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ABSTRACT

We investigate the effects of potential sources of systematic error on the angular and photomet-
ric redshift, zpno, distributions of a sample of redshift 0.4 < z < 0.7 massive galaxies whose
selection matches that of the Baryon Oscillation Spectroscopic Survey (BOSS) constant-mass
sample. Utilizing over 112778 BOSS spectra as a training sample, we produce a photometric
redshift catalogue for the galaxies in the Sloan Digital Sky Survey eight data release imaging
area that, after masking, covers nearly one quarter of the sky (9913 deg?). We investigate fluc-
tuations in the number density of objects in this sample as a function of Galactic extinction,
seeing, stellar density, sky background, airmass, photometric offset and North/South Galactic
hemisphere. We find that the presence of stars of comparable magnitudes to our galaxies
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Ameliorating systematic uncertainties in w(6) 1351

(which are not traditionally masked) effectively removes area. Failing to correct for such
stars can produce systematic errors on the measured angular autocorrelation function, w(#),
that are larger than its statistical uncertainty. We describe how one can effectively mask for
the presence of the stars, without removing any galaxies from the sample, and minimize the
systematic error. Additionally, we apply two separate methods that can be used to correct for
the systematic errors imparted by any parameter that can be turned into a map on the sky. We
find that failing to properly account for varying sky background introduces a systematic error
on w(6). We measure w(6), in four zphe slices of width 0.05 between 0.45 < zpno < 0.65,
and find that the measurements, after correcting for the systematic effects of stars and sky
background, are generally consistent with a generic A cold dark matter model, at scales up to
60°. At scales greater than 3° and zne > 0.5, the magnitude of the corrections we apply is
greater than the statistical uncertainty in w(6). The photometric redshift catalogue we produce

will be made publicly available at http://portal.nersc.gov/project/boss/galaxy/photoz/.

Key words: methods: statistical — large-scale structure of Universe.

1 INTRODUCTION

Wide-field, multiband imaging surveys provide photometric red-
shift estimates for many millions of galaxies. Photometric redshifts,
Zphot» aT€ €asier to obtain than spectroscopic ones, Zgp., but the gain
in numbers of objects is countered by redshift uncertainties, o,
that are rarely better than o, = 0.03(1 + z). Such photometric
redshift surveys may be referred to as having ‘two + one’ dimen-
sions — nearly all of the radial clustering information is lost, but
the redshift errors are small enough to allow two-dimensional clus-
tering measurements in redshift shells of width similar to o,. This
strategy has been utilized to explore the formation and evolution
of galaxies (see e.g. Blake, Collister & Lahav 2008; McCracken
et al. 2008; Ross & Brunner 2009; Ross, Percival & Brunner 2010;
Ross, Tojeiro & Percival 2011a; Wake et al. 2011) and quasars (e.g.
Myers et al. 2006), and also to measure cosmological parameters
(see e.g. Blake et al. 2007; Padmanabhan et al. 2007; Ross, Brunner
& Myers 2008; Thomas, Abdalla & Lahav 2010, 2011a; Crocce
et al. 2011b). Such studies are gaining in importance, as future sur-
veys such as The Dark Energy Survey' (DES), the Large Synoptic
Survey Telescope? (LSST) and the Panoramic Survey Telescope
& Rapid Response System® (Pan-STARRS) will rely primarily on
photometric redshifts.

At the largest scales, the accuracy of clustering measurements is
not critically dependent on the uncertainty of each zyho. However,
contaminants or incorrect calibrations do matter at these scales —
the predicted clustering amplitudes are negligible; systematic errors
can cause small fluctuations and thus non-zero amplitudes. Studies
(see e.g. Sawangwit et al. 2009; Thomas, Abdalla & Lahav 2011b)
have found apparent excesses in the clustering strength at scales
larger than 100 42~' Mpc. Thorough studies are thus necessary to
determine any potential sources of systematic error that could cause
spurious fluctuations in the galaxy density field.

In this paper, we investigate the observational realities that may
cause fluctuations in the observed density of galaxies when mod-
elled incorrectly. These include stellar contamination and masking,
Galactic extinction, sky brightness, seeing, airmass and offsets in

Uhttp://www.darkenergysurvey.org
2 http://www.Isst.org/Isst
3 http://pan-starrs.ifa.hawaii.edu/public
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photometric calibration. The effect of stellar contamination in a
galaxy sample is well documented (see e.g. Myers et al. 2006;
Thomas et al. 2011b; Crocce et al. 2011b). Stars may also cause a
systematic effect on the number density of objects by occulting a
small fraction of the sky. This area is of the order of 1 millionth of
a square degree per star, but with tens of millions of stars, becomes
substantial, given the precision to which clustering measurements
can now be made.

Galactic extinction requires that magnitudes be corrected for the
effect of dust in our Galaxy. It has been noted several times (e.g.
Scranton et al. 2002; Myers et al. 2006; Ross, Brunner & Myers
2006; Ho et al. 2008; Wang & Brunner, in preparation) that errors in
this correction may cause a systematic effect on the galaxy density
field, as the effective depth of a survey would fluctuate. Further, con-
stant (extinction-corrected) magnitudes have different fluxes (since
the flux is directly related to the magnitude before extinction cor-
rections). This implies that the expected magnitude error will vary
as a function of the Galactic extinction. Airmass has a similar effect
— this simply refers to the path-length of the photons through our
atmosphere to the telescope, normalized to unity for observations
at the zenith where it is minimized. At higher airmass, less photons
reach the detector because more are scattered/absorbed in the atmo-
sphere and thus the error on a measured magnitude will be related
to the airmass. Finally, the observed flux of an object is more spread
out at higher seeing — this increases the magnitude error and makes
it more difficult to distinguish between stars and galaxies. Either of
these seeing-dependent effects could cause spurious fluctuations in
the observed density of galaxies.

We use data from the Sloan Digital Sky Survey (SDSS; York et al.
2000) eighth data release (DR8; Aihara et al. 2011) to identify and
remove potential sources of systematic error on the angular cluster-
ing of objects selected to be luminous galaxies (LGs) with redshifts
0.4 < z < 0.7. Section 2 presents the data we use for our photo-
metric redshift catalogue and the spectroscopic data we use to train
the photometric redshifts we generate. Section 3 describes how we
measure and model angular correlation functions. In Section 4, we
investigate the fluctuations we find in the observed number density
of LGs as a function of observational parameters and correct for the
systematic errors these variations may impart. Section 5 explains
how we train the photometric redshifts, the potential systematic
effects we consider for this training, and the resulting photomet-
ric redshift catalogue that we generate. In Section 6, we present
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1352  A. J. Ross et al.

measurements of angular auto- and cross-correlation functions in
slices of width Az = 0.05, test their consistency with a generic
A cold dark matter (ACDM) model, and determine how the galaxy
bias we calculate changes depending on the corrections we apply.
We conclude with a summary of our results and a discussion of its
greater implications in Section 7.

2 DATA

We use imaging data from the SDSS DRS8 (Aihara et al. 2011)
to create a photometric redshift catalogue of galaxies. This survey
obtained wide-field CCD photometry (Gunn et al. 1998, 2006) in
five passbands (u, g, r, i, z; e.g. Fukugita et al. 1996), amassing
a total footprint of 14 555 deg? data for which object detection is
reliable to r ~ 22 (Aihara et al. 2011).

We use spectroscopy from the SDSS-III Baryon Oscillation Spec-
troscopic Survey (BOSS; Eisenstein et al. 2011) to obtain the spec-
troscopic redshifts, zgc, We use as a training sample for our photo-
metric redshift catalogue. The BOSS is a spectroscopic survey that
will target 1.5 million massive galaxies, 150 000 quasars and over
75 000 ancillary targets over an area of 10 000 deg? (Eisenstein et al.
2011). BOSS observations began in 2009, and the last data will be
acquired in 2014. The BOSS spectrographs (R = 1300-3000) are
fed by 1000 fibres in a single pointing, each with a 2 arcsec aperture.
Each observation is performed in a series of 15-min exposures and
integrated until a fiducial minimum signal-to-noise ratio is reached.
This ensures an isotropic sample, complete to high redshift (z ~
0.7), resulting in a redshift completeness of ~97 per cent over the
full imaging footprint.

2.1 Selecting imaging and redshift data

Our photometric catalogue has the same selection as the sample of
BOSS targets chosen to have approximately constant stellar mass,
denoted by ‘CMASS?’, as described by Eisenstein et al. (2011). We
select objects from the Catalog Archive Server (CAS) PhotoPrimary
table* identified as galaxies. We designate the subscript g to denote
the SDSS uber-calibrated model magnitudes (Padmanabhan et al.
2008). The subscript «moa denotes cmodel magnitudes, where the
cmodel flux, ® 04, 1s defined as

Demod = fpsf Dyey + q>cxp(1-0 - fpsf)a (D

where ® is the flux, the subscripts 4.y and ., refer to the best-fitting
de Vaucouleurs and exponential profiles, and fp is the fraction
of the flux within the point spread function (PSF). The CMASS
selection is then defined by

17.5 < icmoa < 19.9, 2)
Tmod = Imod < 2, 3
d, > 0.55, “
iy < 21.7, ®)
icmod < 19.86 4 1.6(d; — 0.8), 6)

4 See http://skyserver.sdss.org/dr8/en/help/browser/browser.asp for descrip-
tions of the data contained within this table.

where all magnitudes are corrected for Galactic extinction, igy, is
i-band magnitude within a 2-arcsec aperture,’ and

dL = T'mod — imod - (gmod - rmod)/g-o- (7)

Stars are further separated from galaxies by only keeping objects
with

Ipst — imod > 0.2 +0.2(20.0 — ipoa), (8)
Zpst — Zmod > 9.125 — 0.4621m04, )
unless the object passes a ‘LOWZ’ cut defined by

Temod < 13.6 +¢;/0.3, (10)
lci] <0.2, an
16 < remoa < 19.6, (12)
where

¢ = 0.7(gmod — Fmod) + 1.2(rmod — fmoa — 0.18) 13)
and

€1 = Fmod — Imod — (§mod — 'moda)/4.0 — 0.18. 14

These target selection criteria produce a sample of just over
1.6 million objects, occupying over 11000 deg? of area on the
sky. We refer to these objects as ‘LGs’. We cut this sample down
to the main SDSS imaging area. We define this area as the data
contained in HEALPix (Goérski et al. 2005) pixels at Ngg. = 1024
(this resolution breaks the full sky into 12 582912 equal-area pix-
els). Each pixel is assigned a weight, given its overlap with the
imaging footprint (accounting for the area taken up by bright stars),
and we include only pixels with weight at least 0.9. This process
is described in detail in Ho et al. (in preparation). Further, we only
use data with seeing (defined by the r-band PSF-FWHM, where
FWHM stands for full width at half-maximum) less than 2.0 arcsec
and Galactic extinction, E(B — V) < 0.08, as determined via the
dust maps of Schlegel, Finkbeiner & Davis (1998). These cuts re-
move a large fraction of the data, leaving only 1065 823 objects.
Their footprint is displayed in Fig. 1: 9913 deg?, 2554 of which
are in the southern stripes. A total of 282 687 of the objects are in
the southern stripes, meaning their number density is 110.7 deg2,
while the number density in the north is 107.1 deg™> — a 3.4 per
cent difference.

We match the masked LGs to the BOSS CMASS spectra that
had been observed and run through the spectroscopic pipeline up to
2010 November 11. This yielded a sample of 112 778 spectroscopic
redshifts that are used to estimate photometric redshifts for our full
sample. We find that 3.7 per cent of these spectroscopic objects are
either stars or quasars (2.7 per cent stars and 1 per cent quasars).
The percentage of quasars should be roughly constant across the
sky, but the stellar contamination will be highly dependent on the
proximity to the Galactic disc and centre. We find that the percentage
of stars varies from 6 per cent at Galactic latitude b = 25° to 1 per
cent at b = 85°. Masters et al. (2011) find 24-/—1 per cent point-
source contamination by inspecting high-resolution Hubble Space
Telescope images of BOSS CMASS targets in the COSMOS field
(at b = 42°).

We also use stars to investigate systematic effects. We select
objects from PhotoPrimary that are identified as stars and have

5 'We use an ifib2 limit of 21.7; although the limit has changed to 21.5 in
current BOSS targeting, the limit was <21.7 for all of the BOSS spectra in
this study.

© 2011 The Authors, MNRAS 417, 1350-1373
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Figure 1. The density of objects in our catalogue, in equatorial coordinates (left-hand panel) and Galactic coordinates (right-hand panel), after masking for
the imaging area, seeing, Galactic extinction and bright stars. This masked footprint occupies 9913 deg?. The density increases from blue to red, with blue
representing a density that is less than 40 per cent of the average and red representing a density that is 120 per cent greater than the average.

17.5 < imoa < 20.5. In total, this is over 84 million objects, but only
33 million reside within our masked footprint.

2.2 Star/galaxy probability

For the sample of BOSS spectra we use, 3.7 per cent of objects that
are targeted as CMASS galaxies are spectroscopically classified as
either stars or quasars. We use the software package ANNz® (Firth,
Lahav & Somerville 2003) to identify stars, as in previous studies
(e.g. Collister et al. 2007). Assigning galaxies a value of 1 and
stars/quasars a value of zero, we divide our spectroscopic sample
such that one quarter are placed into a training set, another one
quarter into a validation set and the remaining half into a testing
set. We then train ANNz in order to classify galaxies, using the five
SDSS model magnitudes and the parameters icmod, ipsts Ifib2s fexps
Rpet,iv Rdev,iy Rexp,iv ABdev,ia ABexp,i, In Lstary In Lexp and In Ldevv where
R is the radius, AB is the axial ratio, the subscript p refers to the
best-fitting Petrosian profile, and ‘In L’ stands for the natural log
of the likelihood. The values ANNz returns, which we denote by
‘pse’, are predominantly between 0 and 1, and when they are outside
these bounds, we set them to 0 and 1, respectively. (This affects only
1 per cent of the objects and does not bias the overall probability
distribution.)

We find that the star/galaxy training also does a good job of esti-
mating the probability that an object is a galaxy. Fig. 2 displays the
fraction of objects that are galaxies (‘pga’, as determined from their
spectra) versus the value of the star/galaxy parameter, py,. These
two quantities are nearly identical, as can be seen by comparing to
the dashed line. This implies we can treat p, as the probability that
an object is a galaxy, allowing us to remove most of the effect of
the stellar contamination. We note that the py, estimation benefits
greatly from having a large training set distributed over 2123 <
|b| < 8325 (less than 4 per cent of the objects in our catalogue

© http://www.homepages.ucl.ac.uk/~ucapola/annz.html

© 2011 The Authors, MNRAS 417, 1350-1373
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Figure 2. The fraction of objects that are galaxies versus the value of
the star/galaxy parameter (psg). The dashed line displays the relationship
Pgalaxy = Psg- Errors are Poissonian.

lie outside these bounds). Unless otherwise noted, throughout we
will be counting LGs by summing their values of pg. For our
full (masked) sample, the sum of p, is 1021 885, suggesting that
4.1 per cent of the objects are stars or quasars.

3 MEASURING AND MODELLING
CORRELATION FUNCTIONS

The primary focus of this work is to determine how systematics
may affect the measured clustering signal. Therefore, we measure
angular auto- and cross-correlation functions, w(9), of the density
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1354 A. J. Ross et al.

fields of LGs and of potential systematics. These statistics can be
calculated extremely quickly’ and can be compared to cosmological
models that are well tested by simulation.

3.1 Estimating w(#) and its covariance

We calculate w(6) using HEALPix pixels with Ng4. = 256. Our
mask has removed all data in pixels with weight < 0.9 at the N4, =
1024 resolution. Thus, given that the weights themselves are a good
approximation of the fractional area of a pixel, the area per pixel
for Ngge = 256 is well approximated by its weight, wt, multiplied
by the area of the pixel. Therefore, the overdensity in pixel i, §;, is
given by

8,’ =n,-/(ﬁwt,~)—l, (15)

where n; is the number of galaxies in pixel i. For LGs and stars,
i = > n;/> wt;, while for observational parameters (such as
Galactic extinction), 7 = > A;wt;/ Y wt;, where A; would be
the average value of the observational parameter in pixel i. The
correlation function, w(#), is given by (see e.g. Scranton et al.
2002)

zi,j S?S?Gi,j(e)wt,-wtj

an(8) =
v Yb( ) Zi,j @,»,j(G)wt,-wt_,-

(16)

where ©;; is equal to 1 if pixel i is at an angular distance 6 & Af
from pixel j and zero otherwise, a = b represents an autocorrelation
function, and a # b represents a cross-correlation function.

In order to compare w(#) measurements, we calculate jack-knife
erTors, Ojsck. We use 20 equal-area jack-knife regions. This is ac-
complished by selecting contiguous regions of HEALPix pixels
whose weights sum to 1/20th of the total. The jack-knife errors are
defined by (see e.g. Scranton et al. 2002; Myers et al. 2007; Ross,
Brunner & Myers 2007)

=20

19
@) = 55 D [w®) —wi@O)F, (17)
i=1

where w(#) is the measurement over the entire area and w;(0) is the
measurement when the ith jack-knife region is removed.

We calculate the covariance matrix that we use to compare our
w(f) measurements to theoretical models by transforming theo-
retical P(k) to angular power spectra, and from the covariance of
the angular power spectra to the w(6) covariance, C(6,, 6,). The
methods for doing this are outlined in, for example, Crocce, Cabré
& Gaztafiaga (2011a) and Ross et al. (2011b). Specifically, C(0;,
0,) is given by equations (13)—(16) of Ross et al. (2011b), using
a linear P(k). Crocce et al. (2011a) have extensively tested these
errors against mock catalogues, finding them to accurately repro-
duce the covariance in w(f) at linear scales, and we restrict this
study to those scales. Further, at the large scales, estimations of the
oft-diagonal elements of the covariance matrix constructed using
jack-knife methods have large statistical uncertainty and can there-
fore lead to unstable covariance matrices. Thus, we compare our
measured w(#) to the model w(f) and C(8;, 6,) in order to find
the best-fitting model. In Section 6, we compare the theoretical and
jack-knife uncertainties.

7 Approximately, 15 min of total processing time using a single 2.53-GHz
processor.

3.2 Modelling

We compare our measurements to theory, assuming a flat ACDM
cosmology with h = 0.7, Q,, = 0.274, f, = Qu,/2y, = 0.18,n =0.95
and og = 0.8 (as used in White et al. 2011), and a cosmic microwave
background temperature of 2.725 K. We calculate the z = O linear
power spectrum using cams® (Lewis, Challinor & Lasenby 2000).
We account for the effects of structure growth via (see e.g. Seo &
Eisenstein 2005; Crocce & Scoccimarro 2006)

Pk, 7) = D(z)* P(k, 0) e koD@ (18)

where D(z) is the linear growth rate; the exponential term accounts
for the damping imparted by large-scale velocity flows. We derive
sp = 5.27 h~! Mpc using the Zel’dovich approximation (Eisenstein,
Seo & White 2007) for our fiducial cosmology. Such an approx-
imation has been shown to be a good fit to the baryon acoustic
oscillations feature in recent N-body simulation results (see e.g.
Seo et al. 2010).°

Given P(k, z), we Fourier transform to determine the isotropic
three-dimensional real-space correlation function &j;,(7) (which is
implicitly dependent on redshift). We then incorporate the effects
of mode-coupling (see e.g. Crocce & Scoccimarro 2008; Sanchez,
Baugh & Angulo 2008; Crocce et al. 2011a) via

E(r) = Ein(r) + Amckly) (NEL (), (19)
where &/ is the derivative of &}y,
1
=5 | P.iiknkdk, (20)

and for A, we use the value of 1.55 determined by Crocce et al.
(2011a).

We model the redshift-space correlation function as (Hamilton
1992)

&, 1) = Eo(r) Po(u) + &2(r) Pa() + Ea(r) Paln), 2D

where
2 2 1 2

o(r) = (b + gbf+ gf > £(r), (22)
4 4 , ,

&(r) = 3 f+ 7f (E(r) =&, (23)

S()—i g S()+§E/()—z$”() 24

4(r) = 35f r > r 5 i,

P, are the Legendre polynomials,

e=3 [ a0, @5)
0

g =5r" / ré(r’)(r/)4dr/, (26)
0

b is the large-scale bias of the galaxy population being considered
and u is the cosine of the angle to the line of sight. In order to
calculate model w(#), we must project £°(u, r) over the radial
distribution of galaxy pairs in a particular sample (or samples in the
case of cross-correlations):

w(e) = / az, / dzam(zon ()€ [ 10, 20, 22)]. @7)

8 See http://camb.info
9 This damping scale corresponds to 7.45h~! Mpc, using the convention
used in Eisenstein et al. (2007).

© 2011 The Authors, MNRAS 417, 1350-1373
Monthly Notices of the Royal Astronomical Society © 2011 RAS

202 UdJBIN 0Z U0 158NB AQ GGG¥86/0SE |/2/. | #/aI01HE/SEIUW/WOD dNO"OILUSPEDE//:SARY WO} POPEOJUMOC]



Ameliorating systematic uncertainties in w(6) 1355

where n; is the normalized redshift distribution of sample i (and i =
Jj for the autocorrelation). The galaxy separation r is a function of
the angular separation of the galaxies, 6, and their redshifts z; and
72 (asis ).

3.3 Correcting spurious clustering

Observational effects may cause spurious fluctuations in the number
of observed LGs. As first derived (for large-scale clustering) in Ho
et al. (in preparation), to first order, the systematic effect contributed
by i observational parameters on the observed density field is given
by

82 =08, + Z €5, (28)

where 8; is the overdensity of galaxies we observe, §; is the over-
density of the systematic i, 8; is the true overdensity of galaxies and
€; assumes a linear relationship between the potential systematic
and its effect on the observed overdensity of galaxies. According to
equation (16), w(0) = (8;6;0,;(0)). Thus,

wi(©) = wO) — > wi(®) — Y 2€€;w; ;(0) (29)
i i j>i
and
we, = €w; j(6). (30)
J

We can measure wy(6) (the autocorrelation function of our galaxy
sample), wy ; (the cross-correlation function of our galaxy sample
with systematic i) and w;;(@) (the auto-/cross-correlation function
of the systematics). Thus, we always have i + 1 equations and
unknowns [e; and w‘g(Q)] and we can therefore solve for w;(e).
We present the solutions for three systematics in Appendix B. We
note that measuring the cross-correlation between observational
parameters and galaxies in order to identify potential systematic
errors has been applied to SDSS data since its early-data release
(Scranton et al. 2002).

4 SYSTEMATIC EFFECTS ON THE ANGULAR
DISTRIBUTION OF GALAXIES

Effects such as seeing, Galactic extinction and sky brightness may
affect the number density of galaxies we select. Another important
consideration is the presence of foreground objects. As shown in
fig. 4 of Aihara et al. (2011), the presence of foreground objects has
a significant effect on the number density of background objects
one is able to detect.

4.1 Foreground stars

In order to investigate the effect of foreground stars on the observed
density of LGs, we determine the number density of LGs in the
immediate vicinity of stars within our masked footprint. In annuli of
width 1 arcsec around each star, we determine the number density
of LGs as a function of the maximum radius of the annulus. In
the top left-hand panel Fig. 3, we present this measurement when
considering stars with 17.5 < inoa < 19.9 and dividing the LG
sample into five i.,0q bins. We find that the presence of a star has a
significant effect on the ability to observe LGs with i¢poq > 18.5 out
to at least 10 arcsec (we note that there are only 22 000 LGs with
iemod < 18.5, making the results in this bin relatively uncertain). The
effect remains nearly constant as a function of the i.;,oq magnitude,
but it is strongest for the faintest sample (displayed in orange).

© 2011 The Authors, MNRAS 417, 1350-1373
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We also find that for i < 20.1, the i-band magnitude of the star
does not produce a strong effect. This is shown in the top right-
hand panel of Fig. 3, where we take the full LG sample and find the
number density of these objects around six separate samples of stars
that we have divided, based on model magnitudes, into bins between
19 < i < 20.5. We find similar results for the bins with 19 < i < 20.1
(the black, red, blue and green points and lines). The effect becomes
significantly weaker for stars with 20.1 < i < 20.3. For the 20.3 <
i < 20.5 bin, the effect is removed when the annuli have outer radii
of at least 5 arcsec. When the outer radii are 3 and 4 arcsec, there
is an excess of LGs. It is possible that this excess is caused by
(resolved) binary stars — many stars are members of binary systems
and thus there is an enhanced likelihood that an object within a
few arcseconds from a star is also a star and therefore the stellar
contamination rate in our LG sample will be higher around stars.

We find a deficit of LGs around stars with i,,q < 20.3 to at
least 10 arcsec from the star. This suggests that the extended seeing
disc of a star increases the sky noise in its vicinity and therefore
makes object detection less likely. This implies that the effect should
depend both on the seeing during the observation and the surface
brightness of the object that might be detected. In the bottom left-
hand panel of Fig. 3, we use the full LG sample and stars with
17.5 < i < 19.9 and divide the imaging area into six regions based
on seeing (we note the median seeing in our masked footprint is
1.07 arcsec). As expected, we find that the deficit of LGs close to
stars becomes greater as the seeing becomes more poor. However,
there is still a significant deficit of LGs close to stars at all levels of
seeing.

In the bottom right-hand panel of Fig. 3, we find the number
density of LGs around stars with 17.5 < i < 19.9 when we divide
the LGs into six bins based on the iz, magnitude of the LG. We
find dramatic differences, as we find a large excess for the bright-
est LGs (black, igyy < 20.5) and the largest deficit for the faintest
LGs (magenta, ig,, > 21.5). The iz, magnitudes are a measure
of the flux within a constant aperture and are therefore a measure
of the surface brightness of the LG. Thus, as expected, we find
that the presence of a star has the greatest effect on the objects
with the lowest surface brightness. We find a large excess of LGs
with igy, < 20.5 between 2 and 5 arcsec from stars. We believe
this excess caused by binary companions to the stars we are testing
against, as the most compact objects will have the highest surface
brightness (at constant i,,,4) and are also most likely to be morpho-
logically similar to stars.

Fig. 3 suggests that every star effectively removes a small amount
of the imaging area. If this effect is not corrected for, we would ex-
pect an anticorrelation between LGs and stellar density. However,
4 per cent of the objects in our catalogue are stars, implying
that, with no correction, there should be a positive correlation
between LGs and stellar density. The bottom left-hand panel of
Fig. 4 presents the relationship between LG density and the density
of stars selected from the DR8 with 17.5 < ipq < 19.9. When
we equally weight every object (black), we see a slight decrease
(~3 per cent across the full range) in the number of objects as
the stellar density increases. This suggests the foreground presence
of stars (which removes objects from our catalogue) dominates
over the increase in objects we select (erroneously) as galaxies
due to stellar contamination. If we instead weight each object by
the probability that an object is a galaxy, ps, (as estimated in Sec-
tion 2.2; red), we find a significant and monotonic decrease (totalling
10 per cent) in the number of LGs as a function of stellar density.
The upper portion of the bottom left-hand panel of Fig. 4 dis-
plays the fraction of our (masked) imaging area where the number
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Figure 3. The number density of galaxies we select around stars with 17.5 < imeq < 19.9 (unless otherwise noted), divided by the average number density, in
1-arcsec-wide annuli, plotted against the maximum radius of the annulus. The top left-hand panel displays the results when we divide the galaxy sample into
the noted icmoa magnitude bins. The top right-hand panel displays the case where we use the full galaxy sample and find the number densities around stars
within the noted i-band magnitude bins. In the bottom left-hand panel, we display the results when the imaging regions are restricted to lie within the labelled
seeing bounds. In the bottom right-hand panel, we divide the LGs into bins based on their i-band magnitude within a 2 arcsec aperture (ify2). Errors are Poisson.

density of stars is below ngy,,. It shows that the majority of the data
(60 per cent) have ng, < 2000 deg?, but there are still data (5 per
cent) with ng,, > 6000 deg?.

Foreground stars appear to remove area from the survey. Integrat-
ing 27t[1 — n/n,.(60)]6, we can estimate the effective area lost per
star due to the occultation effect. For the stars with 19.3 <i < 19.6,
this yields an effective area of 67.2arcsec? and thus an effective
radius of 4.6 arcsec.

Alternatively, we can assume that each star removes an effective
area, which we denote by ‘Ag,.’, and we determine Ay, by finding
the radius, ry,,, which makes the values displayed in the bottom
left-hand panel of Fig. 4 closest to 1. We find that x2, using Poisson
errors and the model 71 /7i,,; = 1, is minimized for ry, = 9.48 arcsec.
This rg,, is determined using only stars with 17.5 < i < 19.9. Fig. 3
suggests that stars with i-band magnitudes as faint as 20.3 have an
effect, and there are an additional 6.3 million stars with 19.9 < i <
20.3 within our footprint. Scaling r,, to account for these additional
stars yields an effective circular area of radius of 8.44 arcsec. This
is still far greater than the value of ~5arcsec we expect based
on integrating 27t[1 — n/n,,.(0)]0, given the n/n,,.(6) relationships
displayed in Fig. 3. Thus, the 7 /7 (ns.r) relationship (displayed
in the bottom left-hand panel of Fig. 4) is stronger than one might
expect, suggesting there are additional effects due to stellar density
beyond the occultation effect. This issue is studied in further detail
using the BOSS spectroscopic sample in Ross et al. (in preparation).

We proceed by assuming each star effectively masks an amount
of area consistent with 71 /71, (ng,) = 1. For our full LG sample
and stars with 17.5 < i < 19.9, we determined r, = 9.48 arcsec.
This radius implies that stars are effectively removing a total area of
500 deg?, which is 5 per cent of our masked footprint. The resulting
71 /it (Nsar) Telationship is displayed in blue in the bottom left-hand
panel of Fig. 4. We note that this effective radius is likely to depend
on the magnitudes of the LGs, so any subsets of the data are likely
to have different ry,,.

The relationship between galaxy density and stellar density is
important, due to the fact that stars display significant clustering
on large angular scales (see e.g. Myers et al. 2000); the stars may
therefore affect the measured clustering of galaxies at large physical
scales. The autocorrelation function, w(6), calculated as described
in Section 3.1, of stars (with 17.5 < i < 19.9) is displayed in black
triangles in the top panel of Fig. 5. The amplitudes are significant
and exhibit a monotonic decrease from ~0.4 at 6 = 1° to ~0 at
0 = 50°. The cross-correlation of the stars with the py,-weighted
LGs, displayed in black triangles in the bottom panel of Fig. 5,
is significant and negative and increases towards O in a manner
that mirrors the decrease in the star autocorrelation function. This
implies that if it is unaccounted for, the presence of stars will cause
systematic errors on the measured large-scale clustering of LGs.

We note that foreground stars will be a problem for any current
or future large-scale-structure surveys, and the problem will only

© 2011 The Authors, MNRAS 417, 1350-1373
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Figure 4. Each of the six panels is divided such that the bottom portion displays the number density, divided by the average number density, as a function of
the observational parameter. Individual points are connected by the solid lines and represented by the error bars, whose size is calculated assuming Poissonian
statistics. Black represents equally weighted LGs (which can be both galaxies and stars) and red weighting each LG by the probability that it is a galaxy, psg.
The results plotted in blue show the scenario when we weight each LG by ps, and subtract the effective area of stars, Ay, from each pixel for each star. Green
displays the case where we change the selection criteria to d; > 0.5564 for objects in the South, weight each LG by pg, and subtract Ay, Orange represents
the application of iterative weights to the LG density field, in an attempt to remove all of the fluctuations. The top portion of each panel displays the fraction of
the imaging area where the observational parameter is less than the value on the x-axis. From the top left-hand side to bottom right-hand side, the observational
parameters are: sky background in i-band mag arcsec 2 (sky); i-band airmass (airmass); the estimated offset in ¢ in mag (d offset); number density of stars
with 17.5 < i < 19.9 (ngar); r-band Galactic extinction in mag (A,); and i-band PSF-FWHM in arcsec (seeing). Errors are Poisson.

become more significant as limiting magnitudes are pushed fainter
and there are thus more foreground objects that may have a masking
effect. Foreground galaxies will cause the same problem, but will
have a much smaller effect on the measured clustering, since at large
scales, the angular clustering amplitudes of foreground galaxies are
significantly smaller than those of stars.

4.2 Observational parameters

We find that the number density of LGs varies with observational
parameters such as the Galactic extinction, seeing and brightness
of the background sky. In Fig. 4, we display the number density,
divided by the total average number density, of LGs as a function of
the value of the potential systematic, for the cases where we equally
weight each object (black), we weight each object by its value of
Dsg (red), and we weight each object by its value of py, and subtract
an area A, from each pixel for every star in the pixel (blue). In the
top portion of each panel, we display the fraction of our imaging
footprint which has a value of the potential systematic that is lower
than the value on the x-axis, that is, the median value of the potential
systematic is at f,., = 0.5. The median and inner/outer quartile
values, within our masked footprint, of Galactic extinction, seeing,
sky background and airmass are determined using this information
and displayed in Table 1.

© 2011 The Authors, MNRAS 417, 1350-1373
Monthly Notices of the Royal Astronomical Society © 2011 RAS

The bottom middle panel of Fig. 4 plots the relationship be-
tween the number density of LGs and the Galactic extinction in
the r band, A, [we use the A, values from the CAS, which are
based on the Schlegel et al. (1998) dust maps and the relationship
A, =2.751E(B — V)]. With equal weighting (black; we note these
data are nearly indistinguishable from those represented in blue and
green), the number density of LGs increases slightly as a function of
A,. The A, values and stellar densities are highly correlated (since
they both trace the structure of our Galaxy), but this does result
in 71/f(A,) resembling the 7i /7 (g, ) relationship. Interestingly,
the relationship flattens when we weight each object by p,, but re-
verts to its original form when we additionally subtract Ag,,. From
the top portion of the panel, we can see that that the values of A,
vary smoothly between 0.03 < A, < 0.2 and that its median value is
A, =0.08.

The autocorrelation function of A, is displayed in the red squares
in the top panel of Fig. 5. The amplitudes are significantly non-zero
and show a similar trend to the stars. Interestingly, the amplitudes of
the Galactic extinction, w(#), are significantly smaller than those of
the star, w(0), suggesting there is more structure to the distribution
of stars in the Galaxy than to the dust in the Galaxy. The cross-
correlation function of A, with the p,.-weighted LGs (red squares in
the bottom panel of Fig. 5) is negative (except at the largest scales),
but consistent with zero at a majority of scales. Interestingly, the
absolute values of this cross-correlation function are very similar
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Figure 5. Top panel: the autocorrelation functions of the density field of
the stars (black triangles), r-band extinction (A,; red squares), i-band sky
background (sky; blue circles), i-band PSF-FWHM (seeing; green open
triangles), i-band airmass (orange open squares) and the estimated offset in
d, (magenta open circles). Bottom panel: the same observables, but cross-
correlated with the pgg-weighted LGs. In both panels, the error bars are the
estimated jack-knife errors, and the results using sky, seeing, airmass and
d ] have been multiplied by 10.

Table 1. The median and inner/outer quartile values of
observational parameters in our masked footprint.

Parameter Median Inner/outer quartile

A, 0.082 mag 0.053, 0.126 mag

Seeing 1.07 arcsec  0.96, 1.19 arcsec

Sky background ~ 20.27 mag  20.43, 20.11 mag arcsec ™2
Airmass 1.16 1.08, 1.26

in amplitude to those of the cross-correlation function we measure
between A, and the LGs when we subtract the effective area of stars —
even though the 71 /i1, (A, ) relationship displays a significant change
between the two treatments, we find no evidence for a systematic
effect on the measured clustering.

We also see significant changes in the number density as a func-
tion of the seeing. This result is shown in the bottom right-hand panel
of Fig. 4. There is a 9 per cent decrease in the LG density between
regions with seeing 1.2 arcsec and those with seeing 1.6 arcsec. We
note that this is less than 25 per cent of the imaging area, as the
upper quartile of seeing within our footprint is 1.19 arcsec. The
reason for the decrease in LG number density in poor seeing is
that the star/galaxy separation cut applied to BOSS targeting, given
by equation (2.1), effectively changes. Increasing the seeing causes
the PSF and model magnitudes to converge. The result is that in
regions of poor seeing the two magnitudes are more similar — not
because the object is too point-like, but rather because the PSF is
too extended — and the cut is more likely to reject objects.

The green open triangles in the top panel of Fig. 5 present the
measured w(6) of the seeing. Its amplitudes are significantly smaller
than either stars or A,, though it is non-zero. This may be unex-
pected, as regions of similar seeing should follow the scanning
pattern in the sky. However, in regions of the sky that were imaged
multiple times (roughly 50 per cent of the DR8 footprint), the imag-
ing with better seeing is chosen. This works to alleviate any large-
scale pattern in the seeing within our footprint and also reduces the
median seeing to 1.07 arcsec. The cross-correlation function of the
seeing and LGs is displayed in the bottom panel of Fig. 5. The am-
plitudes are consistent with zero but transition from being negative
at smaller scales to positive at larger scales.

The sky background has a complex relationship with measured
flux errors, and we may therefore expect the number density of
observed LGs to depend on the sky background. The top left-hand
panel of Fig. 4 displays a 5 per cent increase in LG density between
regions with a i-band sky background!® of 20.7 mag arcsec ™ com-
pared to those with a background of 20.5 mag arcsec 2. This implies
that the observed trend may be due to an increase in the average
magnitude error scattering more objects into than out of our sample.
However, 70 per cent of the footprint has a sky brightness between
20.5 and 20.0 magarcsec™2 (as shown in the top right-hand panel
of Fig. 4) and the fluctuations are only ~1 per cent in this range.

The autocorrelation function of the sky background is displayed
in blue circles in the top panel of Fig. S. It is significantly positive,
but is only ~1/20th of that of the stars. The cross-correlation of
the sky background with the LGs, displayed in the bottom panel
of Fig. 5, is significantly positive and ~1/10th as large as the au-
tocorrelation function of the sky background. This is the largest
ratio between the auto- and cross-correlation functions of any of the
potential systematics we measure. This suggests that the increase in
LG number density between 20.7 and 20.5 mag arcsec~? is related
to a significantly positive cross-correlation function.

For an object of given brightness, the number of photons that
make it to the CCD depends on the airmass. One may therefore
also expect that the magnitude error will depend on the airmass.
The top middle panel of Fig. 4 displays the relationship between
the number density of LGs and the airmass. We do not find smooth
variations — rather we find a sharp increase in the number density
where the airmass is approximately 1.35 and where it is greater than
1.5, and also a decrease where it is less than 1.05. This suggests
that the fluctuations are not tied to the physical effect of the value
of the airmass, but rather these specific values of the airmass are
correlated with other observational parameters.

10The CAS gives sky background values, f, in terms of the flux unit of
‘nanomaggies arcsec~2’, which we convert to magarcsec™2, m, via m =
22.5 — 2.5log(f) as implied by http://data.sdss3.org/datamodel/glossary.
html#nanomaggies.

© 2011 The Authors, MNRAS 417, 1350-1373
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The autocorrelation function of the airmass and its cross-
correlation function with LGs (orange open squares in Fig. 5) are
quite similar to those of the sky background, especially at scales
greater than 4°. Further, the geometric mean of the sky and airmass
autocorrelation functions is nearly identical to their cross-
correlation function. This suggests that the two fields are nearly
fully co-variant in terms of the information they provide on the
large-scale clustering of LGs. One might expect that the two would
be related, as the airmass and, in general, the sky background are
higher closer to the horizon. (The sky background should also de-
pend on, for example, the phase of and proximity to the Moon and
the azimuthal angle.) However, it is only the large-scale patterns
that are similar — the local effects on the density field (as displayed
in Fig. 4) clearly differ.

Finally, we use the results of Schlafly et al. (2010), who found
colour offsets (caused by some combination of errors in the Galac-
tic dust map and/or photometric calibration errors) for SDSS data
based on the blue tip of the stellar locus, to make a map of the offset
in d; . We note that ~15 per cent of the imaging in the South was
not available at the time these maps were made and that one may
expect the colour of the blue tip to vary with the average metallicity
of the stars that are used (which will vary as a function of position
in the Galaxy). Regardless, any fluctuations we find may be impor-
tant. We test against the implied offset in d, as small changes in
d; < 0.55 cut have a large effect on the number of objects we
select into our sample (see Section 4.4). We find there to be slight
excess in the number of LGs we find at both low and high values of
the offset (displayed in the upper right-hand panel of Fig. 4). The
autocorrelation of the d; offset is significant and ~1/10th that of
A,, but its cross-correlation function with the LGs is consistent with
zero at nearly all of the scales we measure (both are displayed using
magenta open circles in Fig. 5).

4.3 Eliminating systematic errors

We have investigated six potential sources of systematic errors (fore-
ground stars, Galactic extinction, seeing, sky background, airmass
and photometric offsets) and have found different fluctuations in LG
density associated with each source. The autocorrelation functions
of these potential systematics and their cross-correlation functions
with the LGs suggest that stars have the greatest potential to cause
systematic deviations in the measured clustering, and that we may
have to worry about sky background fluctuations as well.

There are at least three procedures one can use to correct for
these sources of potential systematic error. The first is to mask an
area of the sky based on the value of the observational parameter.
For instance, we have already masked areas with E(B — V) >
0.08 and seeing >2.0 arcsec. As we have described in Section 4.1,
masking may be effective for removing the effects of foreground
stars. However, for the other potential systematics, there will remain
fluctuations in the number density of LGs, no matter the value of
the cut we make on the systematic.

The second option is to find the combination of weights one can
apply to remove the fluctuations one finds in the LG number density.
This application is straightforward in the case that the effects are
uncorrelated — each galaxy would just be weighted by the reciprocal
of the function plotted in the bottom panels of Fig. 4. However,
we find a significant correlation between the effects, making this
process non-trivial.

The correlation between possible systematics can be accounted
for by iteratively applying the weights. For instance, one may find
the weights based on stellar density, W (ngar), by taking the re-

© 2011 The Authors, MNRAS 417, 1350-1373
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ciprocal of what is plotted in red squares in Fig. 4 and then find
/Mo (A,) while applying Wy, to the density field, the recipro-
cal of which is (the independent) W,(A,). One may then proceed
likewise through all potential systematics. The disadvantage to this
approach is that it assumes each effect is fully separable (i.e. we
can express W(ngar, Al = X[ngar]Y[A,]) and in the (realistic) case
that this is not 100 per cent true; the order with which the weights
are determined will matter. The advantage is that this method does
not require a linear relationship between the potential systematic
and the LG density fields and that it is straightforward to apply to
as many potential systematics as can be identified. The resulting
i1 /o (sys) relationships when we determine the weights iteratively,
in the order ny,,, airmass, seeing, A,, d, offset, sky, are displayed
in orange in Fig. 4. Only for ng, does the effect of applying sub-
sequent weights cause a significant deviation from 7 /71, (Sys) = 1.
Hereinafter, we will refer to the application of these weights as the
‘Weights” method.

The third option is to use the cross-correlation technique de-
scribed in Section 3.3 to estimate and eliminate the spurious signal
imparted by any number of observational parameters. We will re-
fer to this method as the ‘Corr’ technique. The top panel of Fig. 6
displays the magnitude of the correction, calculated as described in
Section 3.3, for different combinations of observational parameters.
The correction for the stars alone (black triangles) decreases from
~1073 to ~4 x 10~* from 1° to 20°. Additionally correcting for
sky background (blue circles) marginally increases the correction
at large scales but increases the correction by ~30 per cent at 1°.
Adding seeing (red squares) or A, (green stars) corrections has only
a marginal effect, which is most notable at small scales.

In the bottom panel of Fig. 6, the value of € (as defined in Sec-
tion 3.3) is displayed as a function of angle for stars (black triangles),
sky background (blue circles), A, (red squares), seeing (open green
triangles) and airmass (open orange squares). The correction we
apply requires that € be constant. The solid lines display the best-
fitting (constant) value of €. As can be seen, in every case, a constant
value of € is well within the error bars, suggesting no need for higher
order corrections. The values of € are slightly more constant for sky
background than for airmass, and we have found that they both trace
the same large-scale clustering pattern. For this reason, we use only
the sky background when calculating corrections.

Unless we note otherwise, in all cases, we measure the angular
autocorrelation function of LGs, w(f), by weighting each object
by the value of p. This means that instead of counting each LG
equally, a LG is counted as ps,, and thus, at large smoothing scales,
the estimated overdensity of LGs should be the true (observed)
overdensity of LGs. In principle, this should remove the contam-
ination of stars, leaving only their systematic masking effect. We
display this p,-weighted measurement of w(6) with no corrections,
multiplied by 0, for all the LGs within our (masked) imaging area
with black triangles in the left-hand panel of Fig. 7. The amplitudes
at large scales are quite large, given that generic models predict
w(B) ~ 0 for 6 > 5°0.

Subtracting Ag,, for each star within a pixel (blue circles in the
left-hand panel of Fig. 7) significantly reduces the large-scale am-
plitudes of w(6). Notably, this result is virtually identical to what
we obtain when we do not subtract Ay, but instead apply the Corr
technique when accounting for stars, as displayed with red squares
in the left-hand panel of Fig. 7 (the magnitude of this correction is
displayed with the black triangles in Fig. 6). This suggests that ei-
ther method can be used, and the approach one uses should depend
on its ease with respect to the task at hand. Notably, the jack-knife
errors are smaller when we subtract Ays,,.
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Figure 6. Top panel: the correction, C, calculated as described by equa-
tions (29) and (30), to the autocorrelation of the full LG catalogue, when
considering: stars only (black triangles); stars and sky background (blue
circles); stars, sky background and Galactic extinction in the r band (A,; red
squares); and stars, sky background and seeing (green open triangles). Bot-
tom panel: points with error bars (calculated by propagating the jack-knife
errors on the auto- and cross-correlation functions) display the value of €
(see Section 3.3) for stars (black triangles), sky background (blue circles),
Galactic extinction (red squares), seeing (open green triangles) and airmass
(open orange squares). The solid lines of corresponding colour represent the
best-fitting constant value of € for each respective systematic.

The LG w(@) with the combined correction for stars and sky
background (Ciar,sky) is displayed by the open green triangles in the
right-hand panel of Fig. 7 — including the sky background correction
produces a small but notable change (the measurements around 3°
are closer to the black line), which is almost identical to subtracting
Ag.r and correcting for sky background at scales less than 30° (or-
ange open squares; Ay, Coy). Including additional corrections for
seeing and Galactic extinction produces no discernible change in
the LG w(6). Applying the Weights method to the LG density field
yields the measurements displayed with open magenta circles in the
right-hand panel. The results are very similar to the other correction
techniques at scales less than 30°, but the measurements are slightly
larger at scales greater than 2° than either Agar, Coky OF Cygar,sky- The

data displayed in orange in Fig. 4 suggest that the Weights method
may leave a residual dependence on stellar density. If we subtract
the correction for stellar density, then we find by cross-correlating
the weighted LG field with the stars, the resulting effect on the
w(#) (displayed with cyan stars in the right-hand panel of Fig. 7)
measurements is minor. The disagreement between the results at
0 > 30° suggests that significant systematic errors remain on the
measurements at these scales.

The black curve plotted in Fig. 7 displays the expected clustering
for our fiducial ACDM cosmology and a bias of 2.0 (calculated as
described in Section 3.2). This model appears generally consistent
with all the measurements at small scales, but at scales greater than
2°, the uncorrected measurements are significantly greater. We note
that the feature in the model at ~325 is due to the baryon acoustic
oscillations present in our fiducial P(k). Including corrections for
stars and sky background appears to make the measurements gener-
ally consistent with the assumed cosmological model, although all
but one of the measurements remains larger than the model between
3°and 12°.

4.4 North and South Galactic caps

The DRS8 imaging data are separated into two distinct regions; in
Galactic coordinates, these regions can be separated into b > 0°
(North) and b < 0° (South) (see Fig. 1). The fact that these regions
are spatially separated makes them more prone to calibration errors,
for example, one might expect uncertainty in the relative zero-points
of one or more bands, given the lack of continuous photometry
connecting the two regions. Schlafly et al. (2010) and Schlafly &
Finkbeiner (2010) have estimated the level of coloor offset between
the North and South in the SDSS. Schlafly & Finkbeiner (2010)
attribute these differences to either calibration errors or errors in the
Galactic extinction corrections (or a combination of both). Using
results of the ‘spectrum’-based method (which is less sensitive to
changes in the metallicity of stars than the ‘blue-tip’ method) listed
in the second row of table 6 of Schlafly & Finkbeiner (2010), one
can infer that the values of d, (a combination of g — r and r —
i colours defined by equation 7) that we calculate are offset by
0.0064 mag between the North and South (the ‘blue-tip’ method
yields a similar offset of 0.0045 mag). These results suggest that,
assuming the values in the North are the true values, we should
subtract 0.0064 from the values we calculate in the South to obtain
a better estimate of their d | values.

The inferred offset in d, between the North and South appears
small, and given the difference between the ‘spectrum’- and ‘blue-
tip’-based methods, the uncertainty on the correction may be rel-
atively large. However, it is instructive to determine the effect a
0.0064 mag offset in d, would have on our sample. If we change
the cut such that we accept only objects with d; > 0.5564 in the
South (while using the fiducial cut in the North), we remove 5172
objects from our sample. This reduces the number density in the
South to 108.7 deg=2 — which is still 1.5 per cent greater than the
number density in the North. If we weight each object by p,, when
calculating the number densities (which should provide a better es-
timate of the true number density of galaxies), the number density
in the South decreases to 103.2 deg™? and in the North it becomes
103.1 deg2. Any uncertainty in the corrections we have made is
almost certainly larger than this 0.1 deg2 difference in number
density. The 71 /7o (sys) relationships we obtain when we use the
d; > 0.5564 cut in the South, subtract Ag,,, and weight by p,, are
displayed in green in Fig. 4. This does not cause major changes, but
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Figure 7. The measured angular autocorrelation function, w(6), measured by weighting each LG by psg, multiplied by 6 for our full sample of LGs. In the
left-hand panel, the black triangles show the measurements with no corrections and the fiducial mask, the red squares mark the measurement when we correct
for stars (as described in Section 3.3) and the blue circles display the measurement when we make the A, correction. In the right-hand panel, the open green
triangles display the measurement we obtain when we correct for stars and sky background (Ciar,sky), the open orange squares display the results when we
make the Ay correction and additionally correct for sky background (—Astar, Csky), the open orange squares show the w(6)) we measure when we apply
iterative weights to the LG density field (Weights) and the cyan stars show the result when we apply a Cy,, correction in addition to the Weights. The solid line

displays the model w(@) for our assumed cosmology and b = 2.

the relationships with airmass, A, and d, offset all become closer
to 1.

Given the colour offsets and the change in number density they
imply, we might expect differences in the clustering of the LGs in
the North and South. Fig. 8 displays the w(6) we measure when we
split the LG sample into North (blue circles) and South (open green
triangles) samples and apply the Ay, Cyy correction. Indeed, the
clustering is different in the two regions, as the measurements in the
South are smaller than those in the North. However, at scales less
than 30°, the w(0) of the full sample (black triangles) simply appears
to be the weighted average of the two samples. At the largest scales
(6 > 30°), this is not the case, suggesting that the colour offset may
cause a systematic effect on the measurements at the largest scales
(we note that the sky background correction may have minimized
this potential systematic effect, confining it to these large scales).

We have found that using the cut d;, > 0.5564 in the South re-
moves the asymmetry in the number density of LGs in the North
and South. We therefore measure w(f) of the LG sample after
making this cut, which is plotted with red squares in Fig. 8. The
result is quite similar to the result obtained using the fiducial cuts
(black triangles), but the amplitudes at the largest scales are reduced
and appear to be closer to the weighted average of the North and
South. Interestingly, the size of the sky brightness correction de-
pends strongly on our particular treatment of the North and South.
We find €4y = 0.113 for the full sample, €4y, = 0.068 when we
use the d; > 0.5564 cut in the South, €4, = 0.027 in the North
sample and €4, = 0.18 for the South sample. This suggests that the
systematic effect of sky brightness is predominantly a feature of the
Southern imaging.
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Figure 8. The measured angular autocorrelation functions (w[6#]) for the
full LG sample (black triangles), LGs in the Northern Galactic cap (blue
circles), LGs in the Southern Galactic cap (open green triangles) and the LG
sample we obtain when we impose the cut d; > 0.5564 for objects in the
South Galactic cap (red squares). In each case, we subtract an area Ag,r for
each star in each pixel and correct for sky brightness.
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4.5 Summary of angular fluctuations

The results presented throughout this section suggest that stars cause
major systematic errors on the clustering of SDSS DR8 LGs, and sky
brightness may also cause significant errors. We have investigated
variations in number density caused by Galactic extinction, seeing,
airmass and colour offsets, but found them to have minor effects.
Perhaps most importantly, we have identified two separate ways to
correct for systematic variations in the number density of galaxies
caused by any potential systematic that can be quantified and turned
into a map on the sky, and for the stars we have identified three
separate ways to correct for their systematic effects.

We note that other catalogues constructed from other imaging
surveys, other SDSS data or even subsets of the LG data will not
necessarily display the same relationships we have found in this
section. The tests we have performed must be repeated for any
sample one uses to measure clustering. We further note that the
systematics we investigate are by no means a complete list — there
are likely to be effects we have not thought of.

5 CONSTRUCTING THE PHOTOMETRIC
REDSHIFT CATALOGUE

We measure photometric redshifts for our LG sample using the ar-
tificial neural network based photometric redshift estimator ANNz
(Firth et al. 2003). ANNz has been proven to yield accurate and
precise zpno €stimates when the training sample is representative
of the full data set (see e.g. Collister et al. 2007). The results of
Abdalla et al. (2008) and Thomas et al. (2011a) suggest that neu-
ral network based photometric redshift estimators (such as ANNz)
are the most accurate in this specific situation. Our training sam-
ple consists of 112778 BOSS CMASS objects with spectroscopic
redshifts. This large training sample provides unprecedented ability
to ensure the training sample is representative of our imaging data,
while accounting for fluctuations in observing conditions.

Fig. 9 displays the normalized redshift distributions for data with
(A,) = 0.08 and 0.13 (which splits the sample approximately in

dn/dz

A S R S S SO S S SO S SR S BN S SR S
0.4 0.5 0.6 0.7 0.8

Z
spec

Figure 9. The normalized redshift distributions of BOSS CMASS spectra
when splitting into regions with r-band Galactic extinction, (A,) = 0.08
(red) and 0.13 (black).

half). There is a significant difference, as the objects in areas of the
sky with low Galactic extinction (red) have a larger median redshift
and more galaxies in the high-redshift tail of the distribution. This
result suggests that we may obtain better z;p, estimates if we include
the A, values in the training, which we can do because the training
data cover the entire range of Galactic extinction found in our
full sample. This finding implies that Galactic extinction may be an
important systematic when the clustering of the BOSS spectroscopic
sample is analysed.

We have also found fluctuations in the spectroscopic redshift
distributions with seeing and sky background; these fluctuations
will be studied in detail in Ross et al. (in preparation). Despite
the fact that the training consists of over 100 000 objects, we do
not find that it adequately covers the range in sky background or
seeing which would be required to include these parameters in
the photometric redshift training. Instead, we repeat the tests we
performed on the whole sample in Section 4 on samples in Zyho
slices in Section 6.

5.1 Photometric redshift training

We train ANNZz to estimate photometric redshifts for our LGs using
similar methods to those of Collister et al. (2007). We randomly
divide our sample of CMASS spectra (keeping only objects spec-
troscopically confirmed to be galaxies) such that one quarter of the
objects are designated as a training set, a separate one quarter as a
validation set and the remaining half of the objects as a testing set
(as is done in Collister et al. 2007). We use the dereddened model
magnitudes in the g, r, i, z SDSS imaging bands, and their errors.
We do not use the u band because the results of Schlafly et al. (2010)
suggest there may be significant variations in the true u — g colour
over the SDSS imaging area, and the u band only significantly aids
Zphot €stimation for the bluest galaxies in our sample.

We test three different training samples that use the following
input parameters:

(i) Only the g, r, i and z (dereddened) model magnitudes and
their errors

(i1) Including the Galactic extinction in the i band, A;, in addition
to the model magnitudes

(iii) Including the ratio of major to minor axes,'' a/b, of the
ellipse corresponding to the best-fitting exponential profile in the i
band in addition to the magnitude and A; information

In case (i), the rms difference between zgpe. and zpne is 0.0610
for the full sample; this reduces to 0.0512 for galaxies with
¢ > 1.6. We find that 92 per cent of the LGs pass this ¢ > 1.6
restriction which was used by previous studies, such as Collister
et al. (2007). Such a restriction ensures a strong 4000 A break for
galaxies at our target redshifts (0.4 < z < 0.7), and Masters et al.
(2011) find that this cut removes most of the galaxies that would be
morphologically classified as late type from the CMASS sample.
For case (ii), we find that including the A; information produces
insignificant improvements, as the rms values become 0.0609 and
0.0511, respectively. Case (iii) significantly improves the rms for
objects with ¢ < 1.6, as the overall dispersion decreases to 0.0585
and we find a slight improvement for the ¢; > 1.6 galaxies, as the
rms decreases to 0.0506.

As the dispersion values suggest, there is a strong correlation
between the value of ¢ and the accuracy with which we can estimate
Zphot- We display the relationship between the rms dispersion in our

11 The data selected from the CAS are ABexp, which are actually b/a ratios.
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Figure 10. The rms between the zpno estimate and the spectroscopic redshift in the BOSS testing set, as a function of the zppo estimate (left-hand panel),
¢ (middle panel) and the axial ratio for ellipse corresponding to the exponential fit to the i-band profile (right-hand panel). We display results for the three
separate spectroscopic redshift samples we use to train ANNz: (i) when we train using only the g, r, i, z (dereddened) model magnitudes (black triangles);
(ii) when we also include the Galactic extinction in the i band [A;; A; = 2.086E(B — V); red squares]; and (iii) when we also include the axial ratio for the

exponential fit to the i-band profile (a/b; blue circles).

testing set versus ¢ in the middle panel of Fig. 10 for our three
different training samples. The obtained relationship is extremely
similar whether we include A; [case (ii), red squares] or we do not
[case (i), black triangles]. Including a/b (case iii) reduces the rms
for objects with ¢ < 1.8. However, all three cases show that the
most accurate Zppo; estimates are obtained when ¢ > 1.8.

We also find a significant correlation between the accuracy
of the zpho estimates and a/b. Masters et al. (2011) has dis-
covered that ~5 per cent of CMASS objects are edge-on spi-
ral galaxies where effects of dust obscuration are likely to be
significant. Logically, this likelihood is correlated with the axial
ratio. These dust-obscured spirals tend to be at lower redshifts than
the majority of CMASS objects (while having similar colours, see
Yip et al. 2011 for a full study of the effects of inclination on photo-
metric redshift estimates), and thus the accuracy of the zypo; €stimate
and a/b are related. We present this relation in the right-hand panel
of Fig. 10, which shows that it is a smooth function of log;o(a/b)
for each of our three training samples. Including a/b in the training
improves the zpno accuracy for the largest values of a/b. The values
of a/b are correlated with ¢y, since it is disc galaxies (which are
generally bluer galaxies in ¢)) that have the highest values of a/b.
However, we find similar relationships (though not as strong) when
this correlation is accounted for.

The dispersion is also correlated with the estimated zpho, as illus-
trated in the left-hand panel of Fig. 10. Each of the three training
cases results in similar relationships. Including a/b [case (iii), blue
circles] makes the largest difference for z,ho €stimates between 0.45
and 0.6. We see only minor differences between cases (i) (model
magnitudes only, black triangles) and (ii) (including A;, red squares).

The ANNz output includes a photometric redshift error estimate,
which we denote by o,. These reported errors are correlated to
the actual dispersion in zphe VErsus Zgyc, but they underestimate it
by a factor of ~66 per cent (as can be determined by comparing
the average value of o, and \/((Zphot — Zspec)?) for any particular
testing set). These estimated errors do not recover the trends we
discover between the rms of Zgpec — Zphot @and ¢ or a/b (which are
displayed in the middle and right-hand panels of Fig. 10). Thus, the
true uncertainty on any individual zyn estimate is a linear combi-
nation of the estimated error, ¢ and a/b. In Section 5.3, we describe
how we combine this information in order to estimate the redshift
distributions of the photometric redshift samples we use.

Fig. 11 presents the overall redshift distribution of spectroscopic
galaxies in our testing set (solid black line). The coloured lines dis-
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Figure 11. The redshift distributions of spectroscopic galaxies in our testing
set, for different zphot selections. The dashed line represents galaxies with
¢ > 1.6. The vertical dotted lines delineate the zpnor bounds of the six
Azphot = 0.05 redshift slices that are displayed.

play the spectroscopic redshift distributions of testing set galaxies
in slices of width Azyp,e = 0.05 from 0.4 to 0.7, when we estimate
Zphot Using case (iii) (including A; and a/b in the training sample).
In all cases, the dashed lines represent galaxies with ¢, > 1.6.
These distributions suggest that, if one wishes to use slices of width
Azpho = 0.05, the bins 0.45 < zpher < 0.5,0.5 < zpne < 0.55,0.55 <
Zphot < 0.6 and 0.6 < zppot < 0.65 contain most of the information,
as the bins 0.4 < zpp; < 0.45 and 0.65 < zphee < 0.7 have their true
redshifts almost entirely within the adjacent zy, slice.

5.2 Photometric redshift catalogue

We construct a photometric redshift catalogue using the objects
selected as described in Section 2, and using the ANNz training
which includes both Galactic extinction and axial ratios (case iii).
We did not find any significant difference in the accuracy of the zppo
estimates when we added A; information to the training (case ii).
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Figure 12. The ratio between the number of objects, when weighting by
Psg» in the South and North, as a function of zpho for our fiducial sample
(black), when we apply the cut d; > 0.5564 to objects in the South (red)
and when we apply the cut d; > 0.5564 and subtract 0.0034 from every
Zphot for objects in the South (blue). The dashed black line displays the ratio
of area in the South and North. Errors are Poisson.

However, we do find a large difference in the full zpp, distributions.
In particular, we find that the asymmetry between the North and
South increases as a function of zpnei. For 0.6 < zphee < 0.65, ¢) >
1.6 and weighting by pg,, we find a 7.5 per cent larger number
density of LGs in the South when we do not include A; values in the
training, and only a 4.9 per cent larger number density when we do
include A;.

In Fig. 12, we display the ratio of the number of objects in the
South to the number of objects in the North as a function of the
Zphot €Stimate, in black (we note that at high redshift, the red curve
overlaps the black curve). The dashed black line shows the ratio of
the area in the South to the area in the North (0.347). For zpne >
0.55 and zphe < 0.46, there is a significant excess in the number of
objects in the South. When we apply the d;, > 0.5564 cut to objects
in the South, there is a significant decrease in the number of objects
in the South with zpp, < 0.46; however, we find almost no change
at larger photometric redshifts. This is due to the fact that objects
that are assigned larger zpno have larger d, values. In fact, we find
a linear relationship between the average zpn and d,, given by
Zphot = 0.53d, . Inserting the Ad; = 0.0064 offset for objects in the
South (as suggested by Schlafly & Finkbeiner 2010) yields a bias of
Az=0.0034 for objects in the South. When we subtract 0.0034 from
each zpho in the South, we find that the ratio between the number
of objects in the South and the number of objects in the North (the
blue curve in Fig. 12) becomes nearly constant as a function of zpp.
As we have found in Section 4.4, we find that assuming a difference
in d; of 0.0064 (and its full consequences) removes the asymme-
try between the distributions of objects in the North and in the
South.

Fig. 11 implies that the majority of the cosmological information
will be located within four zyp bins 0.45 < zphee < 0.5 (Which we
denote by bin 1), 0.5 < zppet < 0.55 (which we denote by bin 2),
0.55 < Zpnot < 0.6 (which we denote by bin 3) and 0.6 < zphe <

Table 2. The characteristics of the four photometric red-
shift (zphot) bins we use, where o, refers to the value of
\/ ((zphot — zspec)z) in the testing set and o ; refers to the

level of dispersion we infer for the full data set, using the
methods described in Section 5.3.

. i=Nygq
Bin Zphot Tange Zi‘:l ¢ lPsg Oz Ozt
1 045 <2z<0.5 214971 0.0427  0.0431
2 0.5 <z<0.55 258736 0.0427  0.0442
3 0.55<2z<0.6 248 895 0.0501  0.0524
4

0.6 <z<0.65 150319 0.0601  0.0633

0.65 (which we denote by bin 4). The characteristics of each bin are
summarized in Table 2. The training further suggests that we can
only obtain accurate zpp, estimates for objects with ¢ > 1.6; thus,
we also make this cut in each bin.

5.3 Estimating true redshift distributions

To properly analyse any angular clustering measurement, one must
know the true redshift distribution of the galaxies being used. This
task is made relatively simple for the photometric redshift catalogue
we produce, as we expect the distributions to be similar to those of
the training sample. However, the match is not perfect, and blindly
assuming that the full catalogue has the same distribution as the
training sample would be folly — differences between the catalogues
must be accounted for. Based on our testing sample, we found that
the actual dispersion between the photometric and spectroscopic
redshifts was not only well correlated to the error estimate, but
also subject to the values of ¢ and a/b. Thus, we can compare the
distributions of photometric redshifts, error estimates, ¢, and a/b
in the full data set to that of the testing set and use this information
to estimate the true redshift distribution in any zh, slice.

Forbin 1 (0.45 < zpho < 0.5), the mean of the zyp,0; error estimated
by ANNz, &,., is 0.0224, while it is slightly lower, 0.0222, for
the testing set (recall that these estimates underestimate the actual
V/ ((Zphot — Zspec)?) by ~66 per cent). The average ¢ and a/b of the
full bin 1 and the testing set subset of bin 1 agree within 0.3 per cent.
We find the deviations in ¢ are similarly small for the other three
redshift bins. Overall this suggests that the true redshift distribution
of bin 1 is slightly wider than the spectroscopic distribution, due to
the fact that its .. are 1 per cent larger than those for the testing
set. Thus, referring to o, as the true dispersion in the bin and o,
as the dispersion in the testing set, we estimate o, = 0.0431, given
that o,, = 0.0427. In Table 2, we list the o, we measure from the
testing set and the o, we estimate for each photometric redshift bin.

Forbin 2 (0.5 < zphot < 0.55), the differences are more substantial.
The value of &, is 3 per cent larger for the full catalogue (0.0268
compared to 0.0260) and the average value of log;o(a/b) is 2 per
cent larger (0.170 compared to 0.166). Fig. 10 suggests a linear rela-
tionship between the photometric redshift dispersion and log;(a/b)
for 0 < logo(a/b) < 0.3, that is, o, ~ 0.05 4+ 0.067 log;o(a/b),
suggesting the overall error should be 3.5 per cent larger in bin 2
than for the testing set. The differences grow larger for bin 3 (0.55
< Zphot < 0.6): the value of & is 4 per cent larger (0.0307 com-
pared to 0.0296) than for the testing set and the average value of
logio(al/b) is 5 per cent larger (0.180 compared to 0.172), suggesting
the errors in bin 3 are 4.6 per cent larger than in the testing set. We
find similar differences for bin 4 (0.6 < zpne < 0.65): the values of
6. are 0.0334 and 0.0320 and the average values of log;o(a/b) are
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Figure 13. The estimated (normalized) redshift distributions for the four
labelled zphot slices, determined by sampling Gaussians around each spec-
troscopic LG in the testing data, as described in Section 5.3.

0.185 and 0.176, and we therefore expect the errors to be 5.4 per
cent larger than in the testing set.

To correct for the differences between the testing set and full sam-
ple, we sample a Gaussian, for each spectroscopic redshift within
the photometric redshift bin, of width such that the average disper-
sion in the bin increases to that what we expect. The dispersion we
expect, o, is related to the dispersion in the testing set, o ,,, and the
width of the Gaussian, o4, via

oL =05+ 31)

We are assuming o, = ao,, where we described the process of
determining a in the previous paragraph. Therefore,

o =o2@@ —1). (32)

For bin 4, a = 1.054 (since we determined the dispersion should be
5.4 per cent larger for the full sample than for the testing set) and
0, = 0.06, which yields o4 = 0.02. We find that, with sufficient
sampling, the resulting n(z) are smooth up to steps of 0.001 in
Az. We display the n(z) we obtain for our four bins in Fig. 13. In
general, the displayed n(z) are poorly fitted by distributions such as
a Gaussian or a Lorentzian (especially at the tails). Thus, we use
the plotted distributions, which are binned in steps of width 0.001
in redshift, and interpolate between these points as needed in order
to obtain the n(z) used in equation (27).

6 CLUSTERING IN PHOTOMETRIC
REDSHIFT BINS

6.1 Auto- and cross-correlation function measurements

In order to investigate the photometric redshift catalogue, we have
measured the angular auto- and cross-correlation functions of galax-
ies in the four photometric redshift bins summarized in Table 2. This
will allow us to investigate how systematics affect particular pho-
tometric redshift bins and if the redshift distributions are the same
as suggested by the training data.
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Fig. 14 displays the measured autocorrelation functions for LGs,
multiplied by 6, in our four photometric redshift bins with no cor-
rections (black triangles), applying the Corr technique for stars and
sky background (calculated as described in Section 3.1; red squares,
‘Cyar,sky ), subtracting the effective masked area per star, Ay, for
every star in each pixel and apply the Corr technique for sky back-
ground (blue circles; ‘—Agy, Cey’), applying weights based on the
i/l (sys) relationships iteratively determined in the order ngy,, air-
mass, seeing, A,, d; offset, sky (open green triangles; ‘Weights’),
and applying the cut d;, > 0.5564 and subtracting 0.0034 from each
photometric redshift for objects in the South while also applying the
—Agtar, Coky correction (open orange squares; ‘ASouth’). Correcting
for either seeing or Galactic extinction makes negligible difference.
For each bin, the displayed error bars are the jack-knife errors.

Interestingly, only bin 1 and bin 4 show any significant effect
from sky background; for bins 1, 2, 3 and 4, the values of €, for
Citar,sky are 0.098,0.021, 0.034 and 0.137, respectively. This result is
consistent with the assertion that the dependence on sky background
is related to its effect on the magnitude errors. The lowest redshift
bin should show the largest effect from objects scattering around
the d, > 0.55 cut (as can be inferred from the difference between
the red and black curves in Fig. 12), and the highest redshift bin
should show the largest effect from objects scattering across the
faint magnitude limit.

For each of the measurements displayed in Fig. 14, we deter-
mine the best-fitting bias, b, given our fiducial cosmological model.
In each panel of Fig. 14, the black curve displays the best-fitting
model when fitted to the measurements with the Ci sy corrections
applied. We fit to angular scales 1° < 6 < 20° (the equivalent phys-
ical separation for a 1° separation is 23.2 2~! Mpc at z = 0.5), for
which there are 16 data points in each redshift bin. The best-fitting b
and the associated x 2 per degree of freedom (y 2/d.o.f.) are listed for
each redshift bin and each of the five separate estimations of w(6) in
Table 3. Given that we are using a theoretical covariance matrix to
compare between our measured and model w(6), we have 15 d.o.f.
regardless of the corrections that we apply. The covariance matrices
assume that there is no added covariance due to systematics, and
the corrections are an attempt to remove this covariance and allow
proper comparison between measurement and model.

In every case, applying some form of correction reduces x 2/d.o.f.
compared to the case when no corrections are applied. In each
redshift bin other than bin 1, x?/d.o.f. is greater than 3 when no
corrections are applied. When corrections are applied, y2/d.o.f. are
all less than 2, and only for bin 2 are they significantly greater than
1. After each of the minimum yx2/d.o.f. reported in Table 3, we list,
in parentheses, the x2/d.o.f. obtained when we fit to a maximum
scale of 60° (which is the largest scale to which we measure w[6])
and keep the model the same as the best-fitting one for 1° < 6 <
20°. This tests the consistency of the six measurements with 20° <
6 < 60°. Notably, none of the x?/d.o.f. values becomes significantly
worse.

The most extreme results are obtained when the ASouth cor-
rections are applied. For bin 2, only 0.8 per cent of w(f) mea-
surements consistent with our fiducial model would have y?/d.o.f.
greater than the value of 2.1 that we find, while for bin 4, we find
x2/d.o.f. = 0.38 and would expect 98.4 per cent of w(6) measure-
ments to have a greater value. As isolated cases, neither result is
particularly remarkable. However, regardless of the Corr technique,
the y2/d.o.f. values for bin 2 are all greater than 1.8. This result
is caused, in large part, by the w(0) measurements at ~2°, which
are considerably smaller than the w(0) predicted by our best-fitting
model.
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Figure 14. The measured angular autocorrelation functions, w(6), for our photometric redshift bins 0.45 < zpnot < 0.5 (top left-hand panel), 0.5 < zphor <
0.55 (top right-hand panel), 0.55 < zphot < 0.6 (bottom left-hand panel) and 0.6 < zphot < 0.65 (bottom right-hand panel), when no corrections are applied
(black triangles), when corrections for stars and sky background are applied in the manner described by Section 3.3 (red squares; Cgtar,sky). When the effective
area of stars, Ay, is removed from each pixel and a correction for sky background is applied (blue circles, —Agtar, Csky), When iterative weights are applied
to the LG density field used to calculate w(6) (green open triangles), and when —Agr, Csky is applied to the w(6) of LGs selected such that d; > 0.5564 and
0.0034 is subtracted from zphot for objects in the South (orange open squares; ASouth).

In order to subtract the effective area per star, Ay, for every star
in each pixel, we use a different value of rg,, in each photometric
redshift bin. We determine these values by fitting for the value of
Tsear that makes 71 /71, (1) most consistent with one for the objects
in the redshift bin (just as was done for the full sample as described
in Section 4.1). Further, we should expect slightly different values
of ., given that Fig. 3 shows different relationships for different
magnitude LGs, and the average magnitudes are different in each
photometric redshift bin.

The Ay, Csy (blue circles) and Cyr,sky (red squares) corrections
result in nearly identical measurements. Thus, the best-fitting bias
values (as presented in Table 3) differ by no more than 1.5 per cent.
Interestingly, the jack-knife errors are smaller in general when we
subtract Ay, suggesting that this action reduces the fluctuations
within the sample.

When we use the Weights method (open green triangles) to cor-
rect our measurements, the resulting w(6) amplitudes are slightly
smaller than any of the other measurements. This translates to

© 2011 The Authors, MNRAS 417, 1350-1373
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Table 3. The minimum x2/d.o.f. and corresponding best-fitting bias value (b) obtained when fitting our measurements at scales between 1° and
20° (for which we have 16 measurements and thus 15 d.o.f.; numbers in parentheses are x2/d.o.f. when we include the six additional measurements
at 0 > 20°) to our fiducial cosmological model, for five cases: (1) no corrections are applied (‘No corrections’); (2) corrections for stars and sky
brightness are applied (‘Corr’); (3) Agtar is subtracted for each star within a pixel of circular area corresponding to the radius rg,, and a correction for
sky background is applied as in case (1) (—Asar); (4) we iteratively determine weights to apply to the LG density field, as described in Section 4.3
(Weights); and (5) we apply the cut d; > 0.5564 and subtract 0.0034 from each zphor When selecting objects from the South and repeat the —Agar

procedure (ASouth).

Bin No corrections Corr —Agtar Weights ASouth
x2/d.of., b x2/d.of., b x2/d.o.f., b, rear x2/d.of., b x2/d.of., b

1 0.99 (1.0), 2167057 0.79 (0.74), 2.12£0.07 079 (0.75), 2.124+0.07, 7.56 arcsec ~ 0.91 (0.82), 2.08£0.07  0.79 (0.70) 2.11£0.07

2 3.9(3.5),2.26 1.8 (1.5), 2.08+0.07 1.8 (1.6), 2.07£0.07, 10.6 arcsec 1.9 (1.7), 2.03£0.07 2.1(1.8) 2.10£0.07

3 7.0 (5.8),2.62 0.99 (1.1),2.20£0.07  1.0(1.1),2.2140.07, 12.0arcsec 1.1 (0.97),2.16£0.07  0.97 (1.0) 2.230.07

4 6.4 (5.7), 2.63 1.0 (1.0),2.14£0.10  0.97 (0.97), 2.17F035, 10.9arcsec  0.64 (0.56), 2127000 0.38 (0.43) 2.1070 09

marginally lower (between 1.0 and 2.5 per cent compared to
the ‘Corr’ values) best-fitting bias values. This suggests that the
Weights method may slightly suppress some true fluctuations. The
jack-knife errors in the Weights case are similar to those deter-
mined using the Ay, Cyy correction — applying the weights to
the density field decreases the sample variance. The consistency
between the best-fitting models and the data are also quite similar
to the Ay, Cy results, except for bin 4, where x2/d.o.f. decreases
significantly.

Imposing the d; > 0.5564 cut and subtracting 0.0034 from zppo
for objects in the South and applying the Ay, Cyy correction
(ASouth; orange open squares) only makes a significant difference
in bin 4. The best-fitting bias values change by less than 1 per cent
compared to the Ay, Cqy best-fitting values for every bin other
than bin 4, where find a 2.4 per cent decrease. Again compared to
the Agiar, Cky Tesults, we find a marginal decrease in the x2/d.o.f.
values for bins 1 and 3, but for bin 2, we find a marginal increase.
The increase in x?/d.o.f. for bin 2 is driven mainly by the w(6)
measurement at 1°8. For bin 4, x2/d.o.f. decreases by more than
50 per cent, and as can be seen in the bottom right-hand panel of
Fig. 14, nearly all of the measurements at scales >3° become more
consistent with the model.

In all of the bins, applying some form of correction reduces the
x2/d.o.f. values, and for bins 2—4, the corrections change the re-
duced x? by at least 1.8 (and by as much as 5.4 for bin 4). Further,
the general agreement between the different methods of correction
suggests that they can all be applied to recover measurements that
more closely represent the true clustering of LGs. However, we note
that they do not recover the exact same results, suggesting there is
some level of systematic error that must be accounted for when
similar measurements are used to constrain cosmological parame-
ters. For bins 2 and 3, the variation in the best-fitting bias values
is similar to the 1o errors, suggesting the systematic uncertainties
introduced by the need for corrections are approximately as large
as the statistical uncertainties.

Considering all the results, we find the bias of the LGs is nearly
constant as a function of redshift, with slight evidence of a decrease
from high to low redshift. This is close to what we expect for a
sample selected to be approximately passively evolving. Such a
sample of b ~ 2 galaxies will undergo an ~4 per cent decrease
in bias over the redshift range 0.475 < z < 0.625 (see e.g. Fry
1996; Tegmark & Peebles 1998). More importantly, without any
corrections, one might assume our model of large-scale clustering
is grossly in error. However, with the corrections, we are given no
reason to doubt the standard cosmological model. This is consistent
with the results of Crocce et al. (2011b), whose w(6) measurements,

© 2011 The Authors, MNRAS 417, 1350-1373
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Figure 15. The difference between the jack-knife error we estimate, O jacks
and the theoretical error we calculate, o, divided by ojack for the four
redshift bins 0.45 < zphot < 0.5 (black triangles), 0.5 < zphot < 0.55 (red
squares), 0.55 < zphot < 0.6 (blue circles) and 0.6 < zphot < 0.65 (open
green triangles). The solid lines connect the points representing the jack-
knife errors and covariance matrix when no corrections are made, and the
dashed lines connect the points representing the case where A, is subtracted
for each star within a pixel of circular area corresponding to the radius rgr.

at similar redshifts to our own, are consistent with a ACDM model
for scales 6 < 5°.

Fig. 15 displays the fractional differences we find between the
jack-knife errors and the theoretical errors we calculate, for the four
photometric redshift bins we use. The solid lines connect the data
that represent the case where we apply no corrections, while the
dashed lines connect the data representing the —Ag,, Cey correc-
tions. The results are noisy, but the jack-knife and theoretical errors
are similar at scales <10°, while the theoretical errors are larger
at greater scales. We note that the agreement is due, in part, to the
large differences in the best-fitting bias between the cases where
corrections are and are not applied. The jack-knife errors are larger
when no corrections are applied to the density field, but the best-
fitting bias is larger as well (see Table 3), and thus the amplitudes
of the jack-knife and theoretical errors are similar in both cases.
In most cases, the jack-knife errors are smaller than the theoretical

202 YoJe| 0Z uo 1senb AQ GGG¥86/0GE L/2/L L p/oIoIME/SeIuW/Ww0d° dNo-olWapeoE//:SAY WOl POPEOjUMOQ



1368 A. J. Ross et al.

0.01 T T T T T

T Ty

1x4

PRI ST I ST I T O B B R

LI L B B 74 I L B L L

[ —
ey e P
LI [ =L N B

—

—————nt
———

17

10 1 10

0(degrees)

Figure 16. The measured angular cross-correlation function measurements between our four photometric redshift bins 0.45 < zZphot < 0.5 (bin 1), 0.5 < zZphot
< 0.55 (bin 2), 0.55 < zphot < 0.6 (bin 3) and 0.6 < zyper < 0.65 (bin 4), subtracting the systematic effects of stars and sky background via equations (28)—(30).
The curves display the theoretical models for by = 2.08, b, = 1.96, b3 =2.16 and by = 2.11, where the bias used is the geometric mean of the bias for the two

bins involved.

estimate at large scales, but this effect is more dramatic when cor-
rections are applied to the density field. One would expect that the
jack-knife errors should underestimate the true uncertainty as the
scale grows larger and the different jack-knife regions thus become
more correlated.

Fig. 16 presents the angular cross-correlation functions between
our four photometric redshift samples, after applying corrections
for stars and sky background. For comparison, we display model
curves where we assume a bias equal to the geometric mean of the
bias of the two bins being cross-correlated (i.e. for 2 x 3, b = 2.06).
In general, the amplitudes of the cross-correlations are consistent
with the redshift distributions determined from our testing set. The
cross-correlations that are least consistent are 1 x 2 and 2 x 3.
The inconsistency could be due to a number of factors. Apart from
the redshift distributions being incorrect, it is possible that the bias
of the galaxies contributing to the cross-correlation (e.g. for 2 x
3, the high-redshift edge of the 0.5 < zpno < 0.55 distribution) is
lower than for the overall sample. This is likely if objects with lower
bias also have larger photometric redshift errors. The facts that the
model curves for 1 x 2 and 2 x 3 are only marginally outside the
lo errors and that the agreement appears excellent for the other
cross-correlations suggest that there is no significant disagreement.
If we do not apply the corrections to the measurements, they are
greatly divergent from the models.

6.2 Comparison with the MegaZ-LRG DR?7 catalogue

The MegaZ-LLRG DR?7 catalogue (hereinafter MegaZ) is a photo-
metric redshift catalogue similar to our own (Thomas et al. 2011a).
It used ANNz to train SDSS DR7 objects with similar colour se-
lection to ours and spectroscopic redshifts from the 2SLAQ survey
(Cannon et al. 2006). Compared to the sample used in Thomas et al.
(2011a), the most notable differences are that they impose a cut
igev < 19.8, while the BOSS uses icmoq < 19.9 and the sliding cut
defined by equation (6). Further, 2SLAQ spectra were targeted for

objects with i, < 21.4, where ig, is the i-band magnitude within a
3-arcsec aperture (our fibre-magnitude cut is iy < 21.7).

The MegaZ data and its corresponding mask are publicly avail-
able.'? Similar to our catalogue, there is a photometric redshift and
a probability that the object is a galaxy (we denote this by pgm).
We employ the same cuts on the MegaZ catalogue as Thomas et al.
(2011a), the most notable one being psm > 0.2. Different target
selections result in discrepancies between the overall redshift dis-
tributions. These disagreements are most extreme for the lowest and
highest redshift bins. Weighting by p,, our catalogue has 20 per
cent of its objects with 0.45 < zypye < 0.5, while the MegaZ cata-
logue has 36 per cent of its data in this redshift bin. The 0.6 < zp <
0.65 photometric redshift bin contains 14 per cent of our data, while
only 10 per cent of the MegaZ data have photometric redshifts in
this range. Our overall number density is slightly smaller; however,
as for 0.45 < zphor < 0.65, we have a number density of 88 deg™>
(872921 objects over 9913 deg?) and MegaZ has a number density
of 93 deg=2 (723 556 objects over 7746 deg?).

The mask provided by MegaZ is in the HEALPix format at
Ngde = 1024, and we can therefore calculate w(0) using nearly-
identical methods as described in Section 3.1. We calculate w(6)
for MegaZ data in the same four photometric redshift bins as our
own catalogue (we note these are also the photometric redshift bins
used by Thomas et al. 2011a). We display these measurements,
compared to our own, in Fig. 17. The black triangles display the
measurements we obtain when we cut objects from the MegaZ cata-
logue with py, < 0.2, while the red squares display the results when
we correct the same MegaZ measurements for stars in the DR7 area,
using the Corr technique described in Section 3.3. The blue circles
display the measurements of w(6) for the full DRS8 area, when the
Corr technique is applied for stars.

The small-scale amplitudes of the MegaZ measurements and our
own are not directly comparable, because the redshift distributions

12 http://zuserver2.star.ucl.ac.uk/~sat/MegaZ/MegaZDR7 .tar.gz
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Figure 17. The measured angular autocorrelation functions in the four photometric redshift bins 0.45 < zpnot < 0.5 (top left-hand panel), 0.5 < zphor < 0.55
(top right-hand panel), 0.55 < zphot < 0.6 (bottom left-hand panel) and 0.6 < zphot < 0.65 (bottom right-hand panel). The black triangles display the results
using the same catalogue (and cuts on it) as Thomas et al. (2011b). The red squares show the MegaZ measurements when they are corrected for stars and the
blue circles are the measured w(6) using our catalogue and correcting for stars, as described in Section 3.3.

may be different. However, Thomas et al. (2011a) find a significantly
smaller bias in their 0.45 < zph < 0.5 bin than their other bins,
whereas we find only a small difference in the bias of our different
photometric redshift bins (see Table 1). It therefore makes sense
that the MegaZ amplitudes are significantly smaller than ours. For
the middle two redshift bins, the small-scale amplitudes of the
MegaZ measurements and our own are generally consistent with the
displayed jack-knife errors. This result is no surprise, given that we
would expect the (small) differences in the target selection to only
significantly affect the highest and lowest portions of the redshift
distribution. Finally, Thomas et al. (2011a) found a substantially
higher bias in the MegaZ 0.6 < zyo < 0.65 sample than in their
other bins, while for our sample, the bias in this bin is quite similar to
that of the 0.55 < zphot < 0.6 bin. Therefore, the MegaZ amplitudes
are larger than ours for 0.6 < zppe < 0.65.

Correcting for stars makes a substantial difference in the large-
scale clustering of the MegaZ data in the lowest and highest redshift
bins, but has little effect in the middle two bins. We note that our
measurements show no appreciable change when we use only the
DR?7 area, suggesting that the differences between the two samples
must be due to additional systematic effects on either the MegaZ
data or our own.

We note that Thomas et al. (2011a) measured C, with these
MegaZ samples and found significant deviations in the expected
clustering (from ACDM models) to be confined to the lowest ¢
bins. For measurements of w(0), the covariance between angular

© 2011 The Authors, MNRAS 417, 1350-1373
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scales implies that an excess at low £ will affect measurements at
smaller angular scales. Given that

w(®) = Z <M) Py(cos 0)Cy, (33)

= 47t

where P, are Legendre polynomials, one can determine that a
400 per cent excess for £ < 5 and a 50 per cent excess for 5 <
£ < 10 (similar to the excess found in the 0.6 < zh,¢ < 0.65 bin by
Thomas et al. 2011b) translate to a 30 per cent larger w(f) at 0 =
3°. This estimate is roughly consistent with the difference between
the uncorrected (black triangles) and corrected (red squares) MegaZ
w(#), displayed in the lower right-hand panel of Fig. 17, that is, we
find the systematic effect of stars of the 0.6 < zphor < 0.65 MegaZ
w(#) to be consistent with the low ¢ excess found by Thomas et al.
(2011b).

Failure to apply correction for the systematic effects described
in this paper would clearly bias the cosmological parameters one
could determine based on our w(f) measurements. However, our
results suggest that C, measurements for £ > 10 might not result in
biased measurements. We therefore have no reason to believe that
the measurements of cosmological parameters by Thomas et al.
(2011a) have significant systematic errors associated with them.
The magnitude of potential systematic errors on the cosmological
parameters determined with C, spectra is studied in detail in Ho
et al. (in preparation).
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7 CONCLUSIONS

We have investigated the systematic effects on the angular distribu-
tion and spectroscopic/photometric redshift distributions of objects
matching the BOSS CMASS selection. We find that not correct-
ing for the foreground presence of stars, which effectively mask
small areas of the sky, produces a systematic error that is (gener-
ally) significantly larger than the statistical error at scales greater
than 3°. The measured w(8), after accounting for foreground stars,
are generally consistent with ACDM predictions, even at the largest
scales we measure, but are grossly inconsistent (x2/d.o.f. as large as
6.3) when the effects of foreground stars are ignored. Our primary
results can be summarized as follows:

(1) We select objects from the SDSS DR8 CAS, using the cri-
teria defined for the BOSS CMASS sample, yielding a sample of
1065 823 objects within our masked footprint which are matched to
112778 existing BOSS spectra (see Section 2.1). We train ANNz
to output a probability that each of these objects is a galaxy (see
Section 2.2).

(ii) Stars occult a small area of the sky, reducing the ability to
detect galaxies in their immediate vicinity (see Fig. 3). For our
sample, stars with i-band magnitude less than 20.3 have an effect
out to at least 10 arcsec (see the top right-hand panel of Fig. 3).

(iii) We account for stellar contamination by weighting every
object by the probability that it is a galaxy. When doing so, we
find a strong, negative correlation between the number density (in
deg™?) of objects in our sample and stars (see the red squares in
the bottom left-hand panel of Fig. 4 and the black triangles in the
bottom panel of Fig. 5), partially explained by our finding that stars
effectively mask their local area.

(iv) We correct for the effect of stars on the local density of
galaxies by assuming each star effectively removes constant amount
of area. We determine this area as described in Section 4.1. We find
that accounting for this area produces a significant change in w(8),
especially at large scales (see the left-hand panel of Fig. 7).

(v) We test two methods that can be applied in an attempt to
correct for the systematic errors introduced by any parameter that
can be turned into a map on the sky. The ‘Corr’ technique, first
developed for large-scale structure measurements by Ho et al. (in
preparation), is described in Section 3.3. When this method is ap-
plied to correct for the presence of stars, we recover nearly identical
results as when we account for the effective area of stars (see the
left-hand panel of Fig. 7). The ‘Weights’ method is described in
Section 4.3. We find that applying it to stars, Galactic extinction,
seeing, sky background, airmass and Schlafly et al. (2010) offsets in
d results in w(f) measurements that are nearly identical to those
we obtain applying the Corr method to stars and sky background
(see the right-hand panel of Fig. 7).

(vi) We use ANNz to estimate photometric redshifts for ev-
ery object in our sample. We find that including axial ratios im-
proves the accuracy of the photometric redshift estimates in our
testing set (see Section 5.1), and that including Galactic extinc-
tion improves their reliability when applied to the full sample (see
Section 5.2).

(vii) We find an asymmetry in the density of objects in the North
and South Galactic caps, which is removed (to within 0.1 per cent)
when we account for the 0.0064 difference in d | between the North
and South, discovered by Schlafly & Finkbeiner (2010) (see Sec-
tion 4.4). This offset in d, implies that the photometric redshift
estimates in the South are biased by 0.0034 compared to the North.

‘When we correct for this bias, we find that the ratio of the number
of galaxies in the South to the number in the North is approximately
constant and consistent with the ratio of their areas for 0.46 < zyho
< 0.65 (see Fig. 12). Our w(#) measurements for the full sample
appear similar to a weighted average of w(6) calculated separately
for the North and South (see Fig. 8).

(viii) We divide our photometric redshift catalogue into four
photometric redshift slices between 0.45 < zpho < 0.65, as sum-
marized in Table 2. We measure w(8) for each slice, applying the
various techniques we developed to correct for systematic errors
(see Fig. 15). We calculate the bias in each sample when using each
of the techniques, assuming the same fiducial ACDM model, the
results of which are summarized in Table 3.

(ix) We find that the magnitude of the corrections is larger than
the statistical error for zpn, > 0.5 and 6 > 3° and that apply-
ing some form of correction significantly reduces the minimum
x*d.o.f.

(x) We find scatter in the best-fitting bias values that is similar to
their 1o uncertainty, suggesting that the systematic error introduced
by the need for corrections is of similar magnitude to the statistical
uncertainty.

The presence of foreground stars must be accounted for in any study
of large-scale clustering — including the three-dimensional cluster-
ing of the BOSS spectroscopic data. Further, similar tests to those
presented here will likely be necessary for the radial distribution of
BOSS LGs and its impact on the measured clustering.

The results of our study have strong implications for future pho-
tometric redshift surveys (such as DES, PanSTARRS and LSST).
We are able to extensively investigate potential sources of system-
atics because we are determining zyn,; estimates in the most ideal
of cases: our training sample covers a large area, is representative
and ~10 per cent as large as our full catalogue. Further, we can in-
clude Galactic extinction values in the training because the training
sample covers a range representative of our full sample.

As documented throughout, it is not only the accuracy of the zpho
estimate that is important, but also the probability that an object is
a galaxy. Reliable probabilities that an object is a galaxy are crucial
for disentangling the systematic and contamination effects of stars
on the density field of LGs. Even though our training set is quite
large, the relationship shown in Fig. 2 is fairly noisy, implying that
identifying robust methods of assigning probabilities that objects
are galaxies should be a major focus of forthcoming photometric
redshift surveys.

Our ideal conditions may not be replicated often in the future
(though the photometry should be much better) and many photo-
metric redshifts will be determined via extrapolation of spectral
templates. Robust and exhaustive exploration of potential system-
atics will be difficult under such circumstances, yet extremely im-
portant, and their errors are likely to dominate at large scales. It
is encouraging that Thomas et al. (2011a) find very similar best-
fitting cosmological values when they separately use ANNz and
various template-based methods to determine their photometric
redshifts.

Finally, the results we present suggest that the major systematic
effects on our photometric redshift catalogue of LGs have been
identified and can be corrected for, allowing for robust cosmolog-
ical measurements. Ho et al. (in preparation) show how the same
systematics can be accounted for using the angular power spec-
trum and present the cosmological constraints obtained using the
catalogue of galaxies whose creation is described in this paper.

© 2011 The Authors, MNRAS 417, 1350-1373
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Studies such as Myers et al. (2006) have previously described methods for identifying and correcting for stellar contamination. However,
Fig. 3 and the left-hand panel of Fig. 4 show that the effect of stars on the density field of LGs is two-fold: (1) some of the objects are stars and
these are thus contaminants; and (2) the presence of stars systematically affects the number density of objects. Accounting for both effects
makes equations (28)—(30) more complicated. Given some fraction of the objects that are galaxies, f,, and some fraction that are stars, f,
they become

8 = fo (8 +€8) + fides (A1)

w;(e) = w;(@)/fgz - ws(e)ez - wsc(e)(fs/fg)z - ws,sc(e)zef%/fgv
(A2)

and

wo (9)_ Sws,sc(e)
e = YO fnsl®) . (A3)
fews(0)
where 8 is the overdensity of stars that act as contaminants and & is the overdensity of all stars. The sum of py, for the full catalogue
suggests that 95.9 per cent of the objects in the catalogue are galaxies. Our training data imply that ~1.2 per cent of these objects are quasars.
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Figure A1. Top panel: the measured angular autocorrelation function of all objects in our LG catalogue, with equal weighting for every object, multiplied by
6. The red squares display the result when we correct for both the contamination and the systematic effects of stars. The black line displays the measurements,
corrected for the systematic effect of stars, calculated using the ps, weighting. Bottom panel: the value of ¢, as a function of ¢, based on the cross-correlation
function of the unweighted LG data and the stars. The solid line displays the € we calculated from the py-weighted cross-correlation.

We therefore assume f; = 0.96 and f; = 0.03. We measure w(#) and the cross-correlation between LGs and stars using our full catalogue,
equally weighting each object. If we assume that §; = §,. and determine € via equation (A3), we find the result plotted in the black triangles
in the bottom panel of Fig. Al. The result is extremely close to the value of € we obtain when we weight by p,,, which is plotted with a solid
black line.

The top panel of Fig. Al displays the w(#) measured without any corrections or ps, weights (black triangles). The red squares display the
result when we correct for the contamination and systematic effects of stars. This yields similar results as when we correct the py,-weighted
measurements for the systematic effect of stars (solid line), but the unweighted correction is systematically smaller than what would be
required for the unweighted and weighted results to agree. The disagreement is likely due to the fact that we are assuming 8, = & and that
we know f;. While we can be confident in the value of f, by summing p,, the fact that some of the objects are quasars implies we do not
have an estimate of f,. Further, it is quite possible that the stars that are mistaken for LGs and are in our sample have a different distribution
than the full distribution of stars. Thus, we are making a number of (possibly incorrect) assumptions.

The approach we adopt in this paper is to weight each LG by its value of p,. Assuming that the py, values are accurate, this weighting
effectively makes f; = 1 (and f; = 0), considerably simplifying the situation. We no longer have to worry about the percentage of objects that
are quasars or if the distribution of contaminant stars is different from the full distribution of stars. When there is stellar contamination, the
cross-correlation between the observed LG density field and that of the stars will be ~f,ewy(0) + fw,(6). The autocorrelation function of stars
is positive and their cross-correlation function with LGs is negative (implying € is negative). Therefore, when there is stellar contamination,
one is likely to measure a cross-correlation that is ~0. This would make one (incorrectly!) assume that stars have no effect on the measured
autocorrelation function of the LGs. Note that a cross-correlation of ~0, when one knows that stellar contamination exists, implies that there
must be a systematic effect of the stars on the density field (since the autocorrelation function of the stars is non-zero). We strongly recommend
that, given reliable probabilities, one weights an object by the probability that it is a galaxy when measuring autocorrelation functions.

APPENDIX B: SYSTEMATIC CORRECTIONS
We display the solutions for €; based on equations (29) and (30) (as first derived by Ho et al., in preparation) for up to three systematics:

2 2 2 2 2
we s (wawi — wiw?,) — we w3 (wawr — wi,) + WiW Wi LWe 2 — Wi 3We1WT, — WiW3We 2 + Wi W2 3W1 2 W2

€= 2 PR 2 2wl w? 2 .2 (BD)
W3Wr W] — Wi W3WT 5 + 2Wr 3W1 2 Wi 3W1 + Wi 3W Wy — 2W] 3W] 5 — Wi 3Wj
wi Wi 2
€= ———>— | Wg2 — 7(wg,1 — €3W73) — €3Wy3 (B2)
wiwy — Wy, wq
1
€ = ;[wg,] — €W — w3, (B3)
1

where wyg ; is the cross-correlation function of the galaxies and potential systematic i and w;; is the cross-correlation function of systematics
i and j (and is an autocorrelation function when i = j). For only one systematic, the result is simple; one simply subtracts ezwsys(e) from the
measured LG w(0).
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We note that the solutions we present are implicitly dependent on 6, but €, as defined, is a constant [equation (28) does not allow for a 6
dependence]. If the measured value of € changes depending on 6, higher order corrections may be necessary. In this work, we did not find that
the error bars on € (as displayed in Fig. 6) warranted applying higher order corrections. However, the value of € for the seeing does appear to
have a strong dependence on the angular scale, suggesting that if the errors were smaller, higher order corrections could become necessary.
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