
Mon. Not. R. Astron. Soc. 416, 1163–1180 (2011) doi:10.1111/j.1365-2966.2011.19112.x

Bayesian time series analysis of terrestrial impact cratering
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ABSTRACT
Giant impacts by comets and asteroids have probably had an important influence on terrestrial
biological evolution. We know of around 180 high-velocity impact craters on the Earth with
ages up to 2400 Myr and diameters up to 300 km. Some studies have identified a periodicity
in their age distribution, with periods ranging from 13 to 50 Myr. It has further been claimed
that such periods may be causally linked to a periodic motion of the Solar system through
the Galactic plane. However, many of these studies suffer from methodological problems,
for example misinterpretation of p-values, overestimation of significance in the periodogram
or a failure to consider plausible alternative models. Here I develop a Bayesian method for
this problem in which impacts are treated as a stochastic phenomenon. Models for the time
variation of the impact probability are defined and the evidence for them in the geological
record is compared using Bayes factors. This probabilistic approach obviates the need for ad
hoc statistics, and also makes explicit use of the age uncertainties. I find strong evidence for a
monotonic decrease in the recorded impact rate going back in time over the past 250 Myr for
craters larger than 5 km. The same is found for the past 150 Myr when craters with upper age
limits are included. This is consistent with a crater preservation/discovery bias modulating an
otherwise constant impact rate. The set of craters larger than 35 km (so less affected by erosion
and infilling) and younger than 400 Myr is best explained by a constant impact probability
model. A periodic variation in the cratering rate is strongly disfavoured in all data sets. There
is also no evidence for a periodicity superimposed on a constant rate or trend, although this
more complex signal would be harder to distinguish.

Key words: methods: data analysis – methods: statistical – Earth – meteorites, meteors,
meteoroids – planets and satellites: surfaces.

1 IN T RO D U C T I O N

About 180 terrestrial impact craters are known. The high velocity
of the impact means that even relatively small comets or asteroids
produce large craters. The meteor which crated the 1.2 km diameter
Barringer crater in Arizona, for example, was probably only 50 m
across. Since the discovery of evidence for a large impact 65 Myr
ago at the geological boundary between the Cretaceous and Tertiary
periods (the K–T boundary) (Alvarez et al. 1980) and its implication
in the mass extinction event at that time (including the demise of
the dinosaurs), it has become clear that bolide impacts have had a
significant impact on the evolution of life.

The large impactors are believed to be either asteroids from the
main asteroid belt, or comets from the Oort cloud (Shoemaker
1983). The multibody dynamics involved in putting these on a
collision course with the Earth implies that cratering is a random
phenomenon, but the rate of impacts is not necessarily constant in

�E-mail: calj@mpia.de

time. It has been suggested that gravitational perturbations of the
Oort cloud due to the Galactic tide, passages of the Solar system
near to molecular clouds, or an unseen solar companion, may send
large numbers of comets into the inner Solar system as a comet
shower, increasing the impact rate (Davis, Hut & Muller 1984;
Rampino & Stothers 1984; Torbett & Smoluchowski 1984; Napier
1998; Wickramasinghe & Napier 2008; Gardner et al. 2011). Sim-
ple dynamical calculations indicate that the Sun oscillates vertically
about the Galactic mid-plane with a period of 52–74 Myr, depend-
ing on the mass density assumed (Bahcall & Bahcall 1985; Shuter
& Klatt 1986; Stothers 1998). In parallel to this, several studies
claim to have found evidence for a temporal periodicity in the im-
pact cratering record over the past few hundred million years, with
numerous periods ranging from 13 to 50 Myr having been identi-
fied (Alvarez & Muller 1984; Rampino & Stothers 1984; Grieve
et al. 1985; Montanari, Campo Bagatin & Farinella 1998; Napier
1998; Yabushita 2004; Chang & Moon 2005; Napier 2006). Some
authors make a causal link, suggesting that each mid-plane crossing
increases the impact rate. It has also been suggested that period-
icities in cratering may be associated with alleged periodicities in
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mass extinctions or in biodiversity variations, although there is little
evidence linking any mass extinction apart from the K–T one to a
giant impact (Alvarez 2003; Hallam 2004; see Bailer-Jones 2009
for a more general review of extraterrestrial influence on terrestrial
climate and biodiversity). Other studies of the crater record con-
clude there to be insufficient evidence for periodicity (e.g. Grieve
1991; Grieve & Pesonen 1996; Yabushita 1996; Jetsu & Pelt 2000).

While these are a priori reasonable suggestions worthy of further
analysis, many of the studies claiming to have identified periods are
compromised by problems with their methodology. Typical prob-
lems are misinterpreting p-values, overestimating the significance
of periodogram peaks or failing to consider a sufficient set of mod-
els. Possibly because the data comprise only crater ages (with no
attached magnitudes like more familiar time series), many studies
have developed ad hoc statistics to look for periods, many of which
have poorly explored statistical properties. Identifying ‘periods’ is
relatively easy – any time series can be expressed as a sum of
Fourier terms; clusters of points can always be found – but properly
assessing significance is harder. A common mistake is to interpret
evidence against a null hypothesis of ‘random data’ as evidence for
some periodic model, neglecting to realize that both may be inferior
to a plausible third alternative. Although these are known limita-
tions of frequentist hypothesis testing which have been discussed
extensively (e.g. Berger & Sellke 1987; Kass & Raftery 1996; Mar-
den 2000; Berger 2003; Jaynes 2003; MacKay 2003; Christensen
2005), this seems not to have discouraged their use.

The aim of this paper is to analyse the crater time series with
well-motivated statistical methods. One of the key features is to
write down explicit models for the impact phenomenon. A second
feature is that I consider this phenomenon to be a stochastic process:
rather than expecting the impact events to follow a deterministic
pattern, I model the time variation of the impact probability. This
better accommodates the astrophysical and geological contexts (e.g.
smooth variations in the torques on the Oort cloud, or slow erosion
of craters). By using the Bayesian framework to analyse the data,
we can properly calculate the evidence for the different models and
compare them on an equal footing. The critical aspect is that we
must compare evidence for the entire model (the average likelihood
over the model parameter space), rather than comparing the tuned
maximum likelihood fit (which generally favours the more complex
model).

Craters are difficult to date, and some have very large age un-
certainties (Grieve 1991; Deutsch & Schärer 1994). There has been
a lot of agonizing in the literature about how to deal with age un-
certainties, and some studies may have biased their conclusions by
removing ‘poor’ data. Contrary to claims in the literature, including
craters with large uncertainties is not a problem for model compar-
ison provided we use these uncertainties appropriately. The method
developed in this paper does this, and it can also include craters
which only have upper age limits.

The impact crater record is certainly incomplete. Of most rele-
vance is the preservation bias: on account of erosion and infilling,
older, smaller craters are less likely to survive or to be discovered.
The oldest known crater is about 2400 Myr old, but there is an
obvious paucity of craters older than about 700 Myr (only 14 of
176 older than this). For this reason I focus my analysis on craters
larger than 5 km in diameter which have ages (or upper age limits)
below 250 Myr, although I also extend the analysis back to 400 Myr
before present (BP). Rather than attempting to ‘de-bias’ the data, I
model the data as they are, so strictly I am modelling not the orig-
inal impact history (which we do not observe), but the combined
impact/preservation history.

After outlining the data in Section 2, I describe the method in
Section 3. This is tested and demonstrated on simulated data in
Section 4. The results are presented in Section 5, followed by a
discussion of these and the method and a comparison with other
studies in Section 6. I summarize and conclude in Section 7. I will
say very little about the wider topics of the comet and asteroid
population, impact effects, crater geology and aging, etc. These are
reviewed by Shoemaker (1983), Grieve (1991), Deutsch & Schärer
(1994) and Grieve & Pesonen (1996), amongst others.

2 IMPAC T CRATER DATA

The data are taken from the Earth Impact Database (EID), a com-
pilation from the literature maintained by the Planetary and Space
Science Centre at the University of New Brunswick.1 This has been
the source of data for many previously published studies, and has
been continuously expanded as new craters have been discovered,
and information revised as improved age or size estimates obtained.
As of 2010 September 30 this listed 176 craters. My study focuses
primarily on craters younger than 250 Myr with diameters d > 5 km.
59 craters fulfil these criteria and are listed in Table 1. 42 of these
have an age and age uncertainty in the EID. These uncertainties
are interpreted as 1σ Gaussian uncertainties (see Section 3.2 for
why this is so). The data on the remaining 17 craters fall into three
groups.

(i) 13 craters have only upper limits to their ages. These can be
included in the analysis consistently, as outlined in Section 3.5.

(ii) Two craters, Bosumtwi and Haughton, have no age uncer-
tainty reported in the EID. Craters younger than 50 Myr have dating
errors ranging from 0.1 to 20 Myr (or 0.3 to 60 per cent), so it is
difficult to estimate an appropriate uncertainty. I rather arbitrarily
assign 10 per cent uncertainties to the ages of these two craters.

(iii) Two craters, Avak and Jebel Waqf as Suwwan, have age
ranges (3–95 and 37–56 Myr, respectively) rather than estimates
with uncertainties in the EID. I consider the range as a 90 per cent
confidence interval of a Gaussian distribution with mean equal to
the average of the limits (so the standard deviation is 0.30 times the
range).

Crater diameters are notoriously difficult to measure. No uncer-
tainties are listed in the EID, but the uncertainty can be a factor of 2
or more for buried craters (e.g. Grieve 1991). On account of erosion
and infilling, the older or smaller a crater is, the less likely it is to
be preserved or discovered, resulting in increasing incompleteness
with look-back time. For this reason – and following several other
studies – I limit my analysis to craters larger than 5 km in diameter.
Our knowledge of geological processes suggests that for times back
to 150–250 Myr, most craters larger than 5 km should be reasonably
well preserved (although this is something I will test). Note that I
only use the diameters to select the sample; they are not used in the
actual analysis.

We certainly have not identified all impacts: the continents have
not been explored equally thoroughly, and craters from marine im-
pacts are rarer and harder to identify. However, provided these
selection effects are time-independent (and size-independent above
5 km), they do not introduce any relevant biases.

The continents have also moved. 250 Myr ago, at the Permian–
Triassic boundary, there was a larger concentration of land mass
towards southern latitudes than there is now. Given that asteroid

1 http://www.passc.net/EarthImpactDatabase/

C© 2011 The Author, MNRAS 416, 1163–1180
Monthly Notices of the Royal Astronomical Society C© 2011 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/416/2/1163/1058876 by guest on 20 April 2024



Time series analysis of impact cratering 1165

Table 1. The 59 craters in the EID with diameters greater than
or equal to 5 km and ages or age upper limits below 250 Myr.

Name Age σ (age) Diameter
(Myr) (Myr) (km)

Araguainha 244.4 3.25 40
Avak 49.0 28.0 12
Beyenchime-Salaatin 40 20 8
Bigach 5 3 8
Boltysh 65.17 0.64 24
Bosumtwi 1.07 0.107 10.5
Carswell 115 10 39
Chesapeake Bay 35.3 0.1 90
Chicxulub 64.98 0.05 170
Chiyli 46 7 5.5
Chukcha < 70 6
Cloud Creek 190 30 7
Connolly Basin < 60 9
Deep Bay 99 4 13
Dellen 89 2.7 19
Eagle Butte < 65 10
El’gygytgyn 3.5 0.5 18
Goat Paddock < 50 5.1
Gosses Bluff 142.5 0.8 22
Haughton 39 3.9 23
Jebel Waqf as Suwwan 46.5 5.8 5.5
Kamensk 49 0.2 25
Kara 70.3 2.2 65
Kara-Kul < 5 52
Karla 5 1 10
Kentland < 97 13
Kursk 250 80 6
Lappajrvi 73.3 5.3 23
Logancha 40 20 20
Logoisk 42.3 1.1 15
Manicouagan 214 1 100
Manson 74.1 0.1 35
Maple Creek < 75 6
Marquez 58 2 12.7
Mien 121 2.3 9
Mistastin 36.4 4 28
Mjlnir 142 2.6 40
Montagnais 50.5 0.76 45
Morokweng 145 0.8 70
Oasis < 120 18
Obolon’ 169 7 20
Popigai 35.7 0.2 100
Puchezh-Katunki 167 3 80
Ragozinka 46 3 9
Red Wing 200 25 9
Ries 15.1 0.1 24
Rochechouart 214 8 23
Saint Martin 220 32 40
Sierra Madera < 100 13
Steen River 91 7 25
Tin Bider < 70 6
Tookoonooka 128 5 55
Upheaval Dome < 170 10
Vargeao Dome < 70 12
Vista Alegre < 65 9.5
Wanapitei 37.2 1.2 7.5
Wells Creek 200 100 12
Wetumpka 81 1.5 6.5
Zhamanshin 0.9 0.1 14

impactors are not distributed isotropically – their orbits are con-
centrated in the ecliptic – we may expect this continental drift to
introduce a time variation in the impact rate. However, calculations
by Le Feuvre & Wieczorek (2008) show that the impact probability
actually has only a very weak latitudinal dependence, being only
4 per cent lower at the poles than at the equator. The net depen-
dence will be even lower when (isotropic) comets are included.
Thus, continental drift produces a very minor bias which I ignore.

Fig. 1 shows the ages and diameters of the 46 craters in Table 1
which have age estimates (rather than upper limits). Fig. 2 shows
the ages uncertainties on these points and includes the 13 craters
with upper limits on their ages.

I perform the analysis on several different data sets over three age
ranges. Craters with age estimates and uncertainties (σ t) originating
from the EID form the basic data sets. Adding to these the craters
for which I have assigned ages/age uncertainties forms the extended
data sets. Further adding craters with upper age limits (sup) gives
the full data sets. I do not make any cut on the age uncertainties.
The data sets are as follows:

(1) basic150 (32 craters) age ≤ 150 Myr, σ t original;
(2) ext150 (36 craters) age ≤ 150 Myr, σ t original or assigned;
(3) full150 (48 craters) ext150 plus craters with sup ≤ 150 Myr;
(4) basic250 (42 craters) age ≤ 250 Myr, σ t original;
(5) ext250 (46 craters) age ≤ 250 Myr, σ t original or assigned;
(6) full250 (59 craters) ext250 plus craters with sup ≤ 250 Myr

and
(7) large400 (18 craters) age ≤ 400 Myr, d > 35 km, σ t original.

This final data set, large400, extends further back in time, but
now we definitely expect a bias of preferential preservation and
discovery for larger craters above 5 km. Following previous studies
(see Section 6), I therefore just retain craters with much large di-
ameters in an attempt to avoid this bias. In addition to the 14 craters
matching craters from Table 1, the four additional (older) craters in
this set are: Clearwater West (290 ± 20 Myr, 36 km); Charlevoix
(342 ± 15 Myr, 54 km); Woodleigh (364 ± 8 Myr, 40 km) and Siljan
(376.8 ± 1.7 Myr, 52 km).

3 ME T H O D

I now introduce the time series analysis method, showing how to
model a generic time-of-arrival data set with a probabilistic model
and how to calculate its evidence.

3.1 Bayesian hypothesis testing

The goal of hypothesis testing is to identify which of a set of
hypotheses is best supported by the data. More quantitatively, we
would like to determine P(M|D), the probability that a hypothesis
or model M is true given a set of measured data D. Here D is the
ages and age uncertainties for a set of craters. M could be ‘uniform
distribution’ or ‘periodic distribution’, for example.

Perhaps surprisingly, orthodox (or frequentist) statistics lacks a
general framework for this problem and offers instead a number of
recipes based on defining some statistic. These normally involve
calculating the value for that statistic (e.g. χ 2), and comparing it
with the value which would be achieved by some ‘random’ (noise)
model. As discussed at some length in the literature, some of these
techniques are inconsistent or misleading, even when we just have
two alternative hypotheses (e.g. Berger & Sellke 1987; Kass &
Raftery 1996; Berger 2003; Christensen 2005; Bailer-Jones 2009;
see also Section 6). The Bayesian approach, in contrast, is direct and
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1166 C. A. L. Bailer-Jones

Figure 1. The 59 craters listed in Table 1, excluding the 13 craters with upper limits on their ages. Several craters have identical or very similar ages, so for
the sake of this plot I shifted some ages by up to 0.5 Myr in order to distinguish them.

Figure 2. The 59 craters listed in Table 1, including the 13 craters with upper limit ages (plotted with the ‘]’ symbol). There are two upper identical points at
70 Myr, 6 km. The error bars are the age uncertainties and in some cases are smaller than the size of the points. Note that diameter is plotted on a logarithmic
scale.

often turns out to be quite simple. It inevitably involves a number
of numerical integrals, but these can be solved with computers. For
more background on Bayesian techniques in general see Jeffreys
(2000), Jaynes (2003), MacKay (2003) or Gregory (2005).

To calculate P(M|D) for one particular model M0 we use Bayes’
theorem:

P (M0|D) = P (D|M0)P (M0)

P (D)

= P (D|M0)P (M0)
k=K∑
k=0

P (D|Mk)P (Mk)

= 1

1 +
∑k=K

k=1 P (D|Mk)P (Mk)

P (D|M0)P (M0)

,

(1)

where k = 0, . . . , K represents all plausible models. If there are only
two, M0 and M1, this simplifies to

P (M0|D) =
[

1 + P (D|M1)P (M1)

P (D|M0)P (M0)

]−1

. (2)

This follows because implausible models are – by definition – those
with negligible model prior probabilities, P(M) � 1. P(D|M) is
called the evidence for model M (derived in the next section). If
we assign the two models equal prior probabilities, then the ev-
idence ratio alone determines the posterior probability, P(M0|D).

This evidence ratio is called the Bayes factor

BF10 = P (D|M1)

P (D|M0)
(3)

of model 1 with respect to model 0. When BF10 = 1 the posterior
probability is 0.5 for both models. When BF10 � 1 then P(M0|D) �
1/BF, and when BF10 � 1 then P(M0|D) � 1 − BF10. If we calculate
Bayes factors greater than 10 or less than 0.1 then we can start to
claim ‘significant’ evidence for one model over the other (e.g. Kass
& Raftery 1996; Jeffreys 2000). I shall use Bayes factors throughout
this paper to compare models.

Given the Bayes factors for all models relative to M0, the posterior
probability of this model is then

P (M0|D) =
[

1 +
k=K∑
k=1

BFk0
P (Mk)

P (M0)

]−1

. (4)

One difficulty of the Bayesian approach is that in order to calculate
this posterior probability one must specify all plausible models
(in order to get the correct summation needed to normalize the
probabilities). This is often not possible (other than for simple two-
way hypotheses). Yet even when we cannot identify all models,
Bayes factors remain a valid way of comparing the relative merits
of a set of models, and thus identifying the best of these.
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Time series analysis of impact cratering 1167

3.2 Measurement model for time-of-arrival data

The critical characteristic of the crater time series is that it is just a list
of times (with uncertainties), without any corresponding quantity.
This is unlike most other time series encountered in astrophysics,
such as a light curves or radial velocity time series. [Some authors
have used crater size or inferred impact energy as the ‘dependent
variable’ in a time series analysis (e.g. Yabushita 2004), but this is
risky given the significant uncertainties in diameters.]

Consider a single event j, with measured age sj and corresponding
uncertainty σ j. This measured age is an estimate of the (unknown)
true age, tj. We express this uncertainty probabilistically. Assum-
ing a Gaussian distribution for our uncertainty, the probability of
observing the measurement Dj = (sj, σ j) given the true age is

P (Dj |tj ) = 1√
2πσj

e−(tj −sj )2/2σ 2
j , (5)

which is normalized with respect to tj.2

3.3 Stochastic time series models

The goal is to compare plausible models which could produce the
observed impact crater time series. Given the astrophysical context,
we do not expect the sequence of crater impacts to be deterministic.
For example, when we postulate that the time series is ‘periodic’,
we do not expect the events to have a strict spacing, even if the ages
were measured arbitrarily accurately. An exact, intrinsic rhythm
perturbed only by measurement errors seems highly implausible a
priori. We should instead understand periodic to mean a periodically
varying probability of an impact. This is a stochastic model. It is
described by P(tj|θ , M), the probability of getting an impact at time
tj given model M with parameters θ . A simple periodic model would
be a sinusoid, described by the two parameters period and phase.

3.4 Bayesian evidence for time-of-arrival data

I now put the above considerations together to derive the Bayesian
evidence, P(D|M).

The probability of observing data Dj from model M with pa-
rameters θ is P(Dj|θ , M), the likelihood for one event. The time
series model predicts the true age of an event, which is unknown.
Applying the rules of probability we marginalize over this to get

P (Dj |θ, M) =
∫

tj

P (Dj, tj |θ, M) dtj

=
∫

tj

P (Dj |tj , θ, M)P (tj |θ, M) dtj

=
∫

tj

P (Dj |tj )P (tj |θ, M)dtj .

(6)

(The last step follows because once tj is specified, Dj becomes
conditionally independent of θ and M.) This involves two known
quantities, the measurement model and the time series model. As

2 The maximum entropy principle tells us that if we only have the mean and
standard deviation of a quantity, then the least informative (most conserva-
tive) probability distribution for this quantity is the Gaussian. Of course, if
the standard deviation is a significant fraction of the age, then a Gaussian
has a significant probability mass at negative age. As this problem affects
no more than five events listed in the table, I consider this as an adequate
approximation.

Figure 3. Principle of the likelihood calculation (equation 7).

the data are fixed, we consider both of these as functions of tj. Both
must be properly normalized probability density functions.

If we have a set of J events for which the ages and uncertain-
ties have been estimated independently of one another, then the
probability of observing these data D = {Dj}, the likelihood, is

P (D|θ, M) =
∏

j

P (Dj |θ, M)

=
∏

j

∫
tj

P (Dj |tj )P (tj |θ, M) dtj .

(7)

The principle of this calculation is illustrated in Fig. 3: the likelihood
of an event for a given model is the integral of the probability
distribution for the event (equation 5) over the time series model,
P(tj|θ , M). Specific cases for the latter are introduced in Section 3.6
below.

The evidence is obtained by marginalizing the likelihood over the
parameter prior probability distribution, P(θ |M),

P (D|M) =
∫

θ

P (D, θ |M) dθ

=
∫

θ

P (D|θ, M)P (θ |M) dθ.

(8)

For a given set of data (crater time series), we calculate this evidence
for the different models we wish to compare, each parametrized by
some parameters θ . The parameter prior P(θ |M) encapsulates our
prior knowledge (i.e. independent of the data) of the probabilities
of different parameters, normally established from the context of
the problem (see Section 3.7).

A fundamental aspect of this evidence framework for model as-
sessment is that we are not interested in the ‘optimal’ value of
the parameters for some model. We are not interested in ‘fitting’
the model, but rather in determining how good the model is over-
all at explaining the data. The evidence measures this by averag-
ing the likelihood, which is defined at fixed θ , over the prior for
θ . The prior probability distribution is therefore important, and
should be considered as part of the model definition. For example,
a periodic model with a non-zero prior over the period range 10–
50 Myr is distinct from a model with a non-zero prior over the range
50–100 Myr. The reason why we should integrate over the possible
solutions rather than selecting the best one will be illustrated and
discussed in some detail.

3.5 Inclusion of events with age limits

By representing the unknown, true age of an event probabilistically,
we take into account the age uncertainties. It also allows us to
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1168 C. A. L. Bailer-Jones

Table 2. Stochastic time series models. Time t increases into the past.
SigProb:Neg and SigProb:Pos are special cases of SigProb with λ < 0 and
λ > 0, respectively. SinProbX:Y specifies SinProb for X < T < Y (in Myr).

Name Pu(t|θ , M) Parameters

UniProb 1 None
SinProb 1

2 {cos[2π(t/T + φ)] + 1} T , φ

SinBkgProb 1
2 {cos[2π(t/T + φ)] + 1} + b T , φ, b

SigProb
[
1 + e−(t−t0)/λ

]−1
λ, t0

SinSigProb SinProb + SigProb T , φ, λ, t0

include events which only have upper or lower limits on their ages
(censored data).

Given a (hard) upper limit, sup
j , all we know is that the true age

is younger. It seems intuitive (and the maximum entropy principle
reaches the same conclusion) that the least informative thing we can
do is to assign a flat probability distribution to P(Dj|tj) from 0 to sup

j

(here Dj = sup
j ), i.e.

P (Dj |tj ) =
⎧⎨
⎩

1

s
up
j

when 0 < tj < s
up
j

0 otherwise,

(9)

which is normalized. tj increases into the past, as is the case through-
out this study.

Events which have lower limits to their ages may be treated in the
same way, provided we can also assign an upper limit to the possible
age (required to normalize the probability density function). It is
not obvious how to assign this. We might use the oldest event in the
data set or the age of the oldest rocks searched for craters. As only
two events with lower limits occur in the time ranged analysed (and
both quite low, at 35 Myr), these are not included.

3.6 Impact cratering time series models

Table 2 lists the time series models which will be tested. The second
column gives the (unnormalized) probability density function that
an event occurs at time t for given parameters. (For given parameters,
these distributions must be normalized over the time-span of the data
when they are used in the likelihood integral.) SinProb is a sinusoid
with period T and phase φ. SinBkgProb adds a constant background,
b, to this. SigProb is a sigmoidal function parametrized by the
steepness of the slope (λ) and the time of the centre of the slope
(t0). It is used to model a monotonic trend in the event probability,
with λ < 0 giving a decrease in probability with (look-back) time.
SinSigProb models a periodic signal on top of a trend. Examples of
these functions are shown later.

3.7 Choice of parametrization and parameter
prior distribution

To calculate the evidence (equation 8) for the models, we integrate
over the parameters. In order that this integral converge we must
either adopt a proper prior or, equivalently, adopt a finite parameter
range over which the model is defined. In the interests of keeping
assumptions limited and the results intuitive, I adopt a uniform prior
over a finite range for all parameters,

Pu(θ |M) =
{

1 when θmin < θ < θmax

0 otherwise.
(10)

The ‘u’ subscript denotes that this is not normalized (divide by
�θ = θmax − θmin to normalize).3

It is important to realize that the adopted parameter range is
an intrinsic part of the model. Hence, rather than talking about the
model SinProb, for example, we should talk about the model defined
over some period range. For this reason I will refer to models like
SinProb10:50, which means the SinProb model for the period range
10–50 Myr.

The evidence of course also depends on the shape of the prior, and
I adopt a uniform prior mostly to represent ignorance. But uniform
over what? It would be equally valid to parametrize the periodic
models in terms of frequency (ω = 1/T) and adopt a uniform prior
over that, for example. The transformation between the priors is
PT = PωT−2, so a prior uniform in frequency is non-uniform in
period. In particular, shorter periods will achieve more weight in
the evidence calculation. To assess the impact of this choice, I have
repeated all of the analyses described in Sections 4 (simulations)
and 5 (EID results) which use periodic models with a prior uniform
in frequency. It turns out that this change makes no significant
difference to the results, and does not change the conclusions. (The
issue of priors is discussed further in Section 6.)

The ranges for the other parameters are as follows. The phase
parameter is only defined in the range 0–1, so it is natural to always
use this full range (no reason to exclude any phases). For the back-
ground parameter b in SinBkgProb, I examine the evidence over a
range 0–5, the upper limit set by the intuition that with much larger
backgrounds it will be hard to detect a periodic signal (this was later
found to be the case). For the parameters of SigProb, I cover the
range of λ from 0 to ±100. This encompasses models ranging from
a step function (λ = 0) to a virtually flat function over the period of
interest (see the figures in Section 4). The range of t0 is chosen as
0–275 in order to move the ‘crossing point’ of the sigmoid across
the whole basic250 time range.

3.8 Numerical estimation

The integral in equation (8) is estimated numerically using∫
x

f (x) dx ≈
n=N∑
n=1

f (xn)δx = �X

N

n=N∑
n=1

f (xn), (11)

where f (x) is any continuous integrable function, the sample {xn} is
drawn from a uniform distribution, �X is the range of x from which
they are drawn and δx = �X/N is the average spacing between the
samples. (For equation 7, I just used a regular dense sampling.)
P(θ |M) = Pu(θ |M)/�θ = 1/�θ for all the priors I use, so the
numerical integration simplifies to

P (D|M) ≈ 1

N

θ=θmax∑
θ=θmin

P (D|θ,M), (12)

with the samples drawn from a random uniform distribution. Thus,
with uniform priors, the evidence is just the likelihood averaged
over the range of the parameters. This is evaluated at several million
randomly selected points, more than enough to ensure a very high
signal-to-noise ratio in the calculated evidence.

3 Normalization is essential. It ensures that model complexity is taken into
account by the model comparison. Note, therefore, that we are not modelling
the absolute rate of impacts, just the probability.
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Time series analysis of impact cratering 1169

Figure 4. Six examples of simulated time series drawn from the model
UniProb (each with 42 events).

Figure 5. Six examples of simulated time series drawn from the model
SinProb (each with 42 events). The model is plotted in red, the randomly
selected events in black (in a split panel to aid viewing of these stochastic
time series). The model has a period of 50 Myr on the left and 100 Myr on
the right (phase = 0.5 in both cases).

4 TESTS ON SIMULATED TIME SERIES

To test the method I apply it to numerous simulated data sets. The
goal is to determine whether we can identify the underlying sig-
nature in the data, and with what significance, and whether we
sometimes identify the wrong model. I will demonstrate, for exam-
ple, that simply identifying a ‘significant’ peak in the periodogram
can lead us to the wrong conclusion.

I generate stochastic time series using the same probabilistic
models described in Section 3.6. For each model and set of parame-
ters (e.g. period and phase in SinProb) I draw events independently
at random from the probability distribution. I generate several ran-
dom time series for each parameter combination. In all cases a
time series comprises 42 events over a time-span of 250 Myr –
characteristic of the basic250 data set – and σ t is unity for all
events.

Figs 4–6 show example time series drawn from UniProb, SinProb
and SigProb, respectively. Note how different the time series can

Figure 6. Six examples of simulated time series drawn from model SigProb
(each with 42 events). The model is plotted in red, the randomly selected
events in black (in a split panel to aid viewing of these stochastic time series).
The model has λ = −30 on the left and λ = −70 on the right (t0 = 150 in
both cases).

be even when drawn from the same model with the same param-
eters. It is also interesting – but not surprising – that stretches of
some of the uniform random distribution appear almost periodic.
Conversely, the time series drawn from SinProb do not always look
very periodic. In all cases the distribution can be very uneven and/or
show clustering and gaps. Searching for patterns by eye can be quite
misleading.

I report here just the results of the periodic models using the
uniform prior over period. The results of using a uniform prior
over frequency are very similar (I mention a few in the footnotes).
Sometimes the evidence is higher or lower, but it does not change
the strength of any of the conclusions reported. The maximum
likelihood solutions are, in virtually all simulations, identical in
parameters and likelihood to within 0.1 per cent.

4.1 Periodic data sets

I generate data sets from SinProb at several different fixed periods
and phases. For each time series I calculate the evidence and Bayes
factors (evidence ratios) for a number of models.

For the SinProb model, the likelihood is calculated at several
million values of period and phase drawn from the uniform prior
distribution for periods of 10–550 Myr and phases of 0–1. These
likelihoods are plotted as a density plot in Fig. 7 for one partic-
ular simulated time series with true period 35 Myr and phase of
0.75 (shown in Fig. 8). There is large variation in the likelihood.
The overall evidence for this model for the full period range 10–
550 Myr is found by averaging the likelihoods, and is 8.12 × 10−101.
The evidence for UniProb is 8.89 × 10−102, giving a Bayes factor of
9.1. This is not quite significant according to standard criteria, and
would appear to suggest a lack of evidence for the periodic model at
first. However, we have searched over a wide range of ‘periods’: up
to twice the time-span of the data. We see in Fig. 7 that these have
very low likelihoods, bringing down the average (the evidence) for
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1170 C. A. L. Bailer-Jones

Figure 7. Likelihood distribution as a function of period and phase for
the SinProb model calculated on the simulated data set shown in Fig. 8
(likelihoods were calculated up 550 Myr, but are only plotted up to 250 Myr).
The logarithms (base 10) of the likelihoods are shown on a colour scale: it
spans 35 orders of magnitude. White regions are those where the likelihood
drops below the minimum plotted.

Figure 8. A simulated time series (black lines) drawn from SinProb with
T = 35 Myr and φ = 0.75 (red curve).

SinProb. Therefore, if we instead average over periods of 10–
125 Myr then we get an evidence for this ‘properly periodic’ model
of 3.22 × 10−100, a Bayes factor of 36 relative to UniProb. This
is good evidence that the periodic model is the better of the
two.4 This is also true for the model over intermediate periods:
BF(SinProb10:250/ UniProb) = 24.5.

We can also calculate the evidence over very narrow ranges of
period (for all phases). If we do this for consecutive ranges, we get
a Bayesian periodogram: the variation of likelihood with period (or
frequency). This is equivalent to marginalizing the two-dimensional
likelihood over phase. It is plotted for the present example in Fig. 9.
As these likelihoods have uninterpretable absolute values, I divide
(‘normalize’) the likelihoods by the evidence of the UniProb model.
The periodogram gives the Bayes factor of SinProb at a specific
period (strictly, over a very narrow period range) relative to UniProb,
which I denote as BF[SinProb(t)/UniProb].

We see a (very) significant peak at just a single period, 34.75 ±
0.6 Myr (the uncertainty being the half-width at half-maximum).
As we have already established evidence for the periodic model

4 The evidence for SinProb:10:125 with the uniform frequency prior is
3.67 × 10−100, hardly any different.

Figure 9. Bayesian periodogram obtained by marginalizing the two-
dimensional likelihood distribution in Fig. 7 over the phase. The inset shows
a zoom-in of the 10–50 Myr portion.

overall, this indicates that the periodic model at the detected period
is a good explanation for these data.5

The maximum likelihood solution is at a period of 34.5 Myr and a
phase of 0.73. Its likelihood is 59 000 times higher than the evidence
for UniProb. This is larger than the peak in the periodogram because
now we have also found the optimum phase. However, because this
model has two parameters which have been fitted to the data, this
is not a representative measure of the ‘significance’ of a periodic
model in which the parameters are not known a priori. This will be
discussed further below.

The example is actually one in which the simulated time series
is relatively non-periodic. Many of the random generations pro-
duce much more periodic data sets which achieve peaks in the
periodogram of 105 or more and a BF(SinProb10:125/UniProb) of
hundreds to thousands.

The method is very efficient at finding periods in these data sets.
Of 100 different random time series drawn from SinProb with period
35 Myr and phase 0.5, all 100 showed a (very) significant Bayes fac-
tor (relative to UniProb) for both the overall model (SinProb10:125)
and at the peak period (which agreed with true period in 99 cases).

I obtain very similar results for numerous other time series
simulated at other periods and phases: the evidence for the Sin-
Prob10:125 model is almost always very significant, and there is
also always a very strong peak in the Bayesian periodogram. (As
one would expect the peak is wider – the period less certain – for
longer periods.) The method can also detect periods between 125
and 250 Myr, although periods longer than 250 Myr (where there is
less than a complete cycle in the data) are sometimes not detected.
Periods down to the lowest limit searched for, 10 Myr, can also be
recovered reliably.

It must be stressed that the above has only established evidence
of SinProb relative to UniProb. In Bayesian hypothesis testing we
can only ever compare models. I therefore calculated the evidence
for the trend model, SigProb, defined over the parameter ranges
−100 ≤ λ ≤ +100, 0 < t0 < 275. For the above example (Fig. 8),
we get a Bayes factor BF(SinProb10:125/SigProb) = 155, clearly
favouring the periodic model. This is also seen for other simu-
lated time series at the same and other periods: the Bayes fac-
tor BF(SinProb/SigProb) is typically 10–1000 for input periods

5 The peak in the periodogram for model with the uniform frequency prior
is at 34.64 Myr, and has a BF 86 per cent as large.
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Time series analysis of impact cratering 1171

below 250 Myr. For longer periods the SigProb model sometimes
dominates, depending on the exact data set. This is because such
long ‘periods’ are really trends, and these may be fitted better with
SigProb.

In conclusion, if the time series is periodic (in the sense of a pe-
riodic event probability), then the method strongly favours the peri-
odic model over both a uniform one and a monotonic trend model.
We conclude this primarily from the significant (large) Bayes factor
for the model as a whole (i.e. a broad period range for all phases)
and then from a significant peak in the Bayesian periodogram (the
Bayes factor over a very narrow period range).

4.2 Uniform and trend data sets

Let us now examine whether we erroneously favour the SinProb
model – and possibly detect artificial periods – in non-periodic
data.

4.2.1 Uniform data sets

For this purpose I simulated 50 stochastic time series from the
UniProb model and calculated the evidence for both UniProb and
SinProb. In none of these 50 cases is BF(SinProb10:125/UniProb)
significant: most of the time series give 10−2 to 10−3 (the full range
is 3 × 10−4 to 1.1). BF(SinProb10:250/UniProb) is likewise much
less than 1. We would therefore correctly conclude that a uniform
random distribution is a much better model than a periodic one.
(If no other model were plausible, we could further conclude with
some confidence that this is the ‘best’ model.)

However, in 10 of the cases we none the less observe a significant
peak in the periodogram at periods less than 125 Myr, where sig-
nificant means BF[SinProb(t)/UniProb] > 10. This is because even
a uniform random time series with 42 points can happen to show
a weak periodicity at some period, even though the periodic model
overall is a poorer explanation for the data than the uniform one.6 If
we took just the identification of these ‘significant’ peaks to be evi-
dence for a period (as is done in frequentist periodogram analyses),
we would make a false positive claim in 20 per cent of cases. This
underlines the importance of basing a conclusion on the evidence
for the model as a whole, rather than a specific fit.

4.2.2 Trend data sets

We see the same general phenomena among a set of time series
generated from SigProb: the evidence for SinProb10:125 is much
lower than the evidence for SigProb, leading us to correctly conclude
a lack of evidence for periodicity. However, once again there are
spurious ‘significant’ peaks in the periodogram. The reason for this
is that although SinProb sometimes gives high evidence at a very
specific period, once averaged over a broader period the evidence
is much less. If the peak had been much higher (as was the case for
the truly periodic data sets above, e.g. Fig. 9), then averaging over
a broader period reduces the evidence, but not enough to make it
insignificant. The model evidence is a balance between the quality
of a specific fit and how much of the parameter space produces a
good fit. (This is discussed further in Section 6.3, where it can be
understood in terms of Occam factors). As we had no prior reason

6 Half of the time series in fact show a peak in the periodogram with
BF[SinProb(t)/UniProb] in the range 1–10. We clearly must resist the temp-
tation to read too much into such low significance peaks!

Figure 10. A simulated time series (black lines) drawn from SigProb with
λ = −100 Myr and t0 = 0 Myr (red curve).

Figure 11. Log likelihood distribution as a function of λ and t0 in the
SigProb model calculated for the simulated data set shown in Fig. 10.
The log(Evidence) for the overall model is −97.8 (and 0.3 higher for Sig-
Prob:Neg). For comparison, log(Evidence) = −100.9 for UniProb.

to suspect a periodicity at the peak found, it is misguided to focus
only on that peak – and that may anyway give the wrong conclusion,
as we have just seen.

An example time series drawn from the trend model is shown in
Fig. 10. The likelihood distribution for the SigProb model is shown
in Fig. 11, with a colour scale spanning 15 orders of magnitude.
Positive trends (probability increasing with look-back time) are
heavily disfavoured. In contrast, a very broad range of parameter
space for λ < 0 has large evidence: the model is not very sensitive
to the exact parameters. This contrasts with the simulated periodic
data sets, where the evidence for the overall model came from a
very narrow range of the parameters with very high likelihood (see
Figs 7 and 9).

It is interesting to note that the evidence for SinProb10:125 on
these trend data sets is low even when compared to UniProb: the
Bayes factors range from 0.7 to 5 × 10−5 in 39 of 40 simulations
(the other value was 2). Therefore, even when comparing against an
overly simple model, we get no evidence for periodicity. Yet in the
periodograms normalized to the evidence in UniProb we see ap-
parently significant peaks, i.e. with BF[SinProb(t)/UniProb] > 10.
These peaks are irrelevant, however, not only because SinProb as
a whole is disfavoured but also because UniProb is a poor model
for the data. That is, we can increase the apparent significance of
a model (here SinProb) by comparing it with an overly simple al-
ternative model (here UniProb), a common mistake in hypothesis
testing.
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1172 C. A. L. Bailer-Jones

Table 3. The evidence (equation 8) for different models and data sets. The Bayes factor is the ratio of two
evidences (for a given data set). See the text for the exact parameter ranges used in each case.

basic150 full150 basic250 ext250 full250 large400

UniProb 1.63e−70 2.30e−105 1.03e−103 1.68e−113 3.27e−145 1.25e−47

SinProb10:50 2.67e−71 1.41e−105 2.87e−104 1.11e−113 4.83e−145 8.89e−48
SinProb10:125 1.07e−71 5.56e−106 1.15e−104 4.18e−114 1.71e−145 1.01e−47
SinProb10:300 9.64e−72
SinProb10:400 3.35e−48
SinProb10:550 8.57e−103

SinBkgProb10:50 1.62e−70 1.11e−103 2.23e−113 5.22e−145
SinBkgProb10:125 1.58e−70 9.71e−104 1.79e−113 3.91e−145
SinBkgProb10:300 1.74e−70

SigProb 1.35e−70 1.28e−103 8.64e−102 1.21e−110 7.66e−139 2.93e−48
SigProb:Neg 2.64e−70 2.56e−103 1.73e−101 2.41e−110 1.53e−138 4.83e−48
SigProb:Pos 5.70e−72 3.73e−108 1.47e−106 8.72e−117 3.01e−149 1.03e−48

SinSigProb 6.94e−102 6.81e−111 7.97e−140

4.3 Compound data sets

It is plausible that the impact cratering phenomenon comprises
both a periodic and a non-periodic component (e.g. Grieve et al.
1988; Lyytinen et al. 2009). It is generally more difficult to identify
evidence for more complex models given a limited amount of data
and the stochastic nature of the phenomenon.

This difficulty is confirmed by simulations. I simulated 48 time
series drawn from SinBkgProb for several periods between 10 and
250 Myr and b = 1, i.e. equal amplitudes of the periodic and uni-
form components (Table 2). In many cases the evidences for Sin-
BkgProb10:550, SinBkgProb10:125 and UniProb are about equal,
so the true model is not favoured over a pure ‘background’ model.
(SigProb achieves a very low evidence in comparison: we do not
erroneously claim a trend when there is not one.)

We see much the same for several time series drawn from Sin-
SigProb at each of three different periods (20, 35, 50 Myr) with
a fixed trend (λ = −60, t0 = 100). The Bayes factors of the true
models relative to just the trend models, SigProb, lie between 0.5
and 7.7 Thus, although the true model is not explicitly disfavoured,
these values are not high enough to claim significant evidence to
favour it, and when lacking evidence in favour of a more complex
model, we would probably prefer the simpler one.

It seems that the method is conservative, having difficulties to
identify a period in a stochastic time series which includes a large
(here 50 per cent amplitude) non-periodic component. A similar
conclusion was reached by Lyytinen et al. (2009) using a different
approach. However, I have only performed a few tests with these
compound data sets, and only for a very narrow part of the input
parameter space. As the sensitivity is likely to vary over the input
parameter space, more extensive tests are necessary.

In conclusion of this section on simulations, I have found that
if the time series is a stochastic one drawn from a model with
a periodic distribution, then there is both significant evidence for
periodicity and we can identify the true period. Conversely, if data
are drawn from a uniform or trend distribution, we find significant
evidence for the correct model, and do not erroneously identify
periodicity. Preliminary tests indicate difficulty in favouring more
complex compound models (when true) over a simpler one. It may

7 When using a uniform prior over frequency the Bayes factors come out to
within about 20 per cent of the same values.

be that 42 events are simply inadequate to support more complex
models.

5 R ESULTS

Armed with the experience of how the models respond to time
series of known origin, I now turn to analysing the real cratering
data. For quick reference, the results are summarized in Table 3.
For the periodic models, I only report results using a prior uniform
over period, because the results for using a prior uniform over
frequency are the same in all relevant respects. An example is shown
in Appendix A.

I should point out that although I calculate likelihoods for the
period models for periods up to twice the time-span, I do this only
to illustrate that long ‘periods’ can only really be interpreted as
long-term trends, and so are better modelled by the SigProb model.
The main results for ‘periodicity’ are for the evidence calculated
over narrower period ranges.

5.1 Data sets: basic150 and ext150

I start with the basic150 data set, the 32 craters over the past
150 Myr. The likelihood distribution for the SinProb model is
shown in Fig. 12. The evidence for SinProb10:300 is 9.64 × 10−72.
This compares to 1.63 × 10−70 for the UniProb model, giving a
Bayes factor of 0.060, or significant evidence in favour of UniProb.
The maximum likelihood over this parameter range occurs at (pe-
riod, phase) = (11.7, 0.73) with a likelihood of 8.00 × 10−69, or
BF(SinProb(t)/UniProb) = 49. Although this tells us that this very
specific fit explains the data better than a uniform random distribu-
tion, it only comes about because we have tuned two parameters
(period and phase). UniProb has no free parameters and cannot be
tuned, so a simple comparison of maximum likelihood does not
take into account the model complexity. This is why we must use
the evidence for the models as a whole. After all, we wanted to look
for evidence of periodicity in general, not for evidence of ‘a period
of 11.7 Myr and phase 0.73’, and more complex models could be
defined for which there are even higher likelihood fits.

Limiting the evidence calculation to shorter periods of 10–
50 Myr, we get a Bayes factor of SinProb10:50 relative to UniProb
of 0.16, still insignificant evidence for periodicities.

The Bayesian periodogram (Section 4.1) is shown in Fig. 13.
There is no significant evidence for periodicity at any period. Recall
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Time series analysis of impact cratering 1173

Figure 12. Log likelihood distribution as a function of period and phase for
the SinProb model for the basic150 data set.

Figure 13. Bayesian periodogram for the SinProb model for the basic150
data set.

that, in the simulations, we obtained a peak (at the true period) with
far higher Bayes factors (significance) when the data were drawn
from a sinusoidal probability distribution.

In Appendix A, I repeat this analysis using a prior uniform in
frequency for SinProb.

If the impact history comprises both constant and periodic com-
ponents, then a model which reflects this may identify a periodic-
ity better. To examine this I calculate likelihoods for SinBkgProb,
which adds a variable constant background term, b, to SinProb. For
the full period range and for 0 ≤ b ≤ 5 the evidence is 1.74 ×
10−70, a Bayes factor relative to UniProb of 1.1. If we limit the
period range to 10–50 Myr this rises only to 1.2. The periodogram
shows smaller Bayes factors than in Fig. 13, even when calculated
for limited ranges of b. Hence, SinBkgProb describes the data no
better than a purely uniform random distribution, which we should
arguably then prefer (see Section 6).

So far the uniform random distribution describes the data as
good as or better than a periodic one. This does not mean that this
is the best model, however: we can only assess what we explicitly
test. To look for the evidence for a trend in the data, I calculate
the evidence for the SigProb over the parameter range −100 ≤

λ ≤ +100, 0 < t0 < 150. This gives 1.35 × 10−70, a Bayes fac-
tor relative to UniProb of 0.83. Splitting SigProb into two distinct
models, one for λ < 0 (SigProb:Neg) and the other for λ > 0 (Sig-
Prob:Pos), the Bayes factors are 1.63 and 0.035, respectively. The
latter – an increase in impact probability with look-back time – is
disfavoured.

Performing the same analyses on the ext150 data set gives very
similar results: adding these four events does not make the evidence
for periodicity nor for a trend significant.

In summary, we have no evidence for periodicity in the basic150
or ext150 data sets. Of the models tested, both UniProb and Sig-
Prob:Neg are more or less equally probable explanations. Given a
lack of strong evidence in favour of the more complex trend model,
I conclude that the simpler, uniform random distribution is an ade-
quate – and plausible – explanation for impact craters over the past
150 Myr.

5.2 Data set: full150

I now add the 12 craters which have upper age limits below 150 Myr,
using the approach explained in Section 3.5. The evidence for the
models tested (same parameter ranges for basic150) is listed in
Table 3. There is now significantly more evidence for the trend
model than for the uniform one. More specifically, the negative trend
(SigProb:Neg) is hugely favoured over the positive one.8 As the new
data are upper age limits, it is not surprising that their inclusion
increases the evidence for SigProb:Neg, although the evidence is
very strong: BF(SigProb:Neg/UniProb) = 111.

Thus, adding the 12 craters with upper age limits in a conservative
manner (a flat probability distribution) has made SigProb:Neg much
more probable than UniProb. SinProb remains unlikely.

Let us now extend the data set back to 250 Myr BP.

5.3 Data set: basic250

This data set comprises 42 events. The evidence for UniProb is
1.03 × 10−103 compared to 8.57 × 10−103 for SinProb10:550, a
Bayes factor of 8.3. The top left-hand panel of Fig. 14 shows the
likelihood distribution. The largest likelihoods are in the upper right
quadrant, for periods greater than 200 Myr and phases above 0.5.
Indeed, the maximum likelihood solution is at a period of 550 Myr
with a phase of 0.94: it is plotted in the top right-hand panel of the
same figure. This ‘period’ is twice the duration of the data and is
actually modelling a trend of decreasing probability with look-back
time. Marginalizing the likelihood distribution over all phases to
produce the periodogram (Fig. 15), we see that all of the significant
periods are at these very long trend periods. The evidence for true
periods – SinProb10:125 – is 1.15 × 10−104, a Bayes factor relative
to UniProb of 0.11.

Given that the likelihood varies considerably across the parameter
space, it is informative to examine the model at various parameter
‘solutions’. Five examples are shown in Fig. 14. The two panels
in the central row have the same period but different phases: the
right-hand one gives an increasing probability of events with look-
back time and is hugely disfavoured by the data compared to the
decreasing trend. The lower two panels are local maxima in the
likelihood distribution at shorter periods. They look as though they

8 As the evidence for SigProb is the average of the evidence for its two
components, and one is five orders of magnitude smaller than the other, the
evidence for SigProb:Neg is just twice that of SigProb.
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1174 C. A. L. Bailer-Jones

Figure 14. The top left-hand panel shows the log likelihood distribution as a function of period and phase for the SinProb model for the basic250 data set. The
red curves in the five other panels show five possible ‘solutions’ at five (T , φ) values corresponding to the five crosses plotted on the likelihood distribution. The
black lines are the basic250 data. The log (base 10) likelihood and parameters of each solution are given at the top of each panel. The top right-hand panel is
the maximum likelihood solution. The bottom left-hand panel is (close to) the maximum likelihood solution for short periods. For comparison, log(Evidence)
for UniProb and SigProb:Neg are −102.99 and −100.76, respectively.

Figure 15. Bayesian periodogram for the SinProb model for the basic250
data set. If we normalize the periodogram against model SigProb:Neg in-
stead of the UniProb then the Bayes factors are reduced by a factor of 167.

could reasonably produce the observed data, bearing in mind that
these are stochastic models. However, even the better of the two has
a likelihood 10–100 times smaller than the longer period ‘trend’
solutions.

Introducing a constant background into the model (SinBkgProb),
we again find that the highest likelihood solutions (and the only ones
more likely than UniProb) are at long ‘periods’. Solutions with b >

0.5 are favoured compared to those with a smaller (or zero) back-
ground. There is no evidence for any proper period (<125 Myr),
with Bayes factors relative to UniProb of no more than 0.94, even
if we examine narrow ranges of b. Therefore, there is no evidence
for periodicity superimposed on a constant background probability
(although recall from Section 4.3 that it may be hard to identify
such a model with confidence).

Given the above evidence for a trend, I fit SigProb over the
parameter range −100 ≤ λ ≤ +100, 0 < t0 < 275. The overall
evidence is 8.64 × 10−102. This includes both positive and negative
trends: Fig. 16 shows that the former (λ > 0) has much lower
likelihoods. Splitting this model into two, we find that the evidence
for λ < 0 (SigProb:Neg) is 1.73 × 10−101, a Bayes factor of 167
relative to UniProb.

As SigProb:Neg is much more plausible than UniProb, this tells
us that UniProb is an inappropriate reference model for the peri-
odogram in Fig. 15. By comparing the evidence at each period to
a model which predicts the data poorly, the periodic model may
of course look good in comparison. However, this is not the same
as saying that the period is significant, because other (plausible)
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Time series analysis of impact cratering 1175

Figure 16. Log likelihood distribution as a function of λ and t0 for the
SigProb model for the basic250 data set. The black cross marks the maximum
likelihood solution.

Figure 17. As Fig. 16 but only for λ < 0 and with a shallower likelihood
scale to better show the region around the peak.

models may predict the data even better, as is the case here. This
mistake is often made when assessing the significance of the clas-
sical (e.g. Lomb–Scargle) periodogram. One must be careful to
choose an appropriate ‘background’ or ‘reference’ model for com-
parison. When using the evidence for SigProb:Neg as the reference
in the periodogram, the Bayes factors in Fig. 15 are all reduced by a
factor of 167, rendering all peaks – and even the long ‘trend’ periods
– entirely insignificant. Overall, the negative trend model is far more
probable than the periodic one: BF(SigProb:Neg/SinProb10:125) =
1500.

Not only is SigProb:Neg the favoured model, but also it has a
large likelihood over a wide range of t0 and λ. In other words, the
evidence is not very sensitive to the exact parameter settings (nor to
the prior). This can be seen in Fig. 17: half of the parameter space
below λ = 0 has a likelihood within a factor of 10 of the maximum.
(The model has a large Occam factor; see Section 6.) The maximum
likelihood solution is plotted over the data in Fig. 18. Because the
likelihood peak is so broad, we should not (need not) attribute much
significance to this specific solution.

Is there evidence for a periodicity on top of this trend? We ex-
amine this using the four-parameter model SinSigProb using the
same parameter range adopted for the periodic and trend models
(namely all phases, periods of 10–125 Myr, −100 ≤ λ < 0 and
0 < t0 < 275). The evidence is 6.94 × 10−102, a Bayes factor with
respect to SigProb:Neg of just 0.40. If we reduce the parameter
range, e.g. to 10–50 Myr, λ < 25 and t0 < 200, then the evidence
hardly changes. We could possibly identify narrow, isolated regions

Figure 18. The maximum likelihood solution of SigProb (red curve) for
the basic250 data set (black lines). It has λ, t0 = (−75, 98) and a likelihood
of 6.04 × 10−101.

of parameter space where SinSigProb is more probable, but this has
no justification.

In summary of the basic250 data set, we have found significant
evidence for a trend of decreasing probability of cratering with
look-back time relative to both constant and periodic models. This
is about the simplest model we can conceive after the constant one,
and it also has more evidence than a model with a periodicity su-
perimposed on either a trend or a constant background probability.

5.4 Data set: ext250

If I add the four craters for which I assigned age uncertainties, the
evidence for the trend model relative to both the uniform model
and the periodic models increases significantly (see Table 3; the
parameters for SinSigProb are the same as used for basic250). This
is not surprising because the additional craters are all comparatively
young (1.07, 39, 46.5 and 49 Myr).

5.5 Data set: full250

I now add the 13 craters with upper age limits, noting that 12 of them
are below 150 Myr. As they are upper age limits, it is not surprising
that their inclusion increases the evidence for SigProb:Neg further.
However, the increase is enormous: the evidence is 1.53 × 10−138

compared to 3.27 × 10−145 for UniProb, a Bayes factor of 4.7 ×
106.

The evidence for SinProb10:125 is very small, giving a negligi-
ble Bayes factor relative to SigProb:Neg. The highest peak in the
periodogram is still around 35 Myr, but its evidence is 105 times
smaller than the evidence for SigProb:Neg. Modelling the data us-
ing a periodicity on top of a trend – with SinSigProb – increases the
evidence for proper periods (i.e. below 125 Myr) dramatically over
using just SinProb. However, they are still insignificant compared
to a pure trend. For example, the evidence for SinSigProb over pe-
riods of 10–50 Myr and λ < 0 is 7.97 × 10−140, a Bayes factor of
0.052 relative to SigProb:Neg. All peaks in the periodogram are
also insignificant. The data are better described with a pure trend.

In summary, adding the 13 craters with only upper age limits
radically increases the evidence for a negative trend, and radically
decreases the evidence for either a periodicity or a periodicity plus
negative trend, relative to the simple negative trend.
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1176 C. A. L. Bailer-Jones

5.6 Data set: large400

The trend detected in the previous data sets might reflect a preser-
vation bias in the geological record. When extending the analy-
sis to older craters we can try to avoid this bias by only includ-
ing larger craters. The large400 data set comprises 18 craters
larger than 35 km with ages up to 400 Myr. The Bayes factor
BF(SinProb10:400/UniProb) is 0.27. We see several low peaks in
the periodogram, the four highest being 34 Myr (BF = 6.5), 18
and 13.5 Myr (both BF = 5.5), and 100 Myr (BF = 4). As there
is no prior reason to expect a period at any of these, we cannot
simply select one and claim it as evidence (albeit marginal) for
that period, especially given that there are so many low peaks (and
only 18 data points). Again we must look at the overall evidence
for periodicity. For the period range 10–50 Myr the Bayes factor
BF(SinProb10:50/UniProb) is 0.71, implying that the periodic and
uniform models describe the data equally well. However, the peri-
odic model with two free parameters for a pre-defined period range
is arguably much less plausible a priori.

There is also no evidence for a positive or negative trend in the
data, with Bayes factors below 0.4 for the SigProb models (see
Table 3).

In summary, the large400 data set is most plausibly described
by UniProb. Let us now turn to a discussion of the complete set
of results as well as the method and principles on which it is
based.

6 D ISCUSSION

I have found significant evidence for a decrease in the crater-
ing rate with look-back time (model SigProb:Neg) over the past
250 Myr for d > 5 km craters relative both to periodic models
(SinProb, SinBkgProb, SinSigProb) and to a model with con-
stant rate (UniProb). As there is no strong evidence for a trend
in the past 150 Myr, this must come about primarily from a com-
parative lack of events between 150 and 250 Myr BP. This may
now seem obvious from Figs 1 and 2, but the analysis quanti-
fies this and has also taken into account the age uncertainties. No
such trend is found for larger craters (d > 35 km) over the past
400 Myr.

These results could be explained by a decreasing probability
of preservation/discovery for older craters of size 5–35 km. How-
ever, studies of lunar cratering suggest that the cratering rate dur-
ing the past 500 Myr was about twice as high as the average
over the past 3.3 Gyr (e.g. Shoemaker 1983). More immediately
relevant is the study of McEwen, More & Shoemaker (1997),
who concluded that the cratering rate has increased up to the
present by a factor of 2 during the past 300 Myr. If correct, and
if the Earth is assumed to have experienced the same bombard-
ment history, then this is consistent with my inferred increase
of impact probability from 250 Myr BP up to the present. The
single most probable solution for the trend model is shown in
Fig. 18.

These conclusions are obviously based on the data we currently
have. It is quite possible that a significant revision of the ages or
the age uncertainties, or the inevitable discovery of more craters in
the future, will lead us to different conclusions based on the same
analysis. More craters may permit a better distinction between more
complex models.

I will now discuss some aspects of the method, and compare the
present analysis with previous work.

6.1 Significance assessment

The significance of a model can only be assessed relative to the
significance of some other model. There is no absolute. In frequen-
tist statistics one normally selects some ‘noise’ or ‘background’
model against which to compare a statistic measured on the real
data. For example, with the classical periodogram the significance
is usually determined from the distribution of the power achieved
by a noise model. This may indicate that the periodic model is the
better of the two, but both might be bad: there may be a third model
which is better still. We saw an example of this in Fig. 14, where
the bottom left-hand panel is the best-fitting truly periodic solution.
It was significant relative to UniProb, but insignificant relative to
SigProb:Neg.

6.2 Why we should not rely solely on periodogram peaks

As has already been demonstrated in Section 4, reliance on observ-
ing a peak in the periodogram – even when normalized to the true
model – often results in erroneously claiming the periodic model to
be a better explanation than the true one. The reason is that the pe-
riodogram has one free parameter (period), and we can sometimes
find a specific value of this parameter which produces a better fit
than the simpler uniform model (which has no free parameters). A
model with even more free parameters may fit better still. How-
ever, a model with fitted parameters is a priori less plausible than
a model with no fitted parameters. Unless we have independent
information to assign the model parameters, we cannot fit them
and then compare that model on an equal footing with a model
which has not been fitted. Instead we must compare models ‘as a
whole’ (e.g. over some period range). We saw an example of this in
Section 4.2.

6.3 Occam factor

The conclusion of the previous discussion is not that more complex
models are always penalized. They are not. What counts is how the
plausibility of the model is changed in light of the data. This can
be understood by the concept of the Occam factor. If the likelihood
function is dominated by a single peak, then we can approximate
the evidence (equation 8) with

P (D|M)︸ ︷︷ ︸
Evidence

= L(θ̂ )︸︷︷︸
best−fitting likelihood

× �θposterior

�θprior
,︸ ︷︷ ︸

Occam factor

(13)

where L(θ̂ ) is the likelihood at the best-fitting solution, �θ prior is
the prior parameter range and �θ posterior is the posterior parameter
range (the width of the likelihood peak) (see e.g. MacKay 2003).
The Occam factor (which is always less than or equal to 1) measures
the amount by which the plausible parameter volume shrinks on
account of the data. For given L(θ̂ ), a simple or general model will
fit over a large part of the parameter space, so �θ prior ∼ �θ posterior

and the Occam factor is not significantly less than 1. We saw an
example of this in Fig. 17. In contrast, a more complex model, or
one which has to be more finely tuned to fit the data, will have
a larger shrinkage, so �θ posterior � �θ prior. We saw this for the
periodic models at short periods (e.g. Figs 14 and 15), in which
only a very specific period was a good fit to the data. In this case the
Occam factor is small and the evidence is reduced. Of course, if the
fit is good enough then L(θ̂ ) will be large, perhaps large enough to
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Time series analysis of impact cratering 1177

dominate the Occam factor and to give the model a large evidence.
We saw this with the simulated periodic time series for the SinProb
model (Fig. 9).

This concept helps us to understand how the Bayesian ap-
proach accommodates model complexity, something generally
lacking in frequentist approaches. If we assess a model’s evi-
dence only by looking at the maximum likelihood solution (or
the maximum over one parameter, the period), then we artifi-
cially compress the prior parameter range, increasing the Occam
factor.

6.4 Parameter prior distributions

As the model evidence is the likelihood averaged over the prior
parameter range (for uniform priors), this raises the issue of what
this range should be. This is often the main perceived difficulty
with Bayesian model comparison, and for some people this depen-
dence on prior considerations is undesirable. Yet it is both logical
and fundamentally unavoidable, because Bayesian or not, the prior
parameter range is an intrinsic part of the model. Changing the
parameter range changes the model, so will change the evidence.
SinProb10:50 is totally different from SinProb100:150, for exam-
ple. If we are comfortable with deciding which are the plausible
models to test, we must also be willing to decide what are the plau-
sible parameter ranges to test. To some extent we can be guided by
the context of the problem and the general properties of the data or
the experiment, such as the sensitivity limits. For periodic models
it seems obvious that we should use the whole phase range and that
we should not include at ‘periods’ much larger than the duration of
observations (as these are more like trends). For SigProb, I have ac-
tually used a rather broad range of its two parameters, even though
some of this parameter space is a priori implausible, e.g. λ = 0 gives
a probability of zero to one side of t0 = 0.

More generally, the evidence is the likelihood averaged over
the parameter prior distribution. There are often cases where we
would not want to use a uniform distribution. It can be difficult to
choose the ‘correct’ prior distribution, and this choice may affect the
results. Yet whether we like it or not, interpreting data is a subjective
business: just as we choose which experiments to perform, which
data to ignore, and which models to test, so we must decide what
model parameters are plausible. This seems preferable to ignoring
prior knowledge or, worse, to pretending we are not using it.

In general, a probability density function is not invariant with
respect to a non-linear transformation of its parameters. As already
discussed in Section 3.7, I could equally well have used frequency
rather than period to calculate the evidence for periodic models:
there is no ‘natural’ parameter here. This would not change the
error model of the data (equation 5), and the value of P(tj|θ , M) at
period T is the same as when calculated at frequency 1/T , so the
likelihoods are unchanged. However, as the model evidence is the
average of the likelihoods over the prior, the evidence would change
if we adopted a prior which is uniform over frequency rather than
over period. Thus, the choice of parametrization becomes one of
choice of prior. As neither parametrization is more natural than the
other – a prior uniform over frequency does not seem to be more
correct than one uniform over period – this remains a somewhat
arbitrary choice. For this reason I repeated all of the analyses using
periodic models with a prior uniform in frequency. Sometimes the
evidence was slightly higher, sometimes lower, but the significance
of the Bayes factors was not altered. The conclusions are robust to
this change of prior/parametrization.

6.5 Model priors

I have used Bayes factors to compare pairs of models. Models are
treated equally, so a significant deviation from unity gives evidence
for one model over the other. However, if the models have different
complexities (or rather, different prior plausibilities) and the Bayes
factor is unity, then rather than being equivocal we may tend to
prefer the simpler model. This is because we normally give the less
plausible model a lower model prior probability (equation 2). We
can include these priors by reporting instead the posterior odds

P (D|Mk)

P (D|M0)

P (Mk)

P (M0)
= BFk0

P (Mk)

P (M0)
. (14)

It is not obvious that all of the models I have considered should
have equal model priors. For example, SinSigProb is arguably less
plausible than SigProb a priori.

6.6 Posterior probabilities and plausible models

Ideally we would calculate model posterior probabilities, P(M|D).
This can only be done if we calculate the evidence for all plausible
models, those with P(M) which is not vanishingly small. In the cur-
rent problem I have conceivably included most of the plausible pa-
rameter space for the stated models: these non-deterministic models
are quite flexible in describing general shapes. For example, I found
that a model with periodic Gaussians (with three parameters) looked
very similar to SinProb. (Given sufficient physical reason, we could
of course define more complex models, e.g. with a variable period
or amplitude.) Assuming that SigProb:Neg, SigProb:Pos, UniProb
and SinProb10:125 are the only plausible models, and assigning
them equal priors, for the basic250 data set the posterior probability
of SigProb:Neg from equation (4) is (1 + 8.50 × 10−6 + 5.95 ×
10−3 + 6.65 × 10−4)−1 = 0.993.

6.7 Some problems with frequentist hypothesis testing

The motivation for the current work was to apply rigorous method-
ology to modelling impact crater time series, overcoming some lim-
itations of frequentist hypothesis testing (for a discussion of these
problems see, e.g., Berger & Sellke 1987; Marden 2000; Berger
2003; Jaynes 2003; Christensen 2005; Bailer-Jones 2009) To sum-
marize, the main problems which can occur are as follows.

(i) Failure to take into account all plausible models. We see from
equation (4) that the model posterior probability increases monoton-
ically as the sum (over the alternative models) decreases. If we ne-
glect plausible alternative models, the sum is smaller than it should
be and the posterior probability of M0 is artificially increased. This
issue applies to any analysis, Bayesian or otherwise.

(ii) Incorrectly estimating significance by comparison to an in-
appropriate model (the ‘null’ hypothesis).

(iii) Reliance on maximum likelihood or periodogram peak so-
lutions without any regard to model plausibility/complexity (poten-
tially leading to overfitting).

(iv) Failure to actually test the model of interest. A null hypoth-
esis (M0) is rejected and this is assumed to imply acceptance of the
model of interest. This is only possible when there are only two
plausible models which are mutually exclusive and exhaustive (rare
in the physical sciences). Otherwise all models must be explicitly
tested.

(v) Use of a statistic to reject a model if that statistic is more
extreme than the value given by the data. This is the usual approach
taken with p-values for example, and is used in most periodograms,
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1178 C. A. L. Bailer-Jones

including the Lomb–Scargle. The reference to values not observed
cannot be justified, but the methods are forced to on account of
the previous point (failure to actually calculate an evidence for the
model of interest).

(vi) Incorrect interpretation of p-values. Frequentist statistics in-
terprets a small value of P(D|M0) to be evidence for the alternative
hypothesis, M1. However, that is given by P(M1|D), which we can
only calculate if we also know P(D|M1) (equation 2). An example
illustrates the difference. Suppose P(D|M0) = 0.01. This is inter-
preted as evidence against the null hypothesis M0 at p = 0.01. How-
ever, if the evidence for the alternative hypothesis is higher, but still
relatively low, e.g. P(D|M1) = 0.05, then we see that P(M0|D) =
1/(1 + 0.05/0.01) = 0.17 (for equal model priors). This is lower
than P(M1|D), but is not low enough to ‘rule out M0 at the 1 per
cent level’. p-values frequently overestimate the significance.

This is not to say that frequentist hypothesis testing and p-values
are worthless. If we only have one model (e.g. ‘Gaussian random
noise’), then it may be hard to define an explicit model for its com-
plement, in which case Bayesian model comparison is awkward.
Here a low p-value is a useful indication that this model may not be
a good explanation, prompting the search for alternatives.

6.8 Previous studies of cratering periodicity

Using similar data to those used here, several studies have claimed
evidence for periodicities in the impact crater data, whereas several
others conclude no evidence for periodicity. (Some studies are quite
old, when fewer impact craters had been discovered or dated). A
non-exhaustive list of the studies and their main results follows.

(i) Alvarez & Muller (1984): period at 28.4 Myr for 11 craters
with t < 250 Myr, σ t < 20 Myr, d > 5 km using a classical pe-
riodogram method. Jetsu & Pelt (2000) claimed that this period
(and potentially other claims of periodicity) is an artefact caused by
rounding ages.

(ii) Rampino & Stothers (1984): period at 31 Myr for 41 craters
with t < 250 Myr using a correlation method. This work was
strongly criticized by Stigler (1985).

(iii) Grieve et al. (1985): periods found at 13.5, 18.5, 21 and
29 Myr for a set of 26 craters with t < 250 Myr, d = 5–10 km using
the method of Broadbent (1956). This method essentially defines
a statistic which measures the deviation of a set of events from
strict periodicity, and then estimates the probability that a uniform
distribution would produce this value of the statistic (or smaller). No
periodicity was found for d > 10 km. Partly because the extracted
period depends on the data subset used, Grieve et al. concluded a
lack of evidence for any true periodicity.

(iv) Grieve et al. (1988): doubt cast on previously claimed periods
around 30 Myr on a set of 27 craters, noting also that the correct
period often cannot be found with the Broadbent method when there
is a superimposed uniform random component. They found weak
evidence for periods at 16 and 18–20 Myr, the latter predominantly
due to 10 craters in the past 40 Myr. (See also Grieve 1991.)

(v) Yabushita (1991): periods found at 16.5, 20 and 50 Myr for
smaller craters (d < 10 km) in some data sets using the statistic
of Broadbent, but different conclusions are reached depending on
what significance test is adopted. He ultimately concludes that it is
premature to claim evidence for periodicity.

(vi) Yabushita (1996): a period at 30 Myr is found after exam-
ining various data sets (again using the Broadbent method), but it
is found to be insignificant when a trend component (exponential
decay) is included in the modelling.

(vii) Montanari et al. (1998): no periodicity found for 33 craters
with t < 150 Myr, σ t < 5 Myr, d > 5 km using a clustering method
which looks at the (uncertainty weighted) age differences between
craters.

(viii) Napier (1998): period at 13.4 Myr, suggested to be a har-
monic of a 27 ± 1 Myr, from a set of 28 craters with t < 250 Myr,
σ t < 10 Myr, using a classical periodogram.

(ix) Stothers (1998): period at 36 ± 1 Myr (using a variation of
the Broadbent method), but concluded to be insignificant. (He also
criticizes some earlier period searching work.)

(x) Yabushita (2004): period at 37.5 Myr from a set of 91 craters
with t < 400 Myr (including craters which have upper age limits
provided that limit is t < 1 Myr) using a Lomb–Scargle periodogram
in which the crater size or impact energy is taken as the dependent
variable. The analysis yields a p-value for periodicity between 0.02
and 0.1 (depending on which craters are used).

(xi) Chang & Moon (2005): period at 26 Myr for various subsets
with t < 250 Myr, d > 5 km using the Lomb–Scargle periodogram.

(xii) Napier (2006): ‘weak’ periods at 24, 35 and 42 Myr (de-
pending on what we consider to be harmonics) in a set of 40 craters
with t < 250 Myr, σ t < 10 Myr, d > 3 km using a clustering method
which examines the number of nearest neighbours.

Some studies have combined impact data with mass extinction
time series (e.g. Napier 1998) or tried to identify correlations be-
tween them (e.g. Matsumoto & Kubotani 1996). Reviews and dis-
cussions can be found in Grieve (1991) and Grieve & Pesonen
(1996). Numerical simulations of what signals can be detected in
these kinds of data sets were presented in Heisler & Tremaine (1989)
and Lyytinen et al. (2009).

The above summary makes clear that a large number of periods
have been claimed, some of which can be identified as potential
harmonics of others. I also see several of these periods, e.g. 11.5,
13.5, 18, 35 Myr, as a local maximum in my likelihood distributions
or periodograms. However, in no case do I find any of them to be
significant.

Most of the above studies employ frequentist hypothesis testing
and suffer from one or more of the problems outlined previously. In
particular, many compare the value of some statistic measured on
the data to the values obtained by a noisy ‘reference’ model. This is
typically a uniform random distribution (akin to UniProb). Only the
study of Yabushita (1996) examined a trend component in the anal-
ysis, and when this was included there was insufficient evidence for
periodicity. As already demonstrated and discussed, if the reference
model is inappropriate and if other plausible models are ignored,
then the significance of any periodicity is overestimated. Moreover,
by only considering the evidence in a single period we overfit the
model, leading to a claim of periodicity where none exists. Note
also that focusing on a single period (or narrow range) because it
has been found in a previous study does not give an independent
claim for periodicity, because we only have one crater record. This
would amount to reusing the data, thereby increasing the evidence
for the period artificially.

There may be a human desire to find and report periods. Sev-
eral studies give some prominence to detected periods, but draw
less attention to their limited statistical significance (e.g. Yabushita
1991; Stothers 1998). The motivation to do this may be a lack of
confidence in the robustness of the test, anticipation that a later
analysis will confirm the period(s) with significance, or because
the period is close to another period (itself possibly insignificant)
found in other studies, in biodiversity data or in models of solar
motion (e.g. Stothers 1998). However, significance is everything:
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Time series analysis of impact cratering 1179

non-periodic models can give rise to superficially significant peri-
ods (Section 4.2; see also Stigler & Wagner 1987). The (lack of)
evidence for a periodicity in geological data or for an expected
periodicity in astronomical phenomena is reviewed in Bailer-Jones
(2009).

6.9 Summary of the main features of the method

The analysis method developed in this paper is quite general and is
not limited to analysis of impact crater time series. Its main features
are

(i) operation on time-of-arrival data,
(ii) description of time series as stochastic models (more appro-

priate to the impact phenomena than deterministic models),
(iii) consistent use of age uncertainties (obviating the need to

remove ‘poor’ data),
(iv) ability to include craters with upper age limits (censored

data) consistently,
(v) use of Bayesian evidence calculation and avoidance of p-

values or ad hoc statistics,
(vi) comparison of multiple models (rather than relying on a

single ‘null’ hypothesis) and
(vii) use of proper parameter prior distributions, which are con-

sidered as an intrinsic part of the model.

The method should not be very sensitive to age errors provided
the age uncertainties are approximately correct, although detailed,
systematic testing of this has not yet been performed. We may also
want to see how robust the conclusions are to the inclusion/removal
of craters around the 5 km diameter limit. On the other hand, we
have seen that the addition/removal of a few craters does not change
the conclusions, as we would expect.

7 C O N C L U S I O N S

I find no evidence for a periodic variation in the impact crater rate
over the past 150 or 250 Myr for craters with diameter above 5 km,
relative to two other plausible – but quite broad – models: constant
and monotonically varying probability with time. Compared to the
uniform model, there is significant evidence for a monotonic de-
crease in the impact rate with look-back time over the past 250 Myr,
but not over the past 150 Myr. However, introducing craters with
upper age limits into the analysis does give significant evidence
for this trend even within the past 150 Myr. The physical interpre-
tation is either an intrinsic variation in the impact probability or
a variation in the crater preservation/discovery probability (i.e. we
are less likely to find older craters). The former is consistent with
some studies of lunar cratering. For very large craters (d > 35 km)
over the past 400 Myr the best-fitting model is the constant proba-
bility one, which is consistent with no preservation/discovery bias
for such large craters. Given what we know about crater erosion
and infilling, the preservation/discovery bias is a plausible explana-
tion (e.g. Grieve 1991). It remains possible that there is a periodic
variation on top of this. I find no evidence for this, although such
a complex signal would be difficult to distinguish. Further simula-
tions are necessary to explore what other kinds of signal could be
reliably detected in these geological data.

Contrary to claims made in the literature, we can draw useful
conclusions from events with large or variable age uncertainties,
provided we use these uncertainties correctly. Larger uncertainties
may make it harder to distinguish between models, but they do not
invalidate the concept of model comparison.

Other studies claiming periodicity have probably overestimated
the significance of the detected periods. This can occur if the signif-
icance is assessed relative to a null hypothesis of a model which is
poorly supported by the data (here the uniform model), rather than
to other non-periodic models which may be much better supported
(here the trend model). The wrong conclusion can also be reached if
we rely on a periodogram peak or the maximum likelihood solution.
I have shown via simulations how these can often claim a period-
icity where none exists. The reason is that they fail to assess the
evidence for the model as a whole, examining only the likelihood
of an ‘overfit’ solution.
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APPENDIX A : MODELS WITH A UNIFORM
FREQUENCY PRIOR

The periodic models described in Section 3.6 have been rerun using
frequency instead of period as the model parameter, and with a
uniform prior over frequency. As discussed in the main paper, it
turns out that this has no relevant impact on the results, i.e. the
conclusions are robust with respect to this reparametrization or
change of prior. So in the interests of brevity the results are shown
here for just one model and data set.

Figure A1. Log likelihood distribution as a function of frequency and phase
for the SinProb model with a prior uniform over frequency for the basic150
data set.

Figure A2. Bayesian periodogram for the SinProb model with a prior uni-
form over frequency, for the basic150 data set.

Fig. A1 shows the likelihood distribution for the SinProb model
applied to the basic150 data set. The corresponding periodogram,
formed by marginalizing over the phase, is shown in Fig. A2. These
two figures may be compared to the two corresponding figures for
the model with the prior uniform over period, Figs 12 and 13. The
two periodograms actually show peaks at identical periods. Indeed,
if we replot Fig. A2 in terms of period (i.e. transform the abscissa),
we get a plot almost identical to Fig. 13, but with slightly higher
values on the ordinate. The higher values are simply a result of
the smoothing scale used to produce the plot: we get these slightly
higher values in Fig. 13 too if we use a smaller smoothing scale.
(This also reflects the fact that a fixed smoothing scale parameter in
frequency corresponds to a variable one in period, and vice versa.)
The maximum likelihood solution is exactly the same. The evi-
dence for common period ranges is actually slightly different, e.g.
6.01 × 10−71 for periods of 10–50 Myr with the uniform frequency
prior (Bayes factor of 0.37 with respect to UniProb), compared
to 2.67 × 10−71 before. This reflects the different ‘weighting’ of
the likelihoods that comes with using a different prior (see equa-
tion 8). However, these changes are comparatively small, and do
not alter the conclusions. In many other cases the differences are
smaller.
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