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ABSTRACT
We investigate the orbital evolution of an interplanetary dust particle under the action of an
interstellar gas flow. We present the secular time derivatives of the particle’s orbital elements,
for arbitrary orbit orientation. An important result concerns the secular evolution of the
semimajor axis. The secular semimajor axis of the particle on a bound orbit decreases under
the action of fast interstellar gas flow. In this paper, we discuss the possible types of evolution of
other Keplerian orbital elements. Also, we compare the influences of the Poynting–Robertson
effect, the radial solar wind and the interstellar gas flow on the dynamics of the dust particle
in the outer planetary region of the Solar system and beyond, up to 100 au.

We study the evolution of a putative dust ring in the zone of the Edgeworth–Kuiper belt.
The non-radial solar wind and the gravitational effect of the major planets might have an
important role in this zone. We take into account both these effects. The low-inclination orbits
of micrometre-sized dust particles in the belt are not stable, because of the fast increase of
eccentricity caused by the long-term monodirectional interstellar gas flow and subsequent
planetary perturbations – the increase of eccentricity leads to the planet-crossing orbits of the
particles.

Gravitational and non-gravitational effects are treated in a way that fully respects physics.
As a consequence, some of the published results have turned out to be incorrect. Moreover, in
this paper we treat the problem in a more general way than it has been presented up to now.

The influence of the fast interstellar neutral gas flow should not be ignored in the modelling
of the evolution of dust particles beyond planets.

Key words: celestial mechanics – interplanetary medium – ISM: general.

1 IN T RO D U C T I O N

The motion of stars relative to their local interstellar medium is a
frequent/usual process in galaxies. The motion of dust particles in
orbits around a star can be affected by interstellar matter penetrating
into the astrosphere of the star. A star’s disc of debris can show asym-
metric morphology caused by the interaction of the disc with the in-
terstellar matter. Up to now, at least three such debris discs have been
detected in the neighbourhood of the Sun. The stars are HD 61005,
HD 32297 and HD 15115. The morphology asymmetry of the discs,
as a result of interaction of the disc with interstellar matter, has been
numerically investigated by Hines et al. (2007) (HD 61005), Debes,
Weinberger & Kuchner (2009) (HD 32297 and HD 15115), and
others. Neutral atoms also penetrate into the Solar system as a re-
sult of the relative motion of the Sun with respect to the interstellar

�E-mail: pavol.pastor@hvezdarenlevice.sk (PP); klacka@fmph.uniba.sk
(JK)

medium. This flow of neutral atoms through the heliosphere has
been investigated in many papers (e.g. Fahr 1996; Lee et al. 2009;
Möbius et al. 2009). However, the influence of the interstellar gas
flow on the dynamics of dust particles in the Solar system is usu-
ally ignored in the literature. The Poynting–Robertson (PR) effect,
the radial solar wind and the gravitational perturbation of a planet
(planets) are usually taken into account (Šidlichovský & Nesvorný
1994; Liou & Zook 1997, 1999; Kuchner & Holman 2003).

The motion of a spherical dust particle in the Solar system under
the action of the interstellar gas flow has been analytically and
numerically investigated by Scherer (2000). Scherer has calculated
the secular time derivatives of the particle’s angular momentum
and the Laplace–Runge–Lenz vector caused by the interstellar gas
flow. However, Scherer’s calculations contain several errors. He has
come to the conclusion that the semimajor axis of the dust particle
increases exponentially (Scherer 2000, p. 334). In this paper, within
the framework of perturbation theory, we show that the semimajor
axis of the dust particle decreases under the action of the interstellar
gas flow.
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The influence of the interstellar flow of gas on the motion of
dust particles in the zone of the Edgeworth–Kuiper belt has been
investigated by Klačka et al. (2009a). They have calculated the
secular time derivatives of orbital elements only for the case when
the interstellar gas velocity vector lies in the orbital plane of the
dust particle and the direction of the velocity vector is parallel with
the y-axis. In this paper, we overcome these restrictions.

Belyaev & Rafikov (2010) investigated the motion of dust in
the outer Solar system – behind the solar wind termination shock.
They calculated the secular orbital evolutions of a spherical dust
particle under the action of a constant monodirectional force (i.e.
they solved the classical Stark problem; a generalized and improved
solution of the classical Stark problem can be found in Pástor 2010).
At usage of the classical Stark problem it is assumed that the orbital
speed of the dust grain can be neglected in comparison with the
speed of the interstellar gas flow. Therefore, the solution of the
classical Stark problem does not describe the motion of the dust
grain in the correct way. This is especially true in the vicinity of the
Sun, where the orbital speed of the dust grain is high. The solution
of the classical Stark problem might serve as an approximation in
some cases. In this paper, we present the secular evolution of all
orbital elements when the orbital velocity of the particle is taken
into account. Belyaev & Rafikov (2010) reproduce our results (see
the preprint of this paper, Pástor, Klačka & Kómar 2010) on the
secular evolution of the semimajor axis of the particle’s orbit. We
focus on the dynamics of the dust grains inside the heliosphere and
in the zone of the Edgeworth–Kuiper belt. Moreover, in our paper
we present some basic properties of dust dynamics under the action
of the interstellar gas.

2 SE C U L A R E VO L U T I O N

The acceleration of a spherical dust particle caused by a flow of
neutral gas can be given in the form (Scherer 2000)

dv

dt
= −cDγH|v − vH| (v − vH) . (1)

Here, vH is the velocity of the neutral hydrogen atom in the sta-
tionary frame associated with the Sun, v is the velocity of the dust
grain, cD is the drag coefficient and γ H is the collision parameter.
For the collision parameter, we can write

γH = nH
mH

m
A, (2)

where mH is the mass of the neutral hydrogen atom, nH is the
concentration of the interstellar neutral hydrogen atoms and A =
πR2 is the geometrical cross-section of the spherical dust grain of
radius R and mass m. The concentration of interstellar hydrogen nH

is not constant in the entire heliosphere. For heliocentric distances
r less than 4 au, nH decreases precipitously from its value in the
outer heliosphere toward the Sun, because of ionization (Lee et al.
2009). However, in the outer heliosphere, r ∈ (30 au, 80 au), we
can assume that the concentration of the neutral hydrogen atoms
is constant nH = 0.05 cm−3 (Fahr 1996). The same assumption can
also be used behind the solar wind termination shock. The shock
was crossed by Voyager 1 at the heliocentric distance 94 au and by
Voyager 2 at 84 au (Richardson et al. 2008).

We assume that the speed of interstellar gas is much greater
than the speed of the dust grain in the stationary frame associated
with the Sun (|v| = v � |vH| = vH). This approximation leads
to an approximately constant value of cD ≈ 2.6 (Baines, Williams
& Asebiomo 1965; Banaszkiewicz, Fahr & Scherer 1994; Scherer
2000; Klačka et al. 2009a).

We want to find the influence of the interstellar gas flow on the
secular evolution of the particle’s orbit. We assume that the dust
particle is under the action of the gravitation of the Sun and the flow
of neutral gas. Hence, we have the equation of motion

dv

dt
= − μ

r3
r − cDγH|v − vH| (v − vH) , (3)

where μ = G M�, G is the gravitational constant, M� is the mass
of the Sun, r is the position vector of the dust particle with respect to
the Sun and r = |r|. From the derivation presented in Appendix A,
for the secular time derivatives of the Keplerian orbital elements
caused by the interstellar gas flow, we finally obtain:〈

da

dt

〉
= −2acDγHv2

H

√
p

μ
σ

×
{

1 + 1

v2
H

[
I 2 − (I 2 − S2)

1 − √
1 − e2

e2

]}
, (4)

〈
de

dt

〉
= cDγHvH

√
p

μ

[
3I

2
+ σ (I 2 − S2)(1 − e2)

vHe3

×
(

1 − e2

2
−
√

1 − e2

)]
, (5)

〈
dω

dt

〉
= cDγHvH

2

√
p

μ

⎧⎨
⎩−3S

e
+ σSI

vHe4

× [
e4 − 6e2 + 4 − 4(1 − e2)3/2

] + C
cos i

sin i

×
[

3e sin ω

1 − e2
− σ

vH
(S cos ω − I sin ω)

]⎫⎬
⎭, (6)

〈
d�

dt

〉
= cDγHvHC

2 sin i

√
p

μ

×
[
−3e sin ω

1 − e2
+ σ

vH
(S cos ω − I sin ω)

]
, (7)

〈
di

dt

〉
= − cDγHvHC

2

√
p

μ

×
[

3e cos ω

1 − e2
+ σ

vH
(S sin ω + I cos ω)

]
. (8)

Here, p = a (1 − e2),

σ =
√

μ/p

vH
(9)

and the quantities

S = (cos � cos ω − sin � sin ω cos i)vHX

+ (sin � cos ω + cos � sin ω cos i)vHY

+ sin ω sin ivHZ,

I = (− cos � sin ω − sin � cos ω cos i)vHX

+ (− sin � sin ω + cos � cos ω cos i)vHY

+ cos ω sin ivHZ,

C = sin � sin ivHX − cos � sin ivHY + cos ivHZ, (10)

are values of A =vH · eR, B =vH · eT and C =vH · eN at the
perihelion of the particle’s orbit (f = 0), respectively. The value of
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Figure 1. A schematic representation of the values S, I and C for a given
orbit.

C is a constant on a given oscular orbit. The values of S, I and C
are depicted in Fig. 1.

3 THEORETICAL DISCUSSION

Equations (4)–(8) enable us to deduce some properties of the sec-
ular evolution of the dust particle under the action of the flow of
interstellar gas. C = 0 for the special case when the velocity of
hydrogen gas vH lies in the orbital plane of the particle. In this case,
we find that the inclination and the longitude of the ascending node
are constant. The secular time derivatives for a special case of this
type (i = � = 0, vHX = vHZ = 0 and vHY = vH in equations 10)
have been derived in Klačka et al. (2009a). The secular time deriva-
tives of a, e and ω are given in Klačka et al. (2009a) without the
generalization represented by equations (10) and Fig. 1.

Putting σ = 0 in equations (4)–(8), we obtain a solution equiv-
alent to the solution for equation (1) with the right-hand side (rhs)
independent of the particle’s velocity (constant force). Equation (4)
yields a constant semimajor axis for the unrealistic case σ = 0. We
show, using equation (4), that the secular semimajor axis decreases
under the action of interstellar gas flow for σ > 0. If the secular
increase of the semimajor axis does occur, then the value of the term
within the curly braces in equation (4) would be negative. The value
of 1 − √

1 − e2 is always positive or zero. Thus, the term within
the curly braces could be negative only for I2 − S2 > 0. Because
S and I are the radial and transversal components of the constant
vector vH at the perihelion (Fig. 1) of the particle orbit, we obtain
the maximal value of I2 − S2 for orbit orientation characterized by
S = 0. Using these assumptions, the minimal value (MV) within the
curly braces is

MV = 1 + 1

v2
H

(
I 2 − I 2 1 − √

1 − e2

e2

)

= 1 + I 2

v2
H

√
1 − e2

1 − √
1 − e2

e2
> 0. (11)

The positiveness of MV means that the secular semimajor axis is
a decreasing function of time. Equation (4) was derived under the
assumption that the solar gravity represents dominant acceleration
in comparison to the interstellar gas disturbing acceleration. As
gravitational acceleration decreases with square of a heliocentric
distance, the assumption about the disturbing interstellar gas accel-
eration might not be valid far from the Sun. Behind the heliocentric
distance at which solar gravitational acceleration equals the inter-
stellar gas acceleration, the particle’s secular semimajor axis can
also be an increasing function of time. The two accelerations are
equal at heliocentric distance ≈1 × 104 au for a dust particle with

R = 1 μm and � = 2 g cm−3 and at heliocentric distance ≈7 ×
103 au for a dust particle with R = 1 μm and � = 1 g cm−3. If
equation (4) can be used, then the secular time derivative of the
semimajor axis is proportional to the value of the semimajor axis
(the value of

√
p/μσ is independent of the semimajor axis).

Defining the function w(e) ≡ 1 − e2/2 − √
1 − e2, e ∈ [0, 1),

present in equation (5), we obtain

dw

de
≡ d

de

(
1 − e2

2
−
√

1 − e2

)

= −e + e√
1 − e2

≥ 0. (12)

Thus, w(e) is an increasing function of eccentricity. We obtain that
w(e) ≥ 0 for all e ∈ [0, 1), as w(e) is an increasing function of
eccentricity and w(0) = 0. Hence, the sign of the second term in
the square brackets in equation (5) will depend only on the sign of
I2 − S2.

For small values of the eccentricity, we find that the secular time
derivative of eccentricity is, approximately, proportional only to the
first term multiplied by I in the square brackets in equation (5).

Equation (6) yields that the argument of perihelion is constant for
the planar case C ≡ 0 and for the orbit’s orientation characterized
by S = 0. Thus, I is also constant in this case. Therefore, the rhs
of equation (5) is only a function of the orbital semimajor axis and
eccentricity.

Parameters S, I and C determine the position of the orbit with
respect to the interstellar gas velocity vector. Therefore, their time
derivatives are useful for a description of the evolution of the or-
bit’s position in space. Putting equations (6)–(8) into averaged time
derivatives of the quantities S, I and C defined by equations (10),
we obtain〈

dS

dt

〉
= cDγHvHS

2

√
p

μ

{
−3I

e
− σ

vH

×
[
C2 − I 2

e4

(
e4 − 6e2 + 4 − 4(1 − e2)3/2

)]}
, (13)

〈
dI

dt

〉
= cDγHvH

2

√
p

μ

{
− 3eC2

1 − e2
+ 3S2

e
− σI

vH

×
[
C2 + S2

e4

(
e4 − 6e2 + 4 − 4(1 − e2)3/2

)]}
, (14)

〈
dC

dt

〉
= cDγHvHC

2

√
p

μ

[
3eI

1 − e2
+ σ

vH

(
S2 + I 2

)]
. (15)

Equations (13)–(15) are not independent, because equa-
tion S〈dS/dt〉 + I〈dI/dt〉 + C〈dC/dt〉 = 0 always holds. Equa-
tions (13)–(15), together with equations (4) and (5), represent the
system of equations that determines the evolution of the particle’s
orbit in space with respect to the interstellar gas velocity vector. All
orbits that are created with rotations of one orbit around the line
aligned with the interstellar gas velocity vector and going through
the centre of gravity will undergo the same evolution determined
by this system of equations.

Equations (13)–(15), together with equations (4) and (5), enable
us to find some properties of the evolution of the particle’s orbit in
space. If σ is a small number and I is not close to zero, then we can
use the following approximations of equations (5) and (13):〈

de

dt

〉
≈ 3cDγHvH

2

√
p

μ
I, (16)
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〈

dS

dt

〉
≈ −3cDγHvH

2

√
p

μ

SI

e
. (17)

Inserting equation (16) into equation (17) we can obtain〈
dS

dt

〉
≈ −S

e

〈
de

dt

〉
. (18)

This equation leads to

dS

S
≈ −de

e
, (19)

with the solution

S ≈ U

e
, (20)

where U is a constant that can be determined from the initial condi-
tions. Thus, if the major axis of the orbit is aligned with the direction
of the hydrogen gas velocity vector, then the eccentricity is close to
its minimal value. If σ is a small number and I and e are not close
to zero, we can use the following approximation in equation (15):〈

dC

dt

〉
≈ 3cDγHvH

2

√
p

μ

ICe

1 − e2
. (21)

If we combine equation (21) with equation (16), then we obtain〈
dC

dt

〉
≈ Ce

1 − e2

〈
de

dt

〉
. (22)

This equation leads to

dC

C
≈ ede

1 − e2
, (23)

with the solution

C ≈ V√
1 − e2

, (24)

where V is an integration constant. For I, we obtain from equa-
tion S2 + I2 + C2 = v2

H

|I | ≈
√

v2
H − U 2

e2
− V 2

1 − e2
. (25)

Equations (20), (24) and (25) hold only approximately, during the
evolution of the orbit in space. For a complete solution for the
case σ ≡ 0, we refer the reader to Pástor (2010) and Belyaev &
Rafikov (2010). It is necessary to distinguish between the Stark
problem for which σ ≡ 0 and the motion of a dust particle in the
gravitational field of a star for which σ �= 0. If σ is significantly
different from zero, then the terms multiplied by σ in equations
(4)–(8) must be considered. In this case, the semimajor axis of the
dust particle is not constant. The fact that the semimajor axis is not
a constant has a direct influence on the time evolution of all orbital
elements; see the semi-latus rectum p = a(1 − e2) in equations (4)–
(8). This conclusion is also supported by the numerical integration
of the equation of motion of the dust particle (equation 3). Even
if the initial conditions are identical, the time evolutions of orbital
elements, for the cases σ ≡ 0 and σ �= 0, can be significantly
different. This is especially true for particles in the Edgeworth–
Kuiper belt zone, because the particles in this zone have smaller
semimajor axes than particles in the outer Solar system (σ ∼ a−1/2).
Belyaev & Rafikov (2010) have investigated the dynamics of dust
particles in the outer Solar system.

Now, using equations (13)–(15), we find the evolution of the
particle’s orbit in space for the planar case. Equation (13) yields for

the planar case (C ≡ 0)〈
dS

dt

〉
= cDγHvHS

2

√
p

μ

{
− 3I

e
+ σI 2

vHe4

× [
e4 − 6e2 + 4 − 4(1 − e2)3/2

]}
. (26)

It is possible to show that the sign of 〈dS/dt〉 depends only on
the signs of S and I (see Appendix B). Let us consider in the
orbital plane a two-dimensional Cartesian coordinate system with
the origin in the Sun and the vertical axis aligned with the direction
of the hydrogen gas velocity vector. Fig. 2 depicts four such systems.
The unit vector eRP = eR(f = 0) in each of these is depicted in a
different quadrant. We take into account only prograde orbits. This
assumption determines the directions/orientations of the unit vectors
eTP = eT(f = 0) perpendicular to eRP. In Fig. 2(a), eRP lies in the first
quadrant of this coordinate system. Both scalar products S = vH ·
eRP and I = vH · eTP are greater than 0, for these positions of the unit
vectors eRP and eTP. Thus, 〈dS/dt〉 is negative (see Appendix B). If
eRP lies in the second quadrant (Fig. 2b), then 〈dS/dt〉 is positive.
If eRP lies in the third quadrant (Fig. 2c), then 〈dS/dt〉 is negative.
Finally, if eRP lies in the fourth quadrant (Fig. 2d), then 〈dS/dt〉 is
positive. If eRP is parallel with vH, then the value of S is maximal;
also, if eRP is antiparallel with vH, then the value of S is minimal.
Therefore, the vector eRP rotates counterclockwise in the first and
second quadrants and clockwise in the third and fourth quadrants.
Because the positions of the unit vectors eRP in all quadrants were
chosen arbitrarily, our conclusion is general. If the vector eRP is
parallel with the vertical axis in Fig. 2 (I = 0 and C = 0), then
equation (14) yields 〈dI/dt〉 > 0. Thus, the positions of the vector
eRP parallel with the vertical axis in Fig. 2 are not stable. However,
if eRP is parallel with the horizontal axis (S = 0 and C = 0), then
〈dS/dt〉 = 0 and 〈dI/dt〉 = 0. Thus, eRP parallel with the horizontal
axis yields stable positions of the vector eRP. The stable position of
the vector eRP parallel with the horizontal axis and directed to the left
in Fig. 2 is of theoretical importance only. In reality, no particles
should be observed with perihelia in this direction. However, all
unit vectors eRP of the particles in the prograde orbits will approach
the right direction in Fig. 2. For retrograde orbits, we have to use
the transformation eTP → −eTP. We obtain S → S, I → −I and
therefore 〈dS/dt〉 → −〈dS/dt〉. Hence, all unit vectors eRP of the
particles in the retrograde orbits will approach the left direction in
Fig. 2.

4 NUMERI CAL RESULTS

4.1 Comparison of the numerical solution of the equation
of motion and the solution of equations (4)–(8)

We have numerically solved equation (3) and the system of dif-
ferential equations represented by equations (4)–(8). The solutions
are compared in Fig. 3. We have assumed that the direction of
the interstellar gas velocity vector is identical to the direction of
the velocity of the interstellar dust particles entering the Solar sys-
tem. The interstellar dust particles enter the Solar system with a
speed of about v∞ = 26 km s−1 (Landgraf et al. 1999) and they
are arriving from the direction of λecl = 259◦ (heliocentric ecliptic
longitude) and βecl = 8◦ (heliocentric ecliptic latitude; Landgraf
2000). Thus, the components of the velocity in the ecliptic coordi-
nates with the x-axis aligned towards the actual equinox are vH =
−26 km s−1 [cos(259◦) cos(8◦), sin(259◦) cos(8◦), sin(8◦)]. Further-
more, we have assumed that the velocity vector and the density of
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Orbital evolution with interstellar gas flow 2641

Figure 2. Secular time derivatives of S (see equations 10) for dust particles in prograde orbits in the planar case. The origins of these Cartesian coordinate
systems are in the Sun and the vertical axes are aligned with the direction of the hydrogen gas velocity vector. eRP and eTP are radial and transversal unit
vectors, respectively, in the perihelion of the particle orbit (see text).

the hydrogen gas atoms do not change during the time of integration
of 3 × 106 yr. This assumption requires the dimension of the inter-
stellar gas cloud to be approximately 80 pc in the direction of the
hydrogen gas velocity and this cannot always be fulfilled in the real
galactic environment. As the initial conditions for a dust particle
with R = 2 μm and mass density � = 1 g cm−3, we used ain = 60
au, ein = 0.5, ωin = 90◦, �in = 90◦ and iin = 20◦ for equations
(4)–(8). The initial true anomaly of the dust particle was f in = 180◦

for equation (3). Fig. 3 shows that the obtained evolutions are in
good agreement. The evolutions begin separately as the eccentric-
ity approaches 1. This is caused by the fact that the approximation
σ � 1 (see equation A12) does not hold for large eccentricities. A
detailed numerical solution of the equation of motion (equation 3)
yields that the secular semimajor axis is also a decreasing function
of time when the eccentricity approaches 1.

We can summarize, on the basis of the previous paragraph. If there
is no other force, besides solar gravity and the flux of interstellar gas,
then the semimajor axis of an interplanetary dust particle decreases
and the particle can hit the Sun. However, the particle can also hit
the Sun as a result of another possibility: the particle’s eccentricity
increases to 1. These mathematical possibilities probably do not
occur in reality, as other forces can act on the dust particle and the
interstellar gas is ionized below the heliocentric distance of about
4 au.

Let us return, once again, to the planar case (C ≡ 0) in which S =
0 and the dominant term in the square brackets in equation (5), the
term (3/2) I, is negative. A numerical integration of equation (3)
shows that if the eccentricity decreases to 0, then the argument of
perihelion ω ‘shifts’ its value to the value ω + (2k1 + 1) 180◦, where
k1 is an integer. This means that the negative value of I changes to
positive and the eccentricity begins increase with the same slope.

The approximative solution represented by equation (20) is in
good agreement with the detailed numerical solution of equations
(4)–(8) for the planar case with S �= 0. This holds for the whole
time interval, and also for I close to zero. Equation (20) also holds,
approximately, for the evolution depicted in Fig. 3. In this case, i is
close to zero, vH ≈ vHY and � ≈ 90◦ at the eccentricity minimum.
Equation (20) gives e ≈ U/(vH cos ω). The evolutionary minimum
of eccentricity occurs when ω is close to 180◦. This is in accordance
with equation (20).

We have found an interesting orbit behaviour for the case σ �=
0. It depends on the orbit orientation with respect to the hydrogen
gas velocity vector vH. If vH lies in the plane i = 0 and eRP is
perpendicular to vH (in this case S = 0 and 〈dS/dt〉 = 0), then the
interstellar gas flow can change a prograde orbit into a retrograde
one (even more times for one particle).

4.2 Comparing the influences of interstellar gas flow,
Poynting–Robertson effect and radial solar wind
on the dynamics of dust particles

We have considered only the effect of interstellar gas flow, up to now.
In reality, some other non-gravitational effects play non-negligible
roles. Therefore, it is interesting to compare the effect of the inter-
stellar gas flow with the other effects influencing the dynamics of
dust grains in the Solar system. For this purpose, we include the
PR effect and the radial solar wind in the equation of motion. The
PR effect is the electromagnetic radiation pressure force acting on
a spherical particle (Klačka 2004, 2008; Klačka et al. 2009c). The
equation of motion of the dust particle under the action of the PR
effect, the radial solar wind and the interstellar gas flow has the
form (e.g. Klačka et al. 2009b)

dv

dt
= −μ(1 − β)

r2
eR − β

μ

r2

(
1 + η

Q̄′
pr

)(
v · eR

c
eR + v

c

)

− cDγH|v − vH| (v − vH) , (27)

where the decrease of the particle’s mass (corpuscular sputtering)
and higher orders in v/c are neglected. c is the speed of light in vac-
uum. The parameter β is defined as the ratio of the electromagnetic
radiation pressure force and the gravitational force between the Sun
and the particle at rest with respect to the Sun:

β = 3 L�Q̄′
pr

16πcGM�R�
,

β
.= 5.763 × 10−4

Q̄′
pr

R(m)�(kg m−3)
. (28)

Here, L� is the solar luminosity, L� = 3.842 × 1026 W (Bahcall
2002), Q̄′

pr is the dimensionless efficiency factor for radiation pres-
sure integrated over the solar spectrum and calculated for the radial
direction (Q̄′

pr = 1 for a perfectly absorbing sphere) and � is the
mass density of the particle. η is the ratio of solar wind energy to
electromagnetic solar energy, both radiated per unit of time:

η = 4πr2u

L�
N∑

i=1

nimic
2. (29)

Here, u is the speed of the solar wind, u = 450 km s−1, mi and ni (i =
1 to N) are masses and concentrations of the solar wind particles at a
distance r from the Sun. η = 0.38 for the Sun (Klačka et al. 2009b).
Four numerical integrations of equation (27) are shown in Fig. 4.
We have used a dust particle with R = 2 μm, mass density � = 1
g cm−3 and Q̄′

pr = 0.75. For the sake of simplicity, we have taken
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2642 P. Pástor, J. Klačka and L. Kómar

Figure 3. Two evolutions of orbital elements of a dust particle with R = 2 μm and mass density � = 1 g cm−3 under the action of interstellar gas flow. The
evolution depicted by a solid line is calculated from the equation of motion. The evolution depicted by a dashed line corresponds to equations (4)–(8).

into account only the planar case when the interstellar gas velocity
vH = (0, 26 km s−1, 0) lies in the orbital plane of the dust particle
(C = 0). The initial position is r in = (0, −90 au, 0) and the initial
velocity vector is vin = (2 km s−1, 0, 0). The orbital evolution is
given by the evolution of osculating orbital elements calculated for
the case when a central acceleration is defined by the first Keplerian
term in equation (27), namely −μ(1 − β)eR/r2. This is denoted
by the subscript β in Fig. 4. Mutual collisions between the dust
particles are not considered (for an explanation, see Appendix C).
The evolution depicted by the dash-dotted line is for the PR effect
alone (γ H = 0, η = 0 in equation 27). The evolution depicted by
the dotted line is for the PR effect with the flow of interstellar gas
(η = 0 in equation 27). The evolution depicted by the dashed line is

for the PR effect and the radial solar wind (γ H = 0 in equation 27).
Finally, the evolution depicted by the solid line holds for the case
when all three effects act together.

The evolution of the semimajor axis depicted in Fig. 4 shows that
the flow of interstellar gas is more important than the radial solar
wind, as for the effects on the dynamics of the dust particle.

The secular eccentricity is always a decreasing function of time
for the PR effect and the radial solar wind (e.g. Wyatt & Whipple
1950; Klačka et al. 2009b). The growth in eccentricity depicted in
Fig. 4 is a result of the interstellar gas. The fast decrease of the
semimajor axis in Fig. 4 might also be, at least partially, caused by
the fact that higher eccentricities decrease the value of 〈daβ/dt〉PR

and the PR effect becomes stronger. The secular evolution of
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Orbital evolution with interstellar gas flow 2643

Figure 4. Orbital evolutions of a dust particle with R = 2 μm, mass density
� = 1 g cm−3 and Q̄′

pr = 0.75 under the action of the PR effect, the radial
solar wind (SW) and the flow of interstellar gas (IG).

eccentricity can be also an increasing function of time if the flow of
interstellar gas is taken into account. We have〈

deβ

dt

〉
PR+SW+IG

= −5

2
β

(
1 + η

Q̄′
pr

)
μ

c

eβ

a2
β

(
1 − e2

β

)1/2

+ cDγHvH

√
pβ

μ(1 − β)

×
[

3Iβ

2
+ σβ

(
I 2
β − S2

β

) (
1 − e2

β

)
vHe3

β

(
1 − e2

β

2
−
√

1 − e2
β

)]
, (30)

if equation (5) is also used. We note that the transformation μ →
μ(1 − β) has to be done on the rhs sides of equations (4)–(8). If we
use the definition of the osculating orbital elements, then the physi-

cal central acceleration is given by the gravitational acceleration of
the Sun, −μeR/r2. In this case, the secular evolution of eccentricity
is given by equation (103) in Klačka (2004), assuming that eβ is
calculated from equation (30).

If the optical properties of the dust particle are constant, then the
secular time derivative of the argument of perihelion equals zero
for the PR effect and the radial solar wind (Klačka et al. 2007;
Klačka et al. 2009b). If the flow of interstellar gas is included in the
equation of motion, then, even in the planar case, the secular time
derivative of the argument of perihelion might not be equal to zero,
in general (see Fig. 4).

The evolutions of eccentricity and the argument of perihelion
shown in Fig. 4 are significantly affected by the flow of interstellar
gas.

4.3 Evolution of eccentricity for various initial conditions

The complicated properties of the evolution of eccentricity shown
in Fig. 4 have motivated us to explore in more detail the evolution
eccentricity under the action of the solar radiation and interstel-
lar gas flow. For this purpose, we have numerically solved equa-
tion (27) with the PR effect, radial solar wind and interstellar gas
flow taken into account, similarly as in the solution for Fig. 4. For
the sake of simplicity, we have solved only the planar case (Cβ =
0) with the velocity of interstellar gas vH = (0, 26 km s−1, 0). As
the initial conditions of the dust particle with R = 2 μm, mass
density � = 1 g cm−3 and Q̄′

pr = 0.75, we used aβin = 60 au,
eβin ∈ {0.1, 0.2, 0.3, . . . , 0.9}, ωβin ∈ {0, 45◦, 90◦, 135◦, 180◦} and
f βin = 0. Therefore, we obtained 45 individual orbits. Because of the
symmetry (invariance) of the equations for secular time derivatives
〈da/dt〉PR+SW+IG, 〈de/dt〉PR+SW+IG, 〈d ω/dt〉PR+SW+IG after transfor-
mation ωβ → −ωβ , it is not necessary to consider orbits with ωβin

∈ (−180◦, 0). The secular evolutions of the semimajor axis and
eccentricity are identical after this transformation and the secular
evolutions of the argument of perihelion are symmetric about the
x-axis. Numerical integrations were stopped when the heliocentric
distance of the dust particle was below 4 au. We have assumed that
the concentration of interstellar hydrogen is nH = 0.05 cm−3 during
the whole time of integration. The results are depicted in Fig. 5.

The initial conditions used in the evolutions shown in the left
panel of Fig. 5(a) (ωβin = 0) yield Sβin = 0 (see equations 10).
Because ωβ has a constant zero value (equation 6), Sβ = 0 also.
The evolution of eccentricity shown in the left panel of Fig. 5(a) is
initially an increasing function of time. This is caused by the positive
value of the second term in equation (30). Iβ is positive (equations
10) and the value of the second term in the square brackets in
equation (30) is also positive for Sβ = 0 and Iβ > 0 (see also the
discussion about equation 12). The interstellar gas flow is dominant
on the evolution of eccentricity, for larger values of the semimajor
axes, and the eccentricity is an increasing function of time. The
PR effect and radial solar wind become stronger as the semimajor
axis decreases, and the eccentricity begins to decrease for some
critical time (see equation 30). The behaviour of the eccentricity
depicted in the left panel of Fig. 5(a) is different from the behaviour
expected from the solution for β = 0 and σ = 0. For the planar
case, the maximum eccentricity is always 1, in the case β = 0
and σ = 0 (see Pástor 2010). This difference is caused by the
inclusion of the solar radiation in the equation of motion and by
the fact that σβ is not exactly equal to zero. We can see from the
evolution of eccentricity in the left panel of Fig. 5(b) (ωβin = 90◦)
that the eccentricity can only be a decreasing function of time for
larger values of initial eccentricity. The increase of eccentricity
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2644 P. Pástor, J. Klačka and L. Kómar

Figure 5. Orbital evolutions of a dust particle with radius R = 2 μm, mass density � = 1 g cm−3 and Q̄′
pr = 0.75 under the action of the PR effect, the radial

solar wind and the interstellar gas flow. (a) The initial argument of perihelion for the evolutions shown in the left panel is ωβin = 0 and for evolutions shown in
the right panel ωβin = 45◦. For a given value of the argument of perihelion, we used nine various initial eccentricities. (b) The initial argument of perihelion
for the evolutions shown in the left panel is ωβin = 90◦ and for evolutions shown in the right panel ωβin = 135◦. (c) The initial argument of perihelion for the
depicted evolutions is ωβin = 180◦.

caused by the interstellar gas flow is presented in the evolution
of eccentricity only for eβin � 0.6 in the left panel of Fig. 5(b).
The fast decrease of the eccentricity, for eβin � 0.6, is because of
the smaller negative value of 〈deβ/dt〉PR+SW, for these values of
initial eccentricities (see the first term in equation 30), and because
of the zero initial value of Iβin (see equations 30 and 10) for this

panel. However, the value of initial eccentricity, 0.6, is quite large
and the majority of dust particles should undergo the increase of
eccentricity caused by the interstellar gas flow. As we increase the
initial value of the argument of perihelion in Fig. 5, for a given
value of the initial eccentricity, the value of Iβin decreases (see
Figs 2a and b). Therefore, the initial secular time derivative of
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Orbital evolution with interstellar gas flow 2645

Figure 5 – continued

eccentricity becomes smaller. Hence, the eccentricity will initially
decrease more and more precipitously for the evolutions depicted in
Fig. 5.

The evolution of the semimajor axis is shortest for the particle
with the greatest initial eccentricity. The fast decrease of the semi-
major axis is caused by the fact that higher eccentricities decrease
the value of 〈daβ/dt〉PR+SW and the influence of the PR effect and
the radial solar wind becomes stronger.

The evolution of the argument of perihelion in Figs 5(a) and (b)
can be described with the behaviour shown in Figs 2(a) and (b).

The perihelia of orbits approach the direction with Sβ = 0. For
the special case ωβin = 180◦ (see Fig. 5c), the particle’s eccentric-
ity initially decreases precipitously as a result of Iβin = −vH. The
eccentricity decreases to zero in some critical time. When the ec-
centricity reaches zero, the argument of perihelion ‘shifts’ its value
from 180◦ to a value of k2360◦, where k2 is an integer. This means
that the eccentricity begins to increase with the same slope (as eβ =
0 is 〈deβ/dt〉PR+SW = 0). The evolution of eccentricity after this mo-
ment is qualitatively equivalent with the evolutions of eccentricity
depicted in the left panel of Fig. 5(a).
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Figure 5 – continued

4.4 Dust ring in the Edgeworth–Kuiper belt zone

The real situation in the Edgeworth–Kuiper belt zone could be much
more complicated than the situation discussed in Sections 4.1–4.3.
In particular, the gravitation of planets might have an important
influence on the dynamics of dust in the zone. For this reason, we
have included the gravitation of four major planets in the final equa-
tion of motion. The observations from Helios 2 during its first solar
mission in 1976 (Bruno et al. 2003) show that the angle between
the radial direction and the direction of the solar wind velocity does

not significantly depend on heliocentric distance. If the value of
this angle is approximately constant, then the non-radial solar wind
can also have an important influence on the dynamics of dust in the
heliosphere. We have taken into account the non-radial solar wind
with the constant value of the angle. The influence of the precession
of the rotational axis of the Sun on the non-radial solar wind was
also considered. Hence, the equation of motion of the dust particle
has the form:

dv

dt
= − μ

r2
eR + β

μ

r2

[ (
1 − v · eR

c

)
eR − v

c

]
− βη

Q̄′
prcu

× μ

r2
|v − u| (v − u) − cDγH|v − vH| (v − vH)

−
4∑

i=1

GMi

|r − r i |3 (r − r i) −
4∑

i=1

GMi

|r i |3 r i . (31)

Here, u is the solar wind velocity vector, Mi are the masses of the
planets and r i are the position vectors of the planets with respect to
the Sun. The non-radial solar wind velocity vector was calculated
from the following equation

u = u

(
eR cos ε + k × eR

|k × eR| sin ε

)
, (32)

where ε is the angle between the radial direction and the direction
of the solar wind velocity and k is a unit vector with the direc-
tion/orientation corresponding to the direction/orientation of the
solar rotation angular velocity vector. The vector k for a given time
can be calculated from

k = (sin �s sin is, − cos �s sin is, cos is),

is = 7◦15′,

�s = 73◦40′ + 50.25′′[t (yr) − 1850]. (33)

While equations (32) and (33) are consistent with Klačka (1994)
and Abalakin (1986), the value of ε (ε = 2.9◦) used in our numerical
calculations is in accordance with Bruno et al. (2003). The observed
neutral hydrogen gas velocity vector in the ecliptic coordinates with
the x-axis aligned towards the actual equinox is vH = −26 km s−1

[cos(259◦) cos(8◦), sin(259◦) cos(8◦), sin(8◦)]. We have assumed
that the velocity vector and the density of the hydrogen gas atoms
do not change during the time of integration of 106 yr. This as-
sumption requires the dimension of the interstellar gas cloud to be
approximately 27 pc in the direction of the hydrogen gas velocity
and this cannot be always fulfilled in the real galactic environment.
As for the initial conditions of the dust particles, we have not used
random positions and velocities. We have assumed that the putative
dust ring in the Edgeworth–Kuiper belt has an approximate circular
shape and contains many particles with approximately equal optical
properties. Because the ring contains a large amount of particles,
we can choose, approximately, a given value of the semimajor axis
and a given radius of the particles. Accelerations caused by the
PR effect, the solar wind and the interstellar neutral hydrogen gas
are inversely proportional to the particle’s radius and mass density.
Therefore, a large particle is influenced less by the non-gravitational
effects than a small particle of the same mass density. The evolu-
tion of the large particle under the action of the non-gravitational
effects is typically slower than the evolution of the small dust grain.
We have used uniformly distributed initial values of the argument
of perihelion and the longitude of ascending node. Furthermore,
we have assumed that the particles in the ring orbit prograde in
low-inclination orbits. We have used particles with R = 2 μm,
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Orbital evolution with interstellar gas flow 2647

Figure 6. Time evolution of a ring of dust particles with R = 2 μm, � = 1 g cm−3 and Q̄′
pr = 0.75 in the zone of the Edgeworth–Kuiper belt. The ring becomes

eccentric in less than 106 yr because of the interstellar neutral gas. The orbits of the particles are shown in black and the orbits of the planets are shown in grey.

� = 1 g cm−3 and Q̄′
pr = 0.75. The exact initial values of the orbital

elements are aβin = 60 au, eβin = 0.1, ωβin ∈ {0, 45◦, 90◦, . . . , 270◦,
315◦}, �βin ∈ {0, 90◦, 180◦, 270◦}, iβin ∈ {5◦, 10◦, 15◦} and f βin =
0. Thus, we obtained 8 × 4 × 3 = 96 individual orbits. The results
of the numerical solutions of equation (31) are depicted in Figs 6
and 7. Fig. 6 depicts the evolution of the dust ring viewed in per-
spective. The orbits of the planets are also shown. The time-span
between the various pictures in Fig. 6 is 250 000 yr. As we can
see, the ring becomes more and more eccentric because of the fast
increase of the eccentricity caused by the interstellar gas flow (see
also the eccentricity evolution in Fig. 7). The perihelia of orbits are
shifted in accordance with the behaviour, as shown in Fig. 2. This
is caused by the facts that the influence of the interstellar gas flow
is dominant and the solved problem is almost coplanar. The term
multiplied by C2 in equation (13) does not have a large influence
on the first term in the curly braces in equation (13), in almost
the coplanar case. Therefore, the lines connecting the Sun with the

perihelia of particles’ orbits are approaching the direction perpen-
dicular to the interstellar gas velocity vector. The time evolution
of the orbital elements of the dust particles in the ring, considered
in Fig. 6, is depicted in Fig. 7. The evolutions of the argument
of perihelion ωβ , beginning with a given initial value ωβin, are di-
vided into four branches because of the approach of the perihelia
to one direction. Each of these corresponds to one initial value of
the ascending node. If the time is less than 750 000 yr, then (i) the
concentration of the particles in the ring is smallest in the direction
(from the Sun) into which perihelia of the orbits are approaching
and (ii) the concentration of the particles is greatest in exactly the
opposite direction. If the time is greater than 750 000 yr, then the
orbits of particles in the dust ring are getting close to the orbits of
the planets because of the increase of particles eccentricities. The
situation after 750 000 yr can be seen in Fig. 7. The locations of the
exterior mean-motion resonances with a planet can be calculated
from equation aβ = aP(1 − β)1/3 [(j + s)/j]2/3, where j and s are
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2648 P. Pástor, J. Klačka and L. Kómar

Figure 7. The evolution of orbital elements of the dust particles in the Edgeworth–Kuiper belt zone during the 96 numerical solutions depicted in Fig. 6. The
initial values of the orbital elements are aβin = 60 au, eβin = 0.1, ωβin ∈ {0, 45◦, 90◦, . . . , 270◦, 315◦}, �βin ∈ {0, 90◦, 180◦, 270◦}, iβin ∈ {5◦, 10◦, 15◦}
and f βin = 0. The evolution during the first 750 000 yr is influenced mainly by the interstellar gas and, later, mainly by the gravitation of planets (see text).

two natural numbers and aP is the semimajor axis of the planet. The
dust particles with R = 2 μm, � = 1 g cm−3 and Q̄′

pr = 0.75 are
characterized by the value β ≈ 0.216 (see equation 28). For this
value of β, we obtain aβ ≈ 57.7 au for the location of the exterior
mean-motion 3/1 resonance with Neptune. We can see, from the
evolution of the semimajor axis in Fig. 7, that the secular semima-
jor axis is a decreasing function of time during the first 750 000 yr.
Thus, the semimajor axis can evolve from the initial value of 60 au
to a location close to the mean-motion 3/1 resonance. Particles are
influenced by both the vicinity of Neptune’s orbit and the exterior
mean-motion 3/1 resonance with Neptune. The evolution during
the first 750 000 yr is influenced mainly by the neutral interstellar

hydrogen gas and, later, mainly by the gravitation of the planets.
We have compared the numerical solutions of equation (31) with
and without (is = 0) precession of the solar rotational axis. We have
found that the precession of the solar rotational axis does not have
a large influence (less than 1 per cent outside resonances) on the
evolution of the dust ring.

5 C O N C L U S I O N

We have investigated the orbital evolution of a dust grain under the
action of an interstellar gas flow. We have presented the secular time
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Orbital evolution with interstellar gas flow 2649

derivatives of the grain’s orbital elements for an arbitrary orientation
of the orbit with respect to the velocity vector of the interstellar
gas. The secular time derivatives are derived using the assumptions
that the acceleration caused by the interstellar gas flow is small
in comparison with gravitation of a central object (the Sun), that
the eccentricity of the orbit is not close to 1 and that the speed
of the dust particle is small in comparison with the speed of the
interstellar gas. These assumptions lead to a secular decrease of
the semimajor axis a of the particle. The secular time derivative of
the semimajor axis is negative and proportional to a. This result is
not in accordance with that of Scherer (2000), who has stated that
the semimajor axis of the particle increases exponentially. Scherer’s
statement is incorrect and our analytical result is confirmed by our
detailed numerical integration of the equation of motion (see also
Fig. 3).

If we consider only the influence of the interstellar gas flow on the
orbit of the dust particle, then the product of the secular eccentricity
and the magnitude of the radial component of vH measured in the
perihelion is, approximately, constant during the orbital evolution.
A simple approximative relation also holds between the secular
eccentricity and the magnitude of the normal component of vH

measured in the perihelion.
We have considered the simultaneous action of the PR effect, the

radial solar wind and the interstellar gas flow. Numerical integra-
tions have shown that the action of the flow of interstellar gas can
be more important than the action of the electromagnetic and the
corpuscular radiation of the Sun, as for the motion of dust particles
orbiting the Sun in the outer parts of the Solar system (see Fig. 4).
The physical decrease of the semimajor axis can be more than two
times greater than the value produced by the PR effect and the ra-
dial solar wind. The secular evolution of eccentricity can also be an
increasing function of time when we consider the PR effect and the
radial solar wind together with the flow of neutral interstellar gas.
This is also a relevant difference from the action of the PR effect
and the radial solar wind when the secular decrease of eccentricity
occurs. The simultaneous action of all three effects yields that the
secular time derivative of the argument of perihelion might not be
equal to zero, in general.

The gravitation of four major planets was also directly added into
the equation of motion (see equation 31). This method correctly
describes the capture of dust grains into mean-motion resonances
with the planets. Our physical approach differs from that of Scherer
(2000), who has used some type of secular access to the gravitational
influence of the planets.

The assumption of the existence of a dust ring in the zone of the
Edgeworth–Kuiper belt contradicts with the rapid increase of ec-
centricity of the ring because of an acceleration caused by long-term
monodirectional interstellar gas flow. The speed of the eccentric-
ity increase (time derivative of eccentricity) is roughly inversely
proportional to the particle’s size and mass density. As the eccen-
tricity of the particles increases, the particles approach the planets.
The particles in the ring are under the gravitational influence of the
planets. The particles also evolve in the semimajor axis and they can
be temporarily captured into mean-motion resonances. The parti-
cles can remain in chaotic orbits between the orbits of the planets or
can be ejected to high eccentric orbits as a result of close encounters
with one of the planets. Only particles with greater size and mass
density should survive in the dust ring for a long time.

A relevant result of the paper is that the equation of motions in the
form of equation (27) (or equation 31) and equations (28) and (29)
have to be used in modelling of the orbital evolution of dust grains
in the Solar system. The influence of the fast interstellar neutral gas

flow should not be ignored in general investigations of the evolution
of dust particles in the zone of the Edgeworth–Kuiper belt.
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Klačka J., 2004, Celest. Mech. Dynam. Astron., 89, 1
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APPENDI X A : D ERI VATI ON O F SECULAR
TI ME D ERI VATI VES OF KEPLERI AN
ORBI TAL ELEMENTS

In equation (3), the acceleration caused by the interstellar gas flow is
considered as a perturbation acceleration to the central acceleration
caused by the solar gravity. In order to compute the secular time
derivatives of the Keplerian orbital elements (a, the semimajor axis;
e, the eccentricity; ω, the argument of perihelion; �, the longitude
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Figure A1. A particle on an elliptical orbit depicted together with the radial,
transversal and normal unit vectors. The angles characterizing the position
of the particle on the orbit are also shown.

of ascending node; i, the inclination), we want to use the Gaussian
perturbation equations of celestial mechanics. To do this, we need to
know the radial, transversal and normal components of acceleration
given by equation (1). The orthogonal radial, transversal and normal
unit vectors of the dust particle in the Keplerian orbit are (see
Fig. A1, and, for example, Pástor 2009)

eR = [cos � cos(f + ω) − sin � sin(f + ω) cos i,

sin � cos(f + ω) + cos � sin(f + ω) cos i,

sin(f + ω) sin i] , (A1)

eT = [− cos � sin(f + ω) − sin � cos(f + ω) cos i,

− sin � sin(f + ω) + cos � cos(f + ω) cos i,

cos(f + ω) sin i] , (A2)

eN = (sin � sin i, − cos � sin i, cos i), (A3)

where f is a true anomaly. Thus, we need to calculate the values of
aR = dv/dt · eR, aT = dv/dt · eT and aN = dv/dt · eN. The velocity
of the particle in an elliptical orbit can be calculated from

v = dr
dt

= d

dt
(reR) = r

e sin f

1 + e cos f

df

dt
eR + reT

df

dt
, (A4)

where

r = p

1 + e cos f
(A5)

and p = a(1 − e2). In this calculation, the second Kepler law
df /dt = √

μp/r2 must also be used. Now, we can easily verify
that

(v − vH) · eR = vHσe sin f − vH · eR

= vHσe sin f − A, (A6)

(v − vH) · eT = vHσ (1 + e cos f ) − vH · eT

= vHσ (1 + e cos f ) − B, (A7)

(v − vH) · eN = −vH · eN = −C, (A8)

where

σ =
√

μ/p

vH
. (A9)

Hence,

|v − vH|2 = v2
Hσ 2(1 + 2e cos f + e2) − 2vHσ

× [B + e(A sin f + B cos f )] + v2
H, (A10)

where the identity
√

A2 + B2 + C2 = vH is used. If we denote the
components of the velocity vector of hydrogen gas in the stationary
Cartesian frame associated with the Sun as vH = (vHX , vHY , vHZ),
then we obtain

A sin f + B cos f = (− cos � sin ω − sin � cos ω cos i)vHX

+(− sin � sin ω + cos � cos ω cos i)vHY

+ cos ω sin ivHZ = I . (A11)

Now we consider only such orbits for which

σ � 1, (A12)

or, more precisely, for which the value σ 2 is negligible in comparison
with σ . This is reasonable for orbits with not very large eccentric-
ities, as v � vH. Using this approximation, equations (A10) and
(A11) yield

|v − vH| = vH

[
1 − σ

vH
(B + eI )

]
. (A13)

For the radial, transversal and normal components of the accelera-
tion, we obtain from equation (1), equations (A6)–(A8) and equa-
tion (A13):

aR = −cDγHv2
H

[
A

vH

(
σeI

vH
− 1

)
+ σ

(
e sin f + AB

v2
H

)]
,

(A14)

aT = −cDγHv2
H

[
B

vH

(
σeI

vH
− 1

)
+ σ

(
1 + e cos f + B2

v2
H

)]
,

(A15)

aN = −cDγHvHC

(
σeI

vH
− 1 + σ

B

vH

)
. (A16)

Now we can use Gaussian perturbation equations of celestial me-
chanics to compute the time derivatives of the orbital elements.
The perturbation equations can be found in, for example, Murray &
Dermott (1999) and Danby (1988). The time average of any quantity
g during one orbital period T can be computed using

〈g〉 = 1

T

∫ T

0
g dt =

√
μ

2πa3/2

∫ 2π

0
g

(
df

dt

)−1

df

=
√

μ

2πa3/2

∫ 2π

0
g

(√
μp

r2

)−1

df

= 1

2πa2
√

1 − e2

∫ 2π

0
gr2df , (A17)

where the second (
√

μp = r2df /dt) and the third (4π2a3 = μT2)
Kepler laws are used. This procedure is used in order to derive
equations (4)–(8).
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APPENDIX B: SIGN O F 〈dS/dt〉 F O R TH E
PL ANAR CASE

We define〈
dS

dt

〉
= cDγHvHS

2

√
p

μ

×
{

−3I

e
+ σI 2

vHe4

[
e4 − 6e2 + 4 − 4(1 − e2)3/2

]}

≡ cDγHvHS

2

√
p

μ

[
−3I

e
+ σI 2

vH
b(e)

]
. (B1)

We need to determine if the term multiplied by σ can change the
sign of the term in the square brackets in equation (B1). We have

b(e) = e4 − 6e2 + 4 − 4(1 − e2)3/2

e4
. (B2)

In order to find the behaviour of the function b(e) we can write

db(e)

de
= −

4

[
4 − 4

√
1 − e2 + e2

(
−3 + √

1 − e2
)]

e5
, (B3)

db1(e)

de
= d

de

[
4 − 4

√
1 − e2 + e2

(
−3 +

√
1 − e2

)]

= −
3e
(
−2 + e2 + 2

√
1 − e2

)
√

1 − e2
, (B4)

db2(e)

de
= d

de

(
−2 + e2 + 2

√
1 − e2

)

= 2e − 2e√
1 − e2

≤ 0. (B5)

Because db2(e)/de ≤ 0, b2(e) is a decreasing function of eccentricity.
The value of b2(0) = 0. Therefore, b2(e) is negative for e ∈ (0, 1].
If b2(e) is negative, then db1(e)/de > 0. Therefore, b1(e) is an
increasing function of eccentricity. The value of b1(0) = 0. Thus,
b1(e) is positive for e ∈ (0, 1]. If b1(e) is positive, then db(e)/de <

0. Because db(e)/de < 0, the function b(e) is a decreasing function
of eccentricity for e ∈ (0, 1]. The function b(e) obtains values from
lime→0 b(e) = −0.5 to b(1) = −1, for e ∈ (0, 1]. Because the value
of the second term in the square brackets in equation (B1) is always
negative, the value of the square brackets will always be negative
for I > 0. Therefore, we assume that I < 0. The eccentricity e = 1
yields lime→1 σ = ∞. We deal with the values of eccentricity for
which σ � 1 (see equation A12). Let em be the maximal value of the
eccentricity for the case σ � 1. The first term in the square brackets
in equation (B1) is minimal for e = em for a given negative value
of I. As b(e) is a decreasing function of the eccentricity and b(e) <

0, the negative value of the second term in the square brackets in
equation (B1) will also be minimal for e = em. Therefore, the use
of em leads to the maximal influence of the term multiplied by σ on
the value of the term in the square brackets in equation (B1). The
second term in the square brackets yields for e = em

σI 2

vH
b(em) ≥ −σI 2

vH
≥ σI ≥ I ≥ 3

I

em
, (B6)

as −0.5 > b(em) > −1, σ � 1 and − I ≤ vH. If we rearrange
equation (B6), then we come to the conclusion that the value of the

term in the square brackets in equation (B1) will always be positive
for I < 0 and e ∈ (0, em ]. Therefore, the term multiplied by σ in
the square brackets in equation (B1) does not have any influence
on the sign of the square brackets. The sign of the square brackets
depends only on the sign of I. Hence, the sign of 〈dS/dt〉 depends
only on the signs of S and I.

APPENDI X C : ESTI MATE O F MAXI MAL
C O L L I S I O N R ATE FO R A PA RT I C L E
I N T H E ED G E WO RT H – K U I P E R B E LT

Voyager 1 and Voyager 2 observed dust impacting on spacecrafts
using plasma wave instruments in a range of radial heliocentric
distances from 6 to 60 au. The results of Gurnett et al. (1997)
show that the average number density of dust particles is about 2 ×
10−8 m−3, and the average mass of the particles is believed to be a
few times 10−11 g, which corresponds to particle diameters in the
micrometre range. No impacts were detected behind heliocentric
distance 51 au for Voyager 1 and 33 au for Voyager 2 (Gurnett et al.
1997).

For the collision rate of one particle, moving between various
particles with number density n, we can write

R1 ≈ nAv, (C1)

where A is the collision cross-section and v is the relative velocity
between impactors and target. If we neglect the PR effect, the solar
wind and the interstellar gas flow, then the speed of the particle in the
perihelion of a parabolic orbit at the inner edge of the Edgeworth–
Kuiper belt (r = 30 au) is

v =
√

2μ

r
≈ 7.7 km s−1. (C2)

This is the maximal speed for all dust particles in the Edgeworth–
Kuiper belt in bound orbits. Therefore, the maximal speed at which
two particles in the Edgeworth–Kuiper belt can collide is two times
higher. We use this value, 15.4 km s−1, as the relative speed between
the particles in estimating the maximal collision rate. Using the
average number density of particles measured by the Voyagers, we
obtain for the particle with radius R = 2 μm the maximal collision
rate R1 ≈ 1.2 × 10−7 yr−1. This is equivalent to one collision per
eight million years, approximately.

Because the Voyagers were unable to detect particles with mass
smaller than about 1.2 × 10−11 g (Gurnett et al. 1997), the par-
ticle number density remains unknown. If these particles were to
be considered in our calculation, then the maximal collision rate
could be higher. Icy particles with mass smaller than about 1 ×
10−12 g are accelerated by solar radiation and follow a trajectory
leaving the Solar system as the ‘β-meteoroids’ (Fechtig, Leinert &
Berg 2001). Therefore, they do not remain in bound orbits in the
Edgeworth–Kuiper belt. Because the mass of these particles was
also below the detection threshold mass of the Voyagers, their con-
tribution to the maximal collision rate in the Edgeworth–Kuiper belt
remains unknown. A theoretical approach to the calculation of this
contribution is beyond the scope of this paper.
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