A/R + B, where A and B are constants for a
given particle, we can write

β = A

R
+ B,

dβ

dt
= − A

R2

dR

dt
= A

R2

K

r2
, (63)

if the dominant part of equation (56) is also used (δ = 0, |u−v| .= u).
If we apply equation (62) to equations (59) and (63), assuming

that the orbital elements and the β-parameter do not significantly
change during a particle’s revolution around the Sun, we obtain
(δ ≡ 0 is assumed)

daβ

dt
= −β

μ

c

2 + 3e2
β

aβ

(
1 − e2

β

)3/2

×
{

1 + η0

Q̄′
pr

[
1 − 2γT

1

2 + 3e2
β

u0√
μ (1 − β) /pβ

]}

+ 1

1 − β

A

R2
K

1 + e2
β

aβ

(
1 − e2

β

)3/2 ,

deβ

dt
= −β

μ

c

5eβ/2

a2
β

√
1 − e2

β

⎧⎨
⎩1 + η0

Q̄′
pr

×
⎡
⎣1 − 2

5
γT

1 −
√

1 − e2
β

e2
β

u0√
μ (1 − β) /pβ

⎤
⎦
⎫⎬
⎭

+ 1

1 − β

A

R2
K

eβ

a2
β

√
1 − e2

β

,

dωβ

dt
= − η0

Q̄′
pr

β
μ

c

1

a2
β

√
1 − e2

β

×
⎡
⎣γT

1 −
√

1 − e2
β

e2
β

− 1

2

√
μ (1 − β) /pβ

u0

⎤
⎦ . (64)
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Here, we have omitted the symbol 〈 〉 on the left-hand sides. Equa-
tions (64) hold, assuming η ≡ η0.

The acceleration caused by the solar wind was used in Klačka
et al. (2008) and Pástor et al. (2009a) without one term of the
second order in v/u, as follows from the covariant formulation and
equations (32) and (55). However, as we see, the new term does not
have any influence on the secular considerations in Klačka et al.
(2008) and Pástor et al. (2009a).

5.2 Complete set of differential equations for the secular
evolution of a particle’s orbital elements

We have obtained equations (63) and (64) for the secular evolution
of orbital elements. This set of differential equations has to be
completed by the equation for the secular evolution of the radius
of the particle. Using equations (56) and (62), we obtain (δ = 0,
|u − v| .= u)

dR

dt
= − K

a2
β

√
1 − e2

β

. (65)

The complete set of differential equations for the secular evolu-
tion of the orbital elements is represented by equations (63)–(65).
Initial conditions must be added to the set of differential equations. If
the particle is ejected from a parent body of known orbital elements,
then the particle’s initial orbital elements have to be calculated from
equations (60) and (61) in Klačka (2004).

If we also take into account the thermal change of the optical
properties of the spherical dust particle, then further changes of the
orbital elements also exist (secular changes of the semimajor axis
and eccentricity, perihelion motion). This would correspond to the
changes of parameters A and B in equation (63). We do not deal with
this case (see Klačka et al. 2007; Pástor, Klačka & Kómar 2009b).

5.3 Discussion

Let us consider the secular evolution of the semimajor axis aβ of the
particle’s orbit. If the P–R effect and the radial velocity component
of the solar wind are considered alone (i.e. γ T ≡ 0 and β̇ ≡ 0), then
equations (63)–(65) show that aβ is a decreasing function of time. If
we also take into account the non-radial velocity component of the
solar wind, or β̇ > 0, the situation might be different. The secular
value of aβ can be an increasing function of time. Thus, the effect
of the real solar wind can cause the particle to spiral outwards from
the Sun. (Similarly, the secular value of eβ can also be an increasing
function of time.)

5.4 Radial solar wind and decrease of particle’s radius

According to equations (28) and (56), the mass of the particle can
decrease. Equation (65) holds, assuming that the decrease of the par-
ticle’s radius is small enough during a particle’s revolution around
the Sun.

If we consider only the P–R effect and the time-independent
radial solar wind effect (γ T = 0), then we are able to calculate the
orbital eccentricity of the IDP as a function of the particle’s radius.
Using equations (64) and (65), we can immediately write

deβ

dR
= eβ

K

[
5

2

(
1 + η0

Q̄′
pr

)
β

μ

c
− 1

1 − β

A

R2
K

]
. (66)

Also using equations (44) and (63), equation (66) can be integrated
as follows:

eβ = eβin
A − (1 − B) Rin

A − (1 − B) R

(
R

Rin

)1+k2

× exp [k1 (R − Rin)] ,

k1 = 5

2

μ

c

B

K(μm au2 yr−1)
,

k2 = 5

2

μ

c

1

K(μm au2 yr−1)

[
A + η × 5.760 × 102


(
kg m−3

)
]

,

β(R) = A

R(μm)
+ B,

μ = 4π2 au3 yr−2, c = 6.3114 × 104 au yr−1,

η ≡ η0 = 0.38. (67)

The quantities A and R are given in μm and the subscript ‘in’ denotes
initial values.

In order to find the secular evolution of the semimajor axis aβ

and eccentricity eβ , we have to solve the following set of equations:
equation (63) for a given values of A and B, the equation for aβ in
equations (64), (65) and (67) (or the equation for eβ in equation 64
instead of equation 67).

5.5 Semilatus rectum and spiralling time for radial solar wind

From equation (64), we can also determine the secular evolution
of the semilatus rectum pβ of the particle’s orbit. When pβ =
aβ (1 − e2

β ), we can write〈
dpβ

dt

〉
= (1 − e2

β

)〈 daβ

dt

〉
− 2aβeβ

〈
deβ

dt

〉
, (68)

and using equations (64), with the symbol 〈 〉 omitted, we obtain

dpβ

dt
=
(
1 − e2

β

)3/2

pβ

×
[
−2

(
1 + η0

Q̄′
pr

)
β

μ

c
+ 1

1 − β

A

R2
K

]

+ 2γT
η0

Q̄′
pr

β
μ

c

u0√
μ (1 − β) /pβ

1 − e2
β

pβ

. (69)

Let us rewrite the equation for 〈deβ /dt〉 in the form (with the symbol
〈 〉 omitted)

deβ

dt
= eβ

(
1 − e2

β

)3/2

p2
β

×
[
−5

2

(
1 + η0

Q̄′
pr

)
β

μ

c
+ 1

1 − β

A

R2
K

]

+ γT
η0

Q̄′
pr

β
μ

c

u0√
μ (1 − β) /pβ

×
(

1 −
√

1 − e2
β

) (
1 − e2

β

)3/2

p2
βeβ

. (70)
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Now, let us consider only the P–R effect and the radial solar wind
effect. We put γ T = 0 into equations (69) and (70), and we obtain
the following equation from these equations:

dpβ

deβ

= pβ

eβ

[
−2

(
1 + η0

Q̄′
pr

)
β

μ

c
+ 1

1 − β

A

R2
K

]

×
[
−5

2

(
1 + η0

Q̄′
pr

)
β

μ

c
+ 1

1 − β

A

R2
K

]−1

. (71)

Equation (71) yields the relation

pβ = pβin

(
eβ

eβin

)4/5

, K ≡ 0, (72)

where pβin and eβin are the initial values of the semilatus rectum and
the eccentricity of the particle’s orbit, respectively. Equation (72)
can be considered as a generalization of the result obtained by Wyatt
& Whipple (1950); we have taken into account not only the P–R
effect, but also the radial solar wind effect. Equation (72) allows us
to write the equation for the secular evolution of eccentricity in the
form〈

deβ

dt

〉
= −5

2

(
1 + η0

Q̄′
pr

)
β

μ

c

e
8/5
βin

p2
βin

(
1 − e2

β

)3/2

e
3/5
β

,

K ≡ 0.

(73)

It is evident from equation (71) that, because of the P–R effect
and the radial solar wind, the particle is spiralling inwards to the
Sun, for K ≡ 0. The semimajor axis aβ and the eccentricity eβ

of the particle’s orbit converge to 0 (see equations 72 and 73, and
the relation between aβ , pβ and eβ ). Equation (73) can offer the
spiralling time of the particle with initial orbital elements aβin and
eβin into the orbit with orbital elements aβ and eβ . This time is given
by the relation

τ
(
eβin, eβ

) = −2

5

[(
1 + η0

Q̄′
pr

)
β

μ

c

]−1

a2
βin

×
(
1 − e2

βin

)2

e
8/5
βin

I
(
eβin, eβ

)
,

I
(
eβin, eβ

) =
∫ eβ

eβin

x3/5(
1 − x2

)3/2 dx,

K ≡ 0. (74)

The spiralling time of the particle into the Sun is then

τ
(
eβin, 0

) = − 2

5

[(
1 + η0

Q̄′
pr

)
β

μ

c

]−1

a2
βin

×
(
1 − e2

βin

)2

e
8/5
βin

I
(
eβin, 0

)
,

K ≡ 0. (75)

Let us consider two particles characterized by the values β1 and
β2. Moreover, let the particles have the same value of Q̄′

pr. If we
are interested in the times the particles remain within an interval of
the semimajor axes (alower, aupper), then equation (74) yields τ 1/τ 2 =
β2/β1, if the initial values of the semimajor axes and eccentricities
are equal for both particles. On the basis of equations (69) and
(70) (K ≡ 0), this result can also be approximately generalized to
the case of the constant non-radial solar wind effect, assuming β1,
β2  1.

Regarding the secular evolution, assuming that the particle’s
radius does not decrease, we have to solve only one differen-
tial equation (equation 73); equation (72) immediately yields the

semilatus rectum and we can easily obtain the semimajor axis
aβ = pβ/(1 − e2

β ).

5.6 Summary

Our analytical approach shows that the decrease of the particle’s
radius as a result of the solar wind abrasion (corpuscular sputter-
ing) can generate an increase of the particle’s semimajor axis and
eccentricity. This result is consistent with the detailed numerical
calculations presented by Kocifaj & Klačka (2008).

6 N U M E R I C A L R E S U LT S

In this section, we concentrate on the orbital evolution of the IDP
under the action of solar electromagnetic and corpuscular radiation.
Solar wind erosion is also taken into account. The results are based
on our new approach presented in Sections 2–4 and are compared
with the standard approach only when the radial solar wind with
constant η is taken into account.

6.1 Radial solar wind and particle erosion

Fig. 1 depicts the evolutions of the semimajor axis, eccentricity,
argument of perihelion and particle radius for two particles under
the action of the Sun’s gravitational field, the P–R effect and con-
stant radial solar wind. Evolutions are obtained from the numerical
solutions of equations (58) and (56) with δ ≡ 0. The values of
the orbital elements are calculated using the central acceleration
−μ(1 − β)eR/r2. This is denoted by the subscript β in Fig. 1. The
particles have an initial radius R = 3 μm, Q̄′

pr = 1 and mass den-
sity  = 2000 kg m−3. The initial conditions for both particles are
identical, aβin = 14 au, eβin = 0.5, ωβin = 90◦ and f βin = 0. The
particles differ only in the value of K. The particle whose evolution
is depicted by a solid line has K = 2 × 10−11 m au2 yr−1, which
corresponds to a silicate (Mukai et al. 2001). The particle whose
evolution is depicted by a dashed grey line has K = 0. For the first
particle, it is assumed that B = 0 in equation (63). This means that
Q̄′

pr is independent of the particle’s radius. This is a good approxima-
tion for larger dust particles (see van de Hulst 1981). The evolutions
of all orbital elements in Fig. 1 for these two different particles are
practically identical. Therefore, the effect of solar erosion does not
have a large influence on the evolution of orbital elements of μm-
sized silicate dust particles. Fig. 2 shows the eccentricity of the dust
particle as a function of the particle’s radius for two cases. The solid
black line corresponds to results of the numerical solution depicted
in Fig. 1. The dashed grey line corresponds to values obtained from
equation (67). The numerical and analytical approaches have a very
good agreement.

6.2 Non-radial solar wind

If we take into account an even more realistic description of the
solar wind, when its non-radial velocity component is considered,
the resulting orbital evolution differs from the cases discussed in
Section 6.1. Fig. 3 depicts two orbital evolutions of a dust particle
with β = 0.1, Q̄′

pr = 1 and K = 0 under the action of the solar wind.
The black line is used for the non-radial solar wind (γ T = 0.05, η =
0.38 and u = 450 km s−1 in equation 55 with the neglected solar
wind pressure term) and the grey line is used for the radial solar
wind (equation 58). The initial conditions for both evolutions are
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Solar wind and motion of dust grains 953

Figure 1. Evolutions of the semimajor axis, eccentricity, argument of perihelion and particle radius for two dust particles with initial radius R = 3 μm, Q̄′
pr = 1

and mass density  = 2000 kg m−3. In order to demonstrate the effect of solar wind erosion, we used particles with two different values of K. The first particle
has K = 2 × 10−11 m au2 yr−1 (solid black line) and the second has K = 0 (dashed grey line). The dependence of β on radius in equation (63) is characterized
by the condition B = 0. The second particle has a constant radius. The figures show that the effect of solar wind erosion has a negligible influence on the time
evolution of the particle’s orbital elements.

Figure 2. Dependence of orbital eccentricity on the particle’s radius for
K = 2 × 10−11 m au2 yr−1. The solid black line corresponds to the nu-
merical solution presented in Fig. 1. The dashed grey line is obtained from
equation (67). The results obtained with these two different methods are in
good agreement (i.e. the lines overlap).

identical: aβin = 27 au, eβin = 0.2, ωβin = 0 and f βin = 0. We can see
that the secular semimajor axis can also be an increasing function
under the action of the non-radial solar wind. This can easily be
understood using equations (64). The secular time derivative of the

semimajor axis can also be positive for γ T > 0. If

⎡
⎣ 1 + η0/Q̄

′
pr

2γT

(
η0/Q̄′

pr

)
u0

⎤
⎦

2

μ(1 − β) < aβ

1 − e2
β(

2 + 3e2
β

)2 , (76)

then the secular semimajor axis is an increasing function of time.
The left-hand side of this inequality is a constant and the function
(1 − e2

β )/(2 + 3e2
β )2 has maximal value for eβ = 0. Hence, the con-

dition for the minimal semimajor axis aβmin , for which the secular
time derivative of semimajor axis can be non-negative, is

aβ min =
⎡
⎣ 1 + η0/Q̄

′
pr

γT

(
η0/Q̄′

pr

)
u0

⎤
⎦

2

μ(1 − β). (77)

The secular semimajor axis is always a decreasing function of time
when aβ < aβmin . For the dust particle with β = 0.1 and Q̄′

pr = 1
and for the non-radial solar wind with γ T = 0.05, η0 = 0.38 and u =
450 km s−1, we obtain aβmin ≈ 20.8 au. If we use the parameters
of the numerical solution depicted in Fig. 3 by the black line, from
equation (64) we obtain 〈daβ /dt〉 ≈ 3.82 × 10−7 au yr−1, 〈deβ /dt〉 ≈
−4.67 × 10−8 yr−1 and 〈dωβ /dt〉 ≈ −3.63 × 10−8 deg yr−1. These
values are in accordance with the values obtained from the numerical
solution depicted in Fig. 3.
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954 J. Klačka et al.

Figure 3. Evolutions of the semimajor axis, eccentricity and argument of perihelion for a dust particle with β = 0.1 and Q̄′
pr = 1 under the action of the

non-radial solar wind (black line) and the radial solar wind (grey line). The semimajor axis can also be an increasing function of time when the non-radial
component of solar wind is taken into account.

6.3 (Time-)variable solar wind

The equation of motion for a dust particle in the plane of the so-
lar equator, represented by equation (55), also holds for the time-
dependent solar wind. In this section, we generalize the results
obtained in the previous two sections for a variable solar wind.
In order to find the influence of the variability of the solar wind
on the evolution of a particle’s orbits, we have numerically solved
equations (53) and (55). The results are depicted in Fig. 4. We have
used the dust particle with β = 0.1, Q̄′

pr = 1 and K = 0. To visualize
the differences, we have used four different equations of motion.
The solid black line is used for the numerical solution of equations
(53) and (55) with γ T = 0.05 and with the solar wind pressure term
included. The dashed black line is used for the constant non-radial
solar wind described by equation (55) with the solar wind pressure
term neglected. The solid grey line is used for the variable radial
solar wind (γ T = 0) described by equations (53) and (55) with the
solar wind pressure term included; the second-order terms in v/u
are neglected. Finally, the dashed grey line is used for the constant
radial solar wind described by equation (58). The initial conditions
for all four evolutions are identical: aβin = 7 au, eβin = 0.5, ωβin =
0 and f βin = 0. Fig. 4 shows that the evolutions of aβ and eβ are
slower for non-radial wind than for radial wind. This is because the
non-radial component of the solar wind velocity vector accelerates
the dust particle in the case of the prograde motion and γ T > 0.
If we compare the evolutions for a given type of solar wind (i.e.
radial or non-radial), we can see that the variability of solar wind
does not have a large influence on the evolution of the semimajor

axis and eccentricity. However, this is not true for the evolution
of the argument of perihelion. We concentrate on this topic in the
following section.

6.4 Resonances between particle’s orbital period and solar
cycle period

Fig. 4 also depicts the evolution of the argument of perihelion for
a variable solar wind. It shows that the secular decrease of the
argument of perihelion, theoretically consistent with equation (64)
(see the evolutions under the action of the constant solar wind in
Fig. 4), is characterized by abrupt changes. We can easily verify
that the semimajor axes during these changes correspond to the
semimajor axes for which the ratio of the particle’s orbital period P
and the solar cycle period T is equal to the ratio of two small natural
numbers. The semimajor axis of the dust particle in these orbits can
be calculated from

aβ =
[

μ(1 − β)

4π2

]1/3 (
T

pr

qr

)2/3

, (78)

where pr and qr are two natural numbers not equal to zero. When the
ratio of two periods corresponds to a ratio of two small natural num-
bers, these processes are well known in astrophysics as resonances.
For an exterior resonance pr/qr > 1, and we can write pr/qr = (jr

+ sr)/jr, where jr and sr are two natural numbers, called the res-
onant number and the resonant order, respectively. For an interior
resonance pr/qr < 1, and we can write pr/qr = jr/(jr + sr). For the
special case of a 1/1 resonance, the resonant order is equal to zero.
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Figure 4. Evolutions of the semimajor axis, eccentricity and argument of perihelion for a dust particle with β = 0.1, Q̄′
pr = 1 and K = 0. Four different

equations of motion are solved for equal initial conditions. The solid black line is used for the (time-)variable non-radial solar wind. The dashed black line is
used for the constant non-radial solar wind. The solid grey line is used for the variable radial solar wind. Finally, the dashed grey line is used for the constant
radial solar wind.

We can identify four resonances in Fig. 4, in both evolutions with
the variable solar wind. The resonances are pr/qr ∈ {3/2, 1/1, 1/2,
1/3}. The resonances can also have an influence on the evolution
of eccentricity. Such a situation is depicted in Fig. 5. We have used
the dust particle with β = 0.01, Q̄′

pr = 1 and K = 0. The initial
conditions are aβin = a1/1 0.01 + 0.15 au, eβin = 0.1, ωβin = 0 and
f βin = 0. Here, a1/1 0.01 is the semimajor axis of the dust particle’s
orbit calculated from equation (78) for pr/qr = 1/1 and β = 0.01.
The resonance between the orbital period and the solar cycle period
does not have such a stabilization effect on the evolution of the
semimajor axis as it occurs in the mean-motion resonance with a
planet.

In the conventional approach, the time-independent radial solar
wind is considered. Its action on a spherical IDP in the gravitational
field of the Sun and solar electromagnetic radiation is characterized
by a secular decrease of the particle’s semimajor axis and eccentric-
ity, and there is no shift of the perihelion of the particle. However,
the more realistic situation differs from the conventional approach.

6.5 Spiralling times for dust grains inside the Earth’s orbit

In the preceding sections, we have the presented possible cases of or-
bital evolutions under the action of a variable non-radial solar wind.
However, an orbital evolution can be characterized by more relevant
quantities. The speed of inspiralling towards the Sun is among these.
We wish to find the relevance of our physical solar wind model com-
pared with the conventional model, as for the evolution of an IDP.

We deal with the following situation. A set of spherical dust par-
ticles was numerically integrated in order to obtain their evolution
under the defined initial values of the orbital elements. The parti-
cles were initially ejected from a parent body with a semimajor axis
ain = 1 au and eccentricity ein ∈ {0, 0.2, 0.4, 0.6, 0.8} with zero
ejection velocity. The motions in the plane of the solar equator
were considered. The time variability of the solar wind does not
play a significant role in the inner part of the Solar system. When
the evolution of a dust particle with a semimajor axis aβ < 1 au
is considered, the time variability can be neglected. However, the
non-radial component of the solar wind velocity vector partially
enhances the spiralling time of the particle toward the Sun. The de-
tailed numerical calculations are summarized in Tables 1 and 2, for
two values of Q̄′

pr (e.g. 1 and 1/2). The gravity of the Sun, the P–R
effect (β = 0.01) and the time-independent solar wind (radial and
non-radial, γ T = 0 and 0.05) are considered. Tables 1 and 2 show
that the real inspiralling time is greater than the time corresponding
to the radial solar wind. The difference is greater than 21 per cent
(τ non−rad/τ rad = 1.212) for Q̄′

pr = 1 and ein = 0, or even greater than
38 per cent (τ non−rad/τ rad = 1.383) for Q̄′

pr = 1/2 and ein = 0. Qual-
itatively, this result is immediately evident from equations (64), if
K ≡ 0. The results presented in Tables 1 and 2 show that the ratio
τ non−rad/τ rad is a decreasing function of eccentricity: τ non−rad/τ rad =
1.212 for ein = 0.0 and τ non−rad/τ rad = 1.108 for ein = 0.8, if Q̄′

pr = 1,
or τ non−rad/τ rad = 1.383 for ein = 0.0 and τ non−rad/τ rad = 1.207 for
ein = 0.8, if Q̄′

pr = 1/2 and β = 0.01. This can easily be understood.
Equation (64) (K ≡ 0) shows that the decrease of the semimajor axis
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Figure 5. Evolutions of the semimajor axis, eccentricity and argument of perihelion for a dust particle with β = 0.01, Q̄′
pr = 1 and K = 0 under the action of

the variable non-radial solar wind. The variability of the solar wind can also change the evolution of eccentricity during the resonances.

Table 1. Spiralling time of a dust
grain towards the Sun ejected from
the perihelion of a parent body with
the semimajor axis ain = 1 au and
various eccentricities ein. The ejec-
tion velocity equals zero. The gravity
of the Sun, the P–R effect (β = 0.01,
Q̄′

pr = 1) and the time-independent
solar wind (radial and non-radial,
γ T = 0 and 0.05) are considered. The
variability of the solar wind with the
solar cycle does not change the pre-
sented results.

ein Spiralling time (104 yr)

PR+SW(R) PR+SW(NR)

0.0 3.00 3.54
0.2 2.83 3.33
0.4 2.37 2.76
0.6 1.64 1.87
0.8 0.75 0.82

is more rapid for greater values of eccentricity, and moreover the
influence of the solar wind’s non-radial component, with respect to
the radial component, is more important for lower values of particle
eccentricity. The effect of the non-radial component of the solar
wind is more important for smaller values of particle eccentricity
(i.e. surely in the vicinity of the Sun, but the spiralling towards the
Sun is very rapid for this zone because the corresponding values
of the particle’s semimajor axis are very small; see equation 64,
mainly daβ /dt).

Table 2. Spiralling time of a dust
grain towards the Sun ejected from
the perihelion of a parent body with
the semimajor axis ain = 1 au and
various eccentricities ein. The ejec-
tion velocity equals zero. The grav-
ity of the Sun, the P–R effect (β =
0.01, Q̄′

pr = 1/2) and the time-
independent solar wind (radial and
non-radial, γ T = 0 and 0.05) are con-
sidered. The variability of the solar
wind with the solar cycle does not
change the presented results.

ein Spiralling time (104 yr)

PR+SW(R) PR+SW(NR)

0.0 2.30 3.18
0.2 2.18 2.99
0.4 1.82 2.44
0.6 1.27 1.63
0.8 0.58 0.70

7 D I SCUSSI ON

We have derived the relativistically covariant equation of motion
for the action of solar wind corpuscles on the motion of an IDP. Re-
garding the spherical shape of the particles, the equation of motion
is represented by equation (30). It differs from the force conven-
tionally presented in the literature (although only to the first order
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in v/u):

Fsw = F ′
sw

[(
1 − 2ṙ

u

)
eR − rθ̇

u
eT

]
.

Here, v is the velocity of the grain v = ṙeR + rθ̇eT, u is the
heliocentric solar wind speed and F ′

sw is the force on the dust for
v = 0 (Minato et al. 2004, Section 2.1; the equivalent force is
presented in equation (7.10) of Mann 2009; see also Burns, Lamy
& Soter 1979, p. 12).

We have to stress that the standard form corresponds to equa-
tion (30), if we use the physically incorrect identity σ ′

tot = σ ′
pr (see

Appendix A) and x′ = 1 (the reality is 1 < x′ < 3, approximately).
Equation (30) yields the correct limiting result u → c equivalent to
the P–R effect.

Regarding the practical application of the physical results dis-
cussed above, equations (53)–(56) are astronomically relevant. The
decrease of the mass of the particle can cause the particle to spiral
outwards from the Sun and not towards the Sun, as is commonly
accepted for the solar wind action on an IDP. This result is evident
from the analytical equations presented in Section 5 (e.g. equa-
tion 59), and detailed numerical calculations confirming this result
can be found in Kocifaj & Klačka (2008).

In Section 6, we concentrated on the action of the solar wind on
the motion of an IDP for cases when the variable flux of the solar
wind energy and the non-radial solar wind velocity are considered.
Particle erosion does not have a large influence on the orbital evolu-
tion of μm-sized dust particles, if they are not in the close vicinity
of the Sun, if they do not consist of very volatile materials and if the
efficiency factor of radiation pressure Q̄′

pr of the particle does not
strongly depend on the particle’s radius. It is generally believed that
the shift of perihelion does not exist, for either the solar wind effect
or the P–R effect. However, the real action of the solar wind differs
from the action of the P–R effect: the P–R effect really produces
no shift of perihelion. Both constant and variable non-radial solar
wind can produce a shift of perihelion. However, if the dust parti-
cle is not in the close vicinity of the Sun, the shift of perihelion is
small, and in general it can be neglected. The non-radial solar wind
velocity can lead to outspiralling from the Sun, in the region of the
outer planets. The particle might or might not spiral towards the
Sun because of the simultaneous action of the P–R effect and solar
wind effect (see also Klačka et al. 2008). We have also found the
existence of resonances between the orbital period of the particle
and the solar cycle period. The constant non-radial solar wind can
also yield results that are different from the conventional approach
(constant radial wind), in particular for the speed at which the parti-
cle spirals towards the Sun. The effect of the non-radial component
of the solar wind on dust particle motion does not play an important
role in the inner parts of the Solar system. Inside the Earth’s orbit,
the non-radial component of the wind enhances the spiralling time
towards the Sun by less than 40 per cent in comparison with the
radial solar wind (if Q̄′

pr is greater than 1/2).

8 C O N C L U S I O N

We derive the relativistically covariant equation of motion for an
arbitrarily shaped dust particle under the action of solar wind. The
change of the particle’s mass is an indispensable part of the space–
time formulation of the equation of motion for the action of the
solar wind. The solar wind effect would reduce to the P–R effect,
in the limiting case when (i) the solar wind speed tends to the speed
of light, (ii) there is no decrease in the mass of the IDP and (iii)
the velocity of the solar wind is radial. However, the solar wind can

have a qualitatively different effect on the orbital evolution of an
IDP, because points (ii) and (iii) are not fulfilled, in general.

The secular evolution is given by equations (63)–(65) for the
time-independent solar wind. The decrease in the mass of the IDP
and the non-radial component of the solar wind velocity can cause
the particle to spiral outwards from the Sun. The solar wind (non-
radial or radial accurate to the second order in v/u) leads to the shift
of perihelion of the particle. The shift of perihelion caused by the
solar wind in the Solar system is low, but non-zero.

If we consider solar wind variability with an 11.1-yr solar cycle,
there are resonances between the orbital period of the dust parti-
cle and the solar cycle period. If the particle’s semimajor axis is
close to the resonant values, then the evolution of eccentricity and
the argument of perihelion can be significantly affected.

Our results could have important consequences for the orbital
evolution of dust belts/discs in the vicinity of stars with stellar
winds.
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Pástor P., Klačka J., Kómar L., 2009b, Celest. Mech. Dyn. Astron., 103,

343
Poynting J. H., 1903, Philos. T. R. Soc. Lond., Series A 202, 525
Reach W. T. et al., 1995, Nat, 374, 521
Robertson H. P., 1937, MNRAS, 97, 423
Robertson H. P., Noonan T. W., 1968, Relativity and Cosmology. Saunders,

Philadelphia
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APPENDIX A : TOTAL SCATTERING
CROSS-SECTION FOR A SPHERICAL DUST
PA RTIC LE

We use some sort of approximation to the hard-core scattering
problem, which corresponds to the limiting case of a short-range
potential V(r) = ∞ for r < R, V(r) = 0 for r > R (hard-core
potential; e.g. Iro 2002, p. 158). We consider the scattering of point
solar wind corpuscles from an almost hard sphere of radius R. In
the case of the infinitely hard sphere of radius R, ‘the dynamics
reduces to the laws of reflection at the surface of the sphere’ (Iro
2002, p. 158). The result of classical physics is the following: ‘In the
case of a finite-range potential, the total [scattering] cross section is
finite and gives the effective area of the potential. (This is actually
the definition of a finite-range potential.) For example, when point
masses are incident onto a hard sphere, σ ′

tot is the cross-section of
the sphere – only particles incident within that area are deflected.’
(Iro 2002, p. 161).

However, the correct physics for the incident electromagnetic
radiation suggests that the geometric cross-section might not lead
to correct results for the incident solar wind corpuscles (Klačka
2008a,b). Inspired by de Broglie’s idea about the wave characteristic
of massive particles, we can conclude that scattering by a hard
sphere at very high energies leads to the total scattering cross-
section

σ ′
tot = 2πR2, (A1)

and that ‘the classical total cross-section is just half of the quantum-
mechanical result in the limit of very short wavelength’ (Messiah
1999, pp. 393–395).

If we use some sort of approximation to the hard sphere, we can
use the total scattering cross-section given by equation (A1) in our
paper.

Regarding the comparison of the results obtained by quantum
(subscript ‘q’) and non-quantum (subscript ‘nq’) physics, we use
equation (26) or equation (30). The non-quantum approach uses
σ ′

tot = σ ′
pr = A′ = πR2:

(
dpμ

dτ

)
nq

= 1

c
A′S

αω

u

(
ξμ − x ′ U

μ

c

)
. (A2)

A comparison between equations (30) and (A2) yields (comparing
coefficients at ξμ and Uμ):

σ ′
pr = A′, (x ′)q = [(x ′)nq − 1

] σ ′
pr

σ ′
tot

+ 1. (A3)

Also, using equation (A1), we obtain

(x ′)q = 1

2

[
(x ′)nq + 1

]
. (A4)

The case
{

σ ′
pr = A′, σ ′

tot = 2A′
}

is analogous to the cases of

perfectly absorbing or reflecting spheres within the geometrical
optics approximation for electromagnetic radiation (Klačka 2008b).
This analogy also explains the importance of quantum physics in our
derivations – non-quantum physics would not yield correct results
in the limit u → c.

APPENDI X B: EMI SSI ON FROM THE
PA RTIC LE

The other possible force influencing the dynamics of a dust particle
might originate from an emission (e.g. radioactive decay). Let the
particle emit an energy E′

em per unit time due to the emission in
its proper reference frame. We suppose that this emission is repre-
sented by the flux of corpuscules with a speed u′

em. Furthermore, we
declare the orthonormal vector basis { f ′

j ; j = 1, 2, 3}, as used in
Section 2.2. The corresponding velocities are u′

em,j = u′
em f ′

j , j =
1, 2, 3.

The outgoing four-momentum of the emission per unit time, in
the proper reference frame of the particle, is

p′μ
em =

⎛
⎝ 1

c
E′

em;
1

c
E′

em

3∑
j=1

r ′
j

u′
em,j

c

⎞
⎠ , (B1)

where r ′
j (j = 1, 2, 3) are dimensionless coefficients expressing the

part of the total flux of radiation that is emitted in the corresponding
directions.

The Lorentz transformations of equation (A1) yield the following
outgoing four-momentum per unit time in the stationary reference
frame:

pμ
em = 1

c
E′

em

Uμ

c
+ 1

c
E′

em

3∑
j=1

r ′
j

(
ξ

μ
em,j − Uμ

c

)
, (B2)
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where

ξ
μ
em,j =

(
1

ωem,j

;
1

ωem,j

uem,j

c

)
,

ωem,j ≡ γ (v)
(

1 − v · uem,j

c2

)
,

uem,j =
[
γ (v)

(
1 + v · u′

em,j

c2

)]−1

×
[

u′
em,j +

{
[γ (v) − 1]

v · u′
em,j

v2
+ γ (v)

}
v

]
,

j = 1, 2, 3. (B3)

Thus, the expression on the right-hand side of equation (A2) should
be added to the right-hand side of equation (22) when we would
also like to take into account the effect of the emission from the
dust particle.
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