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ABSTRACT
The vast majority of globular clusters so far examined shows the chemical signatures of hosting
(at least) two stellar populations. According to recent ideas, this feature requires a two-step
process, in which the nuclearly processed matter from a ‘first generation’ (FG) of stars gives
birth to a ‘second generation’ (SG), bearing the fingerprint of a fully carbon–nitrogen–oxygen
(CNO) cycled matter. Since, as observed, the present population of most globular clusters is
made up largely of SG stars, a substantial fraction of the FG (�90 per cent) must be lost.
Nevertheless, two types of clusters dominated by a simple stellar population (FG clusters)
should exist: clusters initially too small to be able to retain a cooling flow and form a second
generation (FG-only clusters) and massive clusters that could retain the CNO-processed ejecta
and form an SG, but were unable to lose a significant fraction of their FG (mainly-FG clusters).
Identification of mainly-FG clusters may provide an estimate of the fraction of the initial mass
involved in the formation of the SG. We attempt a first classification of FG clusters, based on
the morphology of their horizontal branches (HBs), as displayed in the published catalogues
of photometric data for 106 clusters. We select, as FG candidates, the clusters in which the
HB can be reproduced by the evolution of an almost unique mass. We find that less than 20
per cent of clusters with [Fe/H] < −0.8 appear to be FG, but only ∼10 per cent probably had
a mass sufficient to form at all an SG. This small percentage confirms on a wider data base
the spectroscopic result that the SG is a dominant constituent of today’s clusters, suggesting
that its formation is an ingredient necessary for the survival of globular clusters during their
dynamical evolution in the Galactic tidal field. In more detail we show that Pal 3 turns out to
be a good example of FG-only cluster. Instead, HB simulations and space distribution of its
components indicate that M53 is a ‘mainly-FG’ cluster that evolved in dynamic isolation and
developed a small SG in its core thanks to its large mass. Mainly-FG candidates may also be
NGC 5634, NGC 5694 and NGC 6101. In contrast, NGC 2419 contains >30 per cent of SG
stars, and its present dynamical status bears less information on its formation process than the
analysis of the chemical abundances of its stars and of its HB morphology.

Key words: stars: abundances – stars: horizontal branch – globular clusters: general – globular
clusters: individual: NGC 2419 – globular clusters: individual: M53 – globular clusters:
individual: Pal 3.

1 IN T RO D U C T I O N

A general finding of recent years is that all globular clusters (GCs)
so far spectroscopically examined contain multiple stellar popula-
tions. This is significatively shown in the recent analysis of Carretta
et al. (2009) of about 2000 stars in 19 GCs, which shows that all
these clusters display the sodium–oxygen (Na–O) anticorrelation,
signature of the presence of a population of stars sodium richer and

�E-mail: vittoria.caloi@iasf-roma.inaf.it (VC); dantona@oa-roma.inaf.it
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oxygen poorer than the halo stars of the same metallicity. The Na–O
anticorrelation is typical of GCs, whose constituent stars belong to
two or more stellar populations differing in the abundances of the el-
ements produced by the hot carbon–nitrogen–oxygen (CNO) cycle
and by other proton-capture reactions on light nuclei. In fact, these
chemical signatures are present also in turn-off stars and among the
subgiants (e.g. Gratton et al. 2001; Briley, Cohen & Stetson 2002;
Briley et al. 2004), so they cannot be imputed to ‘in situ’ mixing
in the stars, but must be due to some process of self-enrichment
occurring at the first stages of the cluster life. Pieces of photometric
evidence for the presence of multiple populations are also numerous
and sometimes suggestive of star formation occurring in separate
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successive bursts. The photometric signatures of different popula-
tions can be imputed in part to helium differences, inferred from
the morphology of the horizontal branches (HBs; D’Antona et al.
2002; D’Antona & Caloi 2004; Lee et al. 2005), or from the pres-
ence of multiple main sequences (Norris 2004; Piotto et al. 2005,
2007).

In view of all this, at present the formation of globular clusters
is considered a two-step process lasting no longer than ∼100 Myr,
during which the nuclearly processed matter from a ‘first genera-
tion’ (FG) of stars gives birth, in the cluster innermost regions, to a
‘second generation’ (SG) of stars with the characteristic signature
of a distribution of element abundances fully CNO cycled.

In this regard, a major problem remains and is rarely faced:
the spectroscopic information shows that, in the clusters so far
examined, the percentage of stars of the SG is generally ∼50–80
per cent (Carretta et al. 2009), as also show the results by interpreting
the HB morphologies in terms of helium enrichment (D’Antona &
Caloi 2008). This large percentage cannot be the result of chemical
evolution within a ‘closed box’, simply because the processed matter
available from the more massive stars is always a small percentage
of the FG mass.1 Anomalous initial mass functions (IMFs) of the FG
may help to increase this percentage, but they pose further problems
for the dynamical survival of clusters; instead, it seems necessary
that the matter forming the SG stars is collected from a much larger
stellar ensemble. In other words, the cluster has managed to lose
most of its FG stars, and is now the ‘small’ remnant of the evolution
of a much more massive – and maybe also of a much bigger – stellar
system.

So the first proposal on the subject, by Bekki & Norris (2006),
assumes that all GCs are formed within dwarf galaxies, which
are now dispersed. This kind of formation is generally accepted
to have occurred in the most massive clusters, such as in ω Cen
M22, and in M54, the cluster that belongs to the Sagittarius dwarf
galaxy (Ibata, Gilmore & Irwin 1994; Bellazzini et al. 2008). These
clusters also show metallicity spreads (e.g. among others Nor-
ris & Da Costa 1995; Marino et al. 2009; Carretta et al. 2010a)
that are not present in most of the other clusters. It is more dif-
ficult to believe that all GCs have formed within dwarf galax-
ies. We point out e.g. that old massive clusters in the Magel-
lanic Clouds also show the Na–O anticorrelation (Mucciarelli et al.
2009).

A different proposal to explain the presence of multiple stellar
populations in Galactic GCs, with the observed number fractions
of FG and SG stars, was advanced by D’Ercole et al. (2008). The
model is based on the loss of the most of the FG stars at early
phases during the formation of the SG stars in a cooling flow at
the cluster’s centre. The idea in support of this model is that the
mass-loss from the explosion of Type II supernovae (SNe II) and
the associated loss of the remnant gas from which the FG stars had
formed, occurring just previous to the formation of the SG, produce
an expansion of the cluster, leading to a loss of a significant fraction
of FG stars. D’Ercole et al. (2008) show that 90 per cent or more
of the initial FG mass may be lost, so that the SG may become an
important fraction of the total stellar population, even overcoming
the FG. However, if the total size of the cluster was strongly under
filling its tidal radius, or the cluster evolved in isolation, the FG

1 In the case of massive asymptotic giant branch (AGB) polluters, the mass
consistent with the chemical anomalies (including both processed ejecta
and diluting gas) goes from ∼8 to 12 per cent of the initial cluster mass,
depending on the IMF, see e.g. Vesperini et al. (2010).

cannot be lost and the cluster dynamically survives to the SN II
epoch, maybe leaving a looser cluster structure as a fingerprint of
the mass-loss from the SN II explosions (e.g. Bastian et al. 2008;
Vesperini, McMillan & Portegies Zwart 2009). In this case, the SG
formation remains a small perturbation in the cluster history, and
cannot represent more than a few per cent of the total mainly-FG
cluster.

Of course, true ‘FG-only’ clusters should exist: those in which an
SG could not form because their initial mass was too low to allow
for the formation of a cooling flow (D’Ercole et al. 2008; Vesperini
et al. 2010; Bekki 2011). These clusters will generally survive only
if they do not interact strongly with the Galactic gravitational field;
otherwise, the expansion due to the SN II mass-loss will lead to the
cluster disruption. The fact that most GCs so far examined host a
large fraction of SG stars seems to imply that the very formation of
an SG – that occurs after the SN II epoch and is not subject to the
cluster expansion – and its dynamical interaction with the FG stars
allowed massive clusters to survive in a tidally limited environment
(D’Antona & Ventura 2008), although they lose more than 90 per
cent of the initial mass.

A dynamical identification of these two important classes of
clusters (FG-only and mainly-FG) is particularly complicated as
it would require a reliable reconstruction of the individual cluster’s
dynamical histories and initial structural properties. For example,
NGC 2419 strongly underfills its Jacobi radius (rJ), the tidal radius
of the cluster due to the galactic field, computed in the plain Roche
approximation (e.g. Portegies Zwart, McMillan & Gieles 2010),
defined by its present mass and Galactocentric distance; on the ba-
sis of its current structural properties and position in the Galaxy,
one might naively consider NGC 2419 to be a good candidate of a
‘mainly-FG’ cluster. However, as discussed in Cohen et al. (2010)
and Di Criscienzo et al. (2011b), its eccentric orbit (Casetti-Dinescu
et al. 2009) and/or, possibly, a different galactic environment in
its early stages of evolution must have caused a large mass-loss,
and this cluster appears to contain a significant fraction of SG
stars.

We point out that the formation of the SG subsystem is likely to
have a significant impact on the cluster structural properties. While
young clusters in nearby galaxies form compact, with a half-mass
radius rh < 1 pc (Lada & Lada 2003), they expand thanks to mass-
loss by stellar winds and SN II explosions in the first 30 Myr of life
(e.g. Bastian et al. 2008), and this expansion may be enhanced if the
cluster is initially mass segregated (Vesperini et al. 2009). If the SG
forms in a cooling flow, this leads naturally again to an even more
compact stellar distribution (D’Ercole et al. 2008), with a small rh.2

Otherwise, if the SG does not form, the cluster maintains the larger
rh acquired in the first expansion phase, so a cluster may be tidally
filling (e.g. rh/rJ > 0.1; Baumgardt et al. 2010) simply because it
has not developed an SG.

Considering the possible ambiguities in the identification of FG-
only and mainly-FG clusters from dynamical information and from
their present structure, we have decided to resort to a photometric
criterion based on the evolutionary status of their HBs. In this work,
we examine the existing astronomical literature to identify clusters
that we expect to be either FG-only (low initial mass) or mainly-FG
(high initial mass) clusters. If we can identify mainly-FG clusters,
and discover the presence of a small percentage of SG stars in them,

2 As shown by Vesperini et al. (2011), a further indication that the SG is
more centrally concentrated than the FG lies in the lack of barium stars in
the SG of several clusters (D’Orazi et al. 2010).
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this will help constraining the model for the formation of multiple
generations in GCs.

2 SELECTION O F FG-ONLY CLUSTERS

One easy way to recognize the presence of a second generation in
a GC is to consider the morphology of the HB (e.g. D’Antona et al.
2002; Gratton et al. 2010). Historically, the dispersion in mass along
the HB was imputed to a dispersion in mass-loss (Rood 1973), but
recent developments have shown that it may be in large part due
to differences in the helium content that appears together with the
chemical signatures of the second generation (Marino et al. 2011,
and references therein). As discussed in D’Antona & Caloi (2008),
bimodal HBs, blue tails, gaps in the stars distribution and, in gen-
eral, HBs that extend from the red to the faint blue are the most
clear candidates for the presence of multiple stellar generations.
As for less extreme morphologies, the case of M3 was examined
in detail by Caloi & D’Antona (2008). While an appropriate dis-
persion in mass-loss (σ ∼ 0.02 M�; Catelan, Ferraro & Rood
2001) allows us to reproduce the ratios in a number among the
HB components (red, variable and blue), the detailed colour distri-
bution along the HB and the RR Lyrae peaked period distribution
cannot be reproduced by a ‘normal’ population with mass spread.
In contrast, a generation of stars with normal helium, with a very
small-mass dispersion (σ � 0.003 M�) can account very well for
the red and variable HB members, while the blue region is popu-
lated by a second star generation with variable helium. The very
good fit obtained in these conditions for the number versus pe-
riod distribution of RR Lyrae stars, otherwise unattainable (Catelan
2004; Castellani, Castellani & Cassisi 2005) strongly supports this
interpretation.

In this framework, the single-population GCs should be identified
by an HB that can be reproduced by the evolution of an almost
unique mass. We adopt the presence of a ‘short’ HB as a first
indication of an FG cluster and then consider its dynamical status.
To single out the candidates, we examined the colour–magnitude
(CM) diagrams in the data bases by Rosenberg et al. (2000a), 2000b)
and by Piotto et al. (2002), covering a total of 96 GCs. Besides, we
took into account five other clusters (NGC 5686, NGC 6749, NGC
7492, Arp2 and Terzan 8) for a total of 101 CM diagrams present
in the current literature. Clusters with bad CMs, insufficient for our
purposes (e.g. CM diagrams of clusters in the bulge or projected on
to it), have not been considered. Besides, we exclude those clusters
with [Fe/H] > −0.8 that show an exclusively red HB. In these
cases, even if an SG is present, it is not easily identifiable with
simple photometric criteria (see e.g. the case of 47 Tuc discussed in
Di Criscienzo et al. 2010).

After this first screening, we are left with 86 CM diagrams, among
which FG clusters must be identified. Only one cluster is left with
a red HB (NGC 6652). For the others, whose HB is blue, we se-
lect those in which the extension in V magnitude of the HB does
not exceed 1 mag. We further exclude the clusters (with a short
blue HB) for which the O–Na anticorrelation has been observed,
namely: M30, NGC 6397 (Carretta et al. 2009) and NGC 7492 (Co-
hen & Melendez 2005). When available, we checked the results on
more than one CM diagram. These checks allowed us to eliminate
clusters that in a first moment looked like an FG. A clear exam-
ple is given by NGC 6535, which looks like hosting a blue HB of
about 1 visual magnitude range in the data by Testa et al. (2001).
A look at the photometry by Sarajedini (1994) shows that the HB
extends for ∼1.8 visual magnitudes, and, furthermore, that it con-

tains two very faint extreme HB stars. On this basis, this cluster was
excluded.

We consider, in addition, a group of small mass (1.5–4.5 × 104

M�), far away clusters (galactocentric distance dgc � 70 Kpc):
AM1, Eridanus, Pal 3, Pal 4, Pal 14, apparently 1–2 Gyr younger
than M3, but of similar metallicity. Their HBs are short, exclusively
red, except for Pal 3, in which seven RR Lyrae variables are found.
They all appear as good candidates for FG-only clusters.

Out of the 86 clusters we selected 12 clusters as FG (14 per
cent). To this figure we may add the five clusters listed above. This
constitutes ∼19 per cent of the galactic GCs for which we have
reasonably good CM diagrams. This estimate may be a lower limit
(as we have excluded the red HB, metal-rich clusters), but a detailed
exam of the sample may also show that it is an upper limit. Note
in fact that three clusters with the same photometric characteristics
have been excluded on the basis of spectroscopy, which is not yet
available for the clusters in the list.

Data for the selected clusters are presented in Table 1, where
we also list NGC 2419, to be discussed later. [Fe/H], absolute vi-
sual magnitude Mv and the distances from the Sun (d�) and from
the Galactic centre (dgc) are taken from Harris (2003). The mass
is computed by assuming a mass to visual luminosity ratio of 2.
The half-mass radius is either directly taken from Baumgardt et al.
(2010) or computed according to their prescription (assuming that
the true half-mass radius is 1.33 times the projected half-mass radius
given by Harris 2003). The Jacobi radius is computed according to
Baumgardt et al. (2010) prescription. In Column 10, we list the
number of known RR Lyrae stars, if any, and in Column 11 we in-
dicate the predominant colour of the HB (generally B = blue, only
one R = red cluster is present) and whether the star distribution ap-
pears peaked (p; like in M53) or more distributed (d). The presence
of RR Lyrae is a further indication of the extension in colour of the
HB, although the fact that they are generally very few indicates that
the RR Lyrae’s gap is likely traversed by stars evolving out of the
zero-age horizontal branch (ZAHB; see later).

Several of the 17 selected clusters have a small (present) mass.
It is possible that also in the past this mass was small enough that
the clusters could not form the SG stars. Recent hydrodynamic
1D computations by Vesperini et al. (2010), covering a wide range
of cluster structural parameters, show that all the ejecta that may
form SG stars are retained above ∼106 M� of initial cluster mass,
while the retention is very limited for all models of initial mass
�105 M�. Taking into account that clusters in Table 1 may have
lost mass, due to two-body relaxation processes and tidal shocks,
we may adopt a conservative limit of log (Mc/M�) < 4.8 as a
formal dividing line below which clusters do not form SG stars
(FG-only). This choice selects eight clusters in Table 1, seven of
which are also in the list of tidally filling clusters at dgc > 8 kpc
by Baumgardt et al. (2010). The other clusters in common between
ours and those of the Baumgardt et al. (2010) list are the compact
clusters (rh/rJ < 0.05) M53, NGC 5694 and NGC 5634. We suggest
then that the small-mass clusters have a larger rh because they did
not form the SG, as outlined in Section 1.

In our list, we are left with nine clusters (∼10 per cent) that
may have initially developed an SG. This small fraction is consis-
tent with, and extends, the spectroscopic result by Carretta et al.
(2009), 2010b), who find in their whole 19 clusters sample a pre-
dominant (>50 per cent) SG. We must conclude that very few of
the clusters that may develop the SG do not lose a high fraction of
their initial mass or even that only a few clusters that do not form
an SG survive to the dynamical interaction with the Galactic tidal
field. The formation of a central compact SG system appears to
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Table 1. Candidates FG clusters, plus NGC 2419.

Name [Fe/H] Mv log Mc d�(kpc) dgc (kpc) rc (pc) rh(pc) rJ RR Lyrae HB

NGC 4372 −2.09 −7.79 5.34 5.8 7.1 3.92 8.75 78.8 0 (A) B, d (a)
NGC 5024 (M53) −1.99 −8.70 5.71 17.8 18.3 2.48 7.66 197.0 59 (n) B, p (n)

NGC 5634 −1.88 −7.69 5.31 25.2 21.2 2.05 5.27 160.0 20 (B) B, p (b)
NGC 5694 −1.86 −7.81 5.36 34.7 29.1 0.80 4.43 205.5 0 (A) B, p (c)
NGC 5897 −1.80 −7.21 5.12 12.4 7.3 9.40 10.12 67.8 11 (C) B, p? (d,e,f)
NGC 6101 −1.82 −6.91 5.00 15.3 11.1 6.81 10.12 81.7 0 (A) B, p (g)
NGC 6139 −1.68 −8.36 5.58 10.1 3.6 0.54 3.20 60.2 4 (A) B, d (c)
NGC 6235 −1.40 −6.44 4.82 11.4 4.1 1.59 3.70 36.8 3 (A) B, d (c,h)
NGC 6652 −0.96 −6.66 4.91 10.1 2.7 0.28 2.54 29.7 0 (A) R (c)
NGC 6717 −1.29 −5.66 4.50 7.1 2.4 0.22 1.86 20.1 1 (A) B, d (a,c)

Arp 2 −1.76 −5.29 4.35 28.6 21.4 17.60 21.13 76.9 9 (B) B, d (i)
Terzan 8 −2.00 −5.05 4.26 26.0 19.1 10.06 10.06 66.7 3 (B) B, p? (j)

AM1 −1.80 −4.71 4.12 121.9 123.2 7.09 23.64 207.0 0 (A) R (k)
Eridanus −1.46 −5.14 4.29 90.2 95.2 8.74 14.00 198.6 0 (A) R (l)

Palomar 3 −1.66 −5.70 4.51 92.7 95.9 17.25 23.7 236.4 7 (j) R (j)
Pal 4 −1.48 −6.02 4.64 109.2 111.8 23.29 22.87 289.2 0 (A) R (l)

Pal 14 −1.52 −4.73 4.13 73.9 69.0 26.94 32.96 141.7 0 (A) R (k)

NGC 2419 −2.12 −9.58 6.06 84.2 91.5 11.40 23.78 753.0 75 (D) B, p+bh (m)

References: (a) Brocato et al. (1996); (b) Bellazzini, Ferraro & Ibata (2002); (c) Piotto et al. (2002); (d) Ferraro, Fusi Pecci & Buonanno
(1992); (e) Sarajedini (1992); (f) Testa et al. (2001); (g) Marconi et al. (2001); (h) Howland et al. (2003); (i) Buonanno et al. (1995);
(j) Montegriffo et al. (1998); (k) Hilker (2006); (l) Stetson et al. (1999); (m) Di Criscienzo et al. (2011b); (n) Rey et al. (1998); (A)
Clement et al. (2001); (B) Salinas et al. (2005); (C) Clement & Rowe (2001); (D) Di Criscienzo et al. (2011a).

be a key ingredient for the survival of a cluster to the first phases
of cluster evolution (D’Antona & Ventura 2008; D’Ercole et al.
2008).

3 TH E C A S E S O F PA L O M A R 3 A N D M 5 3

We examine in detail two clusters: Pal 3 (an example of FG-only
cluster) and M53 (for which we pose the case of a mainly-FG
cluster). For comparison, we also discuss the case of NGC 2419:
although it is now evolving fully inside its Jacobi radius, the cluster
contains a substantial extreme SG, implying a peculiar dynamical
history. The HBs of these three clusters are shown in Fig. 1, to-
gether with the histograms of the colour and magnitude distribution
of HB stars. It is straightforward to appreciate that Pal 3 HB is
extremely short and that the HB of M53 shows a very peaked distri-
bution in colour, with a tail of redder stars. The strikingly different
HB of NGC 2419 not only shows a strongly peaked colour and
magnitude distributions for its more luminous HB component, as

in M53, but has also a long tail of bluer stars, ending with a blue
hook.

3.1 Simulations

The HB simulations for Pal 3 and M53 are based on the models
published in D’Antona et al. (2002) for metallicity Z = 2 × 10−4

and 10−3, with solar-scaled α-element abundances. Helium contents
of Y = 0.24 and 0.28 are considered. The simulations for NGC 2419
are based on the models presented in Di Criscienzo et al. (2011b) for
a mixture with [Fe/H] = −2.4 and [α/Fe] = 0.2. Helium contents of
Y = 0.24, 0.28 and 0.42 have been considered. A detailed description
of models is given in the quoted papers.

Synthetic models for the HB are computed according to the
recipes described in D’Antona & Caloi (2008). We adopt the appro-
priate relation between the mass of the evolving giant MRG and the
age, as a function of the helium content and metallicity. The mass

Figure 1. HB stellar distributions for three very different cases. Left-hand panel: Pal 3 from Hilker (2006); central panel: M53 data from Rey et al. (1998);
right-hand panel: NGC 2419 from Di Criscienzo et al. (2011b). The histograms represent the number counts of HB stars as a function of the colour (all panels)
and magnitude (central and right-hand panel).
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of the HB is then

MHB = MRG(Y , Z) − �M. (1)

Here, �M is the mass lost during the RG phase. We assume that
�M has a Gaussian dispersion σ around an average value �M0

and that both �M0 and σ are parameters to be determined and in
principle do not depend on Y . Once Z and Y chosen, the Teff lo-
cation of an HB mass is fixed. Consequently, different ages can be
adopted, provided that the mass-loss is consistently adjusted. For
HBs extending into the variability region, the RR Lyrae are identi-
fied as those stars that, in the simulation, belong to the Teff interval,
3.795 < log Teff < 3.86. Their periods are computed according to
the pulsation equation (1) by Di Criscienzo, Marconi & Caputo
(2004).

3.2 Palomar 3

Palomar 3 is a remote cluster at about 96 kpc from the Galactic cen-
tre and an estimated orbital minimum distance from it is ∼82.5 kpc
(Dinescu, Girard & van Altena 1999). Since its proper motion is
uncertain, it is considered possible that it may not be bound to the
Galaxy and that it may be falling on to it for the first time. Pal 3 is
one of the most extended clusters with a half-light radius of about
24 pc and a truncation radius of about 130 pc. It is faint, with Mv ∼
−5.7, and its destruction time is estimated to be about 20 Hubble
times (Gnedin & Ostriker 1997).

Two CM diagrams of Pal 3 are available (Stetson et al. 1999;
Hilker 2006). This tiny cluster presents a sparse but well-defined
red giant branch (RGB) and an HB populated in the red and variable
regions; the turn-off luminosity suggests an age slightly lower than
that of M3, by ∼1 Gyr (VandenBerg 2000; Catelan et al. 2001) or
∼2 Gyr (Stetson et al. 1999) – see also Hilker (2006). Catelan et al.
(2001) investigated the CM diagram in the context of the ‘second-
parameter’ problem, in comparison with that of M3. By means of
HB simulations, they found that a mass dispersion of σ ∼ 0.02 M�
was required to reproduce the HB of M3, while the HB of Pal 3 was
consistent with a null mass dispersion. The chemical composition
has been investigated by Koch, Côté & McWilliam (2009); they
obtained high-resolution spectra for four red giants and determined
the abundances for 25 elements (α-, iron-peaked, neutron-capture
elements). The sample is limited, but a few results appear relatively
safe: the α-enhancement is compatible with that found in halo field
stars and typical GCs as M13; so are the Fe-peaked and neutron-
capture element ratios. In addition, Koch et al. (2010) find that
the n-capture elements appear to derive from the r-process only,
as observed only in the very metal poor field stars (Honda et al.
2007) and in the GC M15 (Sneden, Pilachowski & Kraft 2000).
Then, the n-capture patterns in Pal 3 do not require enrichment
processes other than occurring in SN II explosions. Besides, an
Na–O anticorrelation is not evident, although a weak one cannot be
ruled out by Koch et al.’s data.

On the basis of the chemical and structural characteristics of the
cluster, that is, the absence of s-process elements and anticorrela-
tions (admittedly, an absence not yet safely established) we may
consider Pal 3 as a good candidate to an FG-only cluster. For what
concerns the dynamical evolution, let us note however that Sohn
et al. (2003) found a weak evidence of tidal extensions around the
cluster, out to ∼4 times the tidal (truncation) radius. In view of the
long relaxation times at the centre and at rh (7 × 109 and 8 × 109 yr,
respectively) and the estimated extremely long destruction time, we
think that, in any case, such extra-tidal objects should constitute a
minor side effect.

Figure 2. HB stellar distribution as observed by Hilker (2006), and super-
imposed simulation.

In Fig. 2, we show the result of a simulation of the HB distri-
bution. The HB stars are taken from Hilker (2006). We find, as
expected, a very small-mass spread, σ = 0.0015 M�, consistent
with previous estimates (Catelan et al. 2001). Therefore, the ‘HB
criterion’ corresponds well to the other properties of this cluster,
that is, confirmed to be an FG-only cluster.

3.3 M53 (NGC 5024)

This cluster is rather massive, with Mv = n − 8.70 and M = 5 ×
105 M�. The relaxation times at the centre and at rh are 5.8 × 108

and 4.6 × 109, respectively. Its destruction time is given by Gnedin
& Ostriker (1997) as about 30 Hubble times. It is rather far away
at 18.3 kpc from the Galactic centre at a height above the Galactic
plane of 17.5 kpc. It is generally considered among the very metal
poor clusters ([Fe/H] = −1.99; Harris 2003). The present rh/rJ is
0.039, and its maximum value at the perigalactic distance of 15.5
kpc (Allen, Moreno & Pichardo 2006) is only slightly larger (0.044).
Therefore, this cluster appears to have evolved always well inside
its gravitational well.

The first indication that M53 may be an FG cluster3 comes from
the CM diagram. Its short HB barely reaches B − V = −0.05,
with very few stars beyond this colour. In the cluster there are 59
known RR Lyrae variables of Oo type II (Kopacki 2000); a complete
sample of the HB gives 12 red HBs, 35 variables and 257 blue HBs,
these last ones almost all concentrated in a clump at a colour close
to the blue edge of the variable region (Rey et al. 1998). At the
metallicity of M53, the HB tracks beginning in the colour region of
this clump (B − V ∼ 0.0) evolve directly towards the red (Sweigart
& Gross 1976; Di Criscienzo et al. 2011b, see also the left-hand

3 D’Antona & Caloi (2008) examined the HB structure of this cluster and
considered that it could be one of those GCs in which the FG had been
completely lost, together with NGC 6397 and M13. For M53 the main
feature leading to this conjecture was the possible presence of a high nitrogen
content in the integrated spectrum (Li & Burstein 2003). Here we have more
information that make us prefer the first stellar generation as the only one
present, and not the second.
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Figure 3. Left-hand panel: we show the HB tracks of M = 0.68, 0.70 and 0.72 M� for Y = 0.24, Z = 0.0002 superimposed on the data by Rey et al. (1998).
Right-hand panel: a successful simulation (triangles) is superimposed on the data by Rey et al. The blue-filled triangles correspond to stars with Y = 0.24,
while the black open triangles are the stars with Y = 0.26 and 0.27 (see the text). The full histograms on the sides represent the number versus magnitude and
number versus colour distributions, as observed (full lines) and simulated (dot-dashed lines).

panel of Fig. 3), and an HB of this type is the result of the evolution
of a well-defined HB mass, with a very small dispersion in mass-
loss. The RR Lyrae and the red HB are the tails of the evolution of
this typical evolving HB mass. This hypothesis is confirmed by the
simulations described in the following. A very similar situation is
found in the upper HB of NGC 2419, and is examined in extensive
detail in Di Criscienzo et al. (2011b).

The presence of chemical inhomogeneities has been investigated
by Martell, Smith & Briley (2008), who studied the absorption bands
of CN and CH. What they found is ‘a broad but not strongly bimodal
distribution of CN bandstrength’. In their fig. 6 they compare it
with the situation in NGC 6752: while in the latter cluster the CN
distribution is neatly bimodal, in M53 it appears as a single Gaussian
with a ‘hunch’ on the shoulder towards higher abundances (see
their fig. 3, but see also Smolinski et al. 2011). Unfortunately, we
cannot infer information on the existence of an anticorrelation C–N
from these data, since metal-poor clusters do not show the CH–CN
anticorrelation, even in the presence of the C–N bimodality (see the
results for M15 by Cohen, Briley & Stetson 2005). Nevertheless,
on the basis of the relatively small range in C and N abundance
variation in M53, Martell et al. observe that may be ‘the polluting
material was not processed through the full CNO cycle’, in which
case the cluster should not show the Na–O anticorrelation.

In order to better define at what level M53 is dominated by the
FG, we performed simulations of the HB morphology of this cluster.
As the HB population is strongly peaked at V ∼ 17.0 mag and
B − V ∼ 0.0, and the HB evolution is strictly redward, there is
no possibility of reproducing the sparse blueward extension unless
we hypothesize that (1) either the mass-loss on the RGB is slightly
asymmetric or (2) the bluest HB members have a slightly larger
helium content, so that they have a smaller progenitor mass. In this
latter case, a small SG population would be present, characterized
by this small increase in helium.

Our simulations are performed according to this second frame-
work. We assumed V = 17.4 mag as the luminosity separating the

main body of the HB from a short tail of stars with a possibly differ-
ent origin. We considered a total of 450 HB stars with V < 17.4 mag,
plus 50 fainter stars with V > 17.4 (see below). This number has
been obtained by scaling the data by Rey et al. (1998) with respect
to the total number of RR Lyrae variables with known periods (59).
As for the RR Lyrae, we tried to reproduce their period distribution.

It was possible to reproduce the entire HB at V < 17.4 attributing
to the cluster an age of 12 Gyr, a standard helium content Y =
0.24 and an average mass-loss on the RGB of 0.113 M�, with a
dispersion σ (M) = 0.015 M�; a Gaussian error of 0.03 mag has
been associated with both B and V magnitudes. Other choices of
parameters can be made with equivalent success, e.g., a smaller
mass dispersion can be associated with larger observational errors.
For the fainter HB, we assume a slightly higher Y content, from
0.26 to 0.27. A successful simulation, superimposed to Rey et al.’s
data, with the mentioned choices for the distance modulus and the
reddening, is shown in the right-hand panel of Fig. 3.

The average evolving mass on the HB is 0.7 M�. The simulated
mass distribution as a function of the colour is shown in Fig. 4,
where we see that the variable and red HB stars represent the tail of
the distribution and can easily be interpreted as evolving from the
ZAHB at 0.69–0.72 M�. The ZAHB of the models with Z = 0.0002
and Y = 0.24 is also shown on the simulation. We can appreciate
that very few ZAHB stars, with masses up to 0.74 M�, are present
at colours B − V ∼ 0.2, as discussed above. As the RR Lyrae
distribution with colour is dominated by stars already evolved from
the ZAHB, it is statistically less constrained than the peak region.
The total number and overall behaviour of RR Lyrae (see Fig. 5)
are reasonably reproduced by the simulation presented in Fig. 4.
We did not consider it necessary to obtain a better agreement of the
period distribution, even if in principle this appears possible, as we
know by experience (D’Antona & Caloi 2008). In our simulation,
the slight asymmetry in the histogram of the number versus mass
as shown in Fig. 4 is due to the presence of the small percentage
of stars with a higher helium content, but the same result could be
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Figure 4. HB mass distribution as a function of colour for the simulation
of Fig. 3. The blue-filled triangles have Y = 0.24, while the black smaller
open triangles are the stars with Y = 0.26 and the larger open triangles have
Y = 0.27. The histogram of the number versus stellar mass shown in the
left-hand panel is the sum of the Gaussian distribution of the 450 stars with
Y = 0.24 plus the slightly asymmetric extension towards smaller masses of
the higher helium stars. The dots mark the ZAHB of the models adopted for
the simulation, having chemistry Z = 0.0002 and Y = 0.24, while the three
open circles show the (coincident) ZAHB of the models with Y = 0.28 that
have been used to simulate the helium-increased population. Note that no
difference appears in the colours versus mass, but the Y = 0.28 models are
more luminous.

Figure 5. RR Lyrae distribution (shaded) from Kopacki (2000) and Clement
et al. (2001), and a simulated distribution of periods from the simulation of
Fig. 3.

obtained by assuming a slight asymmetry in the mass lost along the
RGB.

We examined the relative spatial distribution of the faintest HB
stars relative to the other HB members and to the red giants having

Figure 6. Cumulative distribution of the majority of HB stars (thick red
line) is compared with the distributions of the bluest HB stars (upper
blue line) and of the red giants (dashed green line). The sample has
been divided by considering as ‘extreme’ all the HB stars at Mv > 17.4
mag.

V < 18. The comparison employs the Rey et al. (1998) data, con-
verting the pixel scale of their data base by knowing that 1 pixel =
0.22 arcsec and is shown in Fig. 6. While the RGB and the main
body of HB stars have the same cumulative distribution, the fainter
HB stars appear indeed more concentrated. Is this an indication in
favour of our interpretation, as the small SG would have formed
in the very core of the cluster where the cooling flow concentrates
the gas from the AGB ejecta? The study of dynamical mixing of
two stellar generations, the second one formed exclusively in the
core, is limited, until today, to the N-body simulations presented
by D’Ercole et al. (2008) in the context of their model for GC
formation. Further study is certainly needed to understand whether
the current properties of M53 (Table 1) are consistent with the ob-
served only partial mixing of SG and FG. M53 is not unique in
this respect. For example, a central concentration for the SG is
found in NGC 3201 by Kravtsov et al. (2010) and Carretta et al.
(2010b), and in NGC 6752 by Kravtsov et al. (2010). The sec-
ond line of interpretation, that the giants in the cluster core suffer
stronger dynamical interactions and are subject to a stronger mass-
loss, should also be carefully tested by modelling the interactions
in the cluster core. At present, we suggest that spectroscopic infor-
mation (e.g. the presence or lack of high sodium and low oxygen
in a small fraction of M53 red giants) would be the best obser-
vational test of either hypothesis. At the present stage, we propose
that the current data show some evidence that M53 is a ‘mainly-FG’
cluster.

Visual inspection of their CM diagrams indicates that NGC 5634,
NGC 5694 and NGC 6101 have HB characteristics very similar to
those of M53, so they can also be mainly-FG candidates, and it
would be important to assess their chemical properties as well.
Note that only NGC 6101 is tidally filling: the other three clusters
(including M53) have a small ratio rh/rj, and actually lie close
to the line giving the position of a cluster of 105 M� with rh =
3 pc in the plane rh/rJ versus. dgc of fig. 2 in Baumgardt et al.
(2010).
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4 N G C 2 4 1 9 V E R S U S PA L 3 A N D M 5 3

Our analysis started from the consideration that the dynamical status
of a cluster (tidally limited or not) at its formation time or later
on during the course of its life would determine its evolution and
survival. However, since it is not straightforward to go back from
the present dynamical status to the previous dynamical evolution,
we resorted to a pure photometric parameter (the morphology of the
HB) to select FG clusters. In this way we have not only recovered
that Pal 3 is an FG-only cluster (Koch et al. 2009, 2010), but have
also shown that M53 may be an example of a mainly-FG cluster.

At this point it is relevant to enquire how a cluster would appear,
in principle similar to M53, in which the SG appears to be a rele-
vant constituent. We consider NGC 2419, a metal-poor, far away,
isolated cluster (Table 1). It is twice as massive as M53, and much
farther from filling its Galactic tidal radius than M53: the compari-
son between the truncation radius and Jacobi radius provides a ratio
rt/rJ = 0.57 for M53 and only 0.28 for NGC 2419. Given the simi-
larity in heavy element abundance, we can compare the HBs of M53
and NGC 2419 (Fig. 1). As mentioned before, the brighter regions
of the HB are very similar: the same concentration of HB members
in a very small colour interval on the blue side of the variable region,
with RR Lyrae and red HB stars likely the product of these blue
stars, as discussed in the simulation of M53 HB (Fig. 3). But the
HB in NGC 2419 continues, with a lower star density, well beyond
the limit in M53, ending with the most populated (∼30 per cent
of the HB stars!) blue hook known in Galactic GCs (Ripepi et al.
2007). Although Sandquist & Hess (2008) argue that the symmetric
distribution of stars along the MS favours a single stellar population
model for this cluster, Di Criscienzo et al. (2011b) have discussed
that both the HB morphology and the colour distribution of the
giants suggest the presence of two well-separated populations, one
of which has a very high helium content. They also show that the
partial asymmetry that would result in the MS colour distribution
would be hidden by the present photometric errors. If this is the
case, the dynamical evolution of this cluster cannot have occurred
in isolation, as a much larger initial mass would have been required
to provide the 30 per cent very helium rich population presently
found in NGC 2419. The small spread in calcium present among the
giants in NGC 2419 (Cohen et al. 2010) also shows that this cluster
was able to retain at least some SN II ejecta, spectroscopically ex-
cluding the FG-only possibility. In Fig. 7, we show a simulation of
the whole HB of NGC 2419, well reproducing the whole extension
in colour and magnitude of this extreme HB. In order to reproduce
the upper HB we assumed Y = 0.24 and σ = 0.008 M�. The long
tail, between the more luminous peak of stars and the blue hook, is
reproduced by 90 stars, and assuming the same helium content and
a broader and larger mass-loss (�M = 0.22 and σ = 0.05 M�). A
similar fit is obtained by assuming stars with an increased and vari-
able helium content, and a smaller spread in mass-loss, as described
above for M53. For the blue hook we assume Y = 0.42 and σ = 0.01
M�. The blue hook simulation follows the prescriptions explained
in Di Criscienzo et al. (2011b) to which we refer for details.

5 D ISCUSSION

We adopted a simple photometric criterion (the extension of the HB)
to select candidates for FG clusters from existing large data bases
of CM diagrams of GCs. The list of 17 candidates is tentatively
divided into eight FG-only clusters (that could not form an SG at
all) and nine mainly-FG clusters (that could form an SG, but did
not lose most of the FG mass). The small percentage of mainly-FG

Figure 7. We show the HB data for NGC 2419 in the Hubble Space Tele-
scope near-infrared magnitude mF814W versus the colour mF435W − mF814W

presented in Di Criscienzo et al. (2011b). The histograms of colour and mag-
nitude distributions are also shown as full (blue). Superimposed we show a
simulation of the entire HB, obtained by fitting the luminous part with 390
stars having standard helium abundance Y = 0.24, mass-loss �M = 0.073
M� and spread in the HB masses σ = 0.008, the middle part with 90 stars
having the same Y = 0.24 and �M = 0.22 M�, σ = 0.05 M�; the blue
hook is reproduced with 160 stars with Y = 0.42, �M = 0.110 M� and
σ = 0.01 M�. Further assumption of the models for the blue hook stars is
provided in Di Criscienzo et al. (2011b). The histograms of the simulation
are dot-dashed.

clusters indicates that very few of the clusters that develop the SG
do not lose a high fraction of their initial mass, and we suggest that
non-isolated clusters are destroyed by the dynamical interaction
with the Galactic tidal field, unless they are able to form an SG,
whose dynamical mixing with the FG stars allows the cluster to
survive (see also D’Antona & Ventura 2008).

We studied in more detail the HBs of Pal 3, M53 and, for compar-
ison, NGC 2419. We found a similarity between the HB in M53 and
the upper HB in NGC 2419, the total cluster mass being the only
evident difference between them. Given their structural similarity,
we may be witnessing the influence of the total mass only on the
first evolutionary stages in GC life (or at least in the very metal poor
ones). The three clusters represent very different evolutionary cases
as follows.

(1) Pal 3 is consistent with hosting an FG-only population.
(2) M53, a much more massive cluster, has an HB consistent with

an almost pure FG population; by examining synthetic models for
its HB stellar distribution, we suggest that a small second generation
may be present (mainly-FG cluster), given by the bluest and faintest
HB stars, mostly concentrated in the cluster inner regions.

(3) NGC 2419, more than double the mass of M53 and close
in mass to the most massive clusters in the Galaxy, with an appar-
ently ‘evident’ chemical and dynamical isolated evolution, exhibits
a consistent blue hook, a crucial signature of the presence of mul-
tiple star generations. So it is reasonable to expect strong chemical
anomalies in this cluster (O–Na and Mg–Al anticorrelations) – not
yet observed, given its extreme distance. The presence of a small
spread in calcium (Cohen et al. 2010) testifies however that this
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cluster was able to retain at least some SN II ejecta, spectroscopi-
cally excluding the FG-only possibility.

We have presented reasons to support the hypothesis that M53
is a mainly-FG cluster. Were this the case, and if, as likely, the
chemical and dynamical evolution of the cluster had taken place
within its tidal radius, the interesting possibility would arise of
estimating the percentage of second generation stars resulting from
such evolution, after estimating the stellar losses due to two-body
interactions during the Galactic lifetime. To clarify this scenario, it
would be important to obtain a CM diagram of M53 with modern
telescopes in order to establish with higher precision the colour of
the population peak on the HB. In fact, the large part of the HB
members with smaller colours can be assumed to belong to the
second generation, once excluded the possibility of an asymmetry
in mass-loss along the RG branch. This derives from the fact that the
evolution of ZAHB members bluer than the RR Lyrae strip develops
strictly redward. At present, the fraction of the SG seems to be ∼0.1
(=50/500), but this is surely an approximate value.

The consistency of HB morphologies with chemical characteris-
tics known at present, even if encouraging, must be substantiated
by spectroscopic investigations of the giant branches of all the three
clusters, to put in evidence the presence/absence of, e.g., the Na–O
anticorrelation. We hope that this information will help to establish
a few firm points in this complex subject.

AC K N OW L E D G M E N T S

This work has been supported through PRIN INAF 2009 ‘Formation
and Early Evolution of Massive Star Cluster’. We thank Enrico
Vesperini for useful discussion and comments, and M. Hilker and
P. Stetson for information concerning their data for Pal 3. The
anonymous referee is thanked for his/her stimulating report.

REFERENCES

Allen C., Moreno E., Pichardo B., 2006, ApJ, 652, 1150
Bastian N., Gieles M., Goodwin S. P., Trancho G., Smith L. J., Konstan-

topoulos I., Efremov Y., 2008, MNRAS, 389, 223
Baumgardt H., Parmentier G., Gieles M., Vesperini E., 2010, MNRAS, 401,

1832
Bekki K., 2011, MNRAS, 412, 2241
Bekki K., Norris J. E., 2006, ApJ, 637, L109
Bellazzini M., Ferraro F. R., Ibata R., 2002, AJ, 124, 915
Bellazzini M. et al., 2008, AJ, 136, 1147
Briley M. M., Cohen J. G., Stetson P. B., 2002, ApJ, 579, L17
Briley M. M., Harbeck D., Smith G. H., Grebel E. K., 2004, AJ, 127, 1588
Brocato E., Buonanno R., Malakhova Y., Piersimoni A. M., 1996, A&A,

311, 778
Buonanno R., Corsi C. E., Pecci F. F., Richer H. B., Fahlman G. G., 1995,

AJ, 109, 650
Caloi V., D’Antona F., 2008, ApJ, 673, 847
Carretta E. et al., 2009, A&A, 505, 117
Carretta E. et al., 2010a, ApJ, 714, L7
Carretta E., Bragaglia A., D’Orazi V., Lucatello S., Gratton R. G., 2010b,

A&A, 519, A71
Casetti-Dinescu D. I., Girard T. M., Majewski S. R., Vivas A. K., Wilhelm

R., Carlin J. L., Beers T. C., van Altena W. F., 2009, ApJ, 701, 29
Castellani M., Castellani V., Cassisi S., 2005, A&A, 437, 1017
Catelan M., 2004, ApJ, 600, 409
Catelan M., Ferraro F. R., Rood R. T., 2001, ApJ, 560, 970
Clement C. M., Rowe J. F., 2001, AJ, 122, 1464
Clement C. M. et al., 2001, AJ, 122, 2587
Cohen J. G., Melendez J., 2005, AJ, 129, 1607

Cohen J. G., Briley M. M., Stetson P. B., 2005, AJ, 130, 1177
Cohen J. G., Kirby E. N., Simon J. D., Geha M., 2010, ApJ, 725, 288
D’Antona F., Caloi V., 2004, ApJ, 611, 871
D’Antona F., Caloi V., 2008, MNRAS, 390, 693
D’Antona F., Ventura P., 2008, The Messenger, 134, 18
D’Antona F., Caloi V., Montalbán J., Ventura P., Gratton R., 2002, A&A,

395, 69
D’Ercole A., Vesperini E., D’Antona F., McMillan S. L. W., Recchi S., 2008,

MNRAS, 391, 825
D’Orazi V., Gratton R., Lucatello S., Carretta E., Bragaglia A., Marino A.

F., 2010, ApJ, 719, L213
Di Criscienzo M., Marconi M., Caputo F., 2004, ApJ, 612, 1092
Di Criscienzo M., Ventura P., D’Antona F., Milone A., Piotto G., 2010,

MNRAS, 408, 999
Di Criscienzo M. et al., 2011a, AJ, 141, 81
Di Criscienzo M. et al., 2011b, MNRAS, 414, 3381
Dinescu D. I., Girard T. M., van Altena W. F., 1999, AJ, 117, 1792
Ferraro F. R., Fusi Pecci F., Buonanno R., 1992, MNRAS, 256, 376
Gnedin O. Y., Ostriker J. P., 1997, ApJ, 474, 223
Gratton R. G. et al., 2001, A&A, 369, 87
Gratton R. G., Carretta E., Bragaglia A., Lucatello S., D’Orazi V., 2010,

A&A, 517, A81
Harris W. E., 2003, Catalog of Parameters for MilkyWay Globular Clusters,

http://physwww.physics.mcmaster.ca/ harris/mwgc.dat
Hilker M., 2006, A&A, 448, 171
Honda S., Aoki W., Ishimaru Y., Wanajo S., 2007, ApJ, 666, 1189
Howland R., Sarajedini A., Tiede G. P., Gokas T., Djagalov R., Martins D.

H., 2003, AJ, 125, 801
Ibata R. A., Gilmore G., Irwin M. J., 1994, Nat, 370, 194
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