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ABSTRACT
A re-analysis of Gliese 581 HARPS and HIRES precision radial velocity data was carried
out with a Bayesian multiplanet Kepler periodogram (from one to six planets) based on a
fusion Markov chain Monte Carlo algorithm. In all cases, the analysis included an unknown
parametrized stellar jitter noise term. For the HARPS data set, the most probable number
of planetary signals detected is five with a Bayesian false alarm probability of 0.01. These
include the 3.1498 ± 0.0005, 5.3687 ± 0.0002, 12.927+0.006

−0.004 and 66.9 ± 0.2 d periods reported
previously plus a 399+14

−16 d period. Their orbital eccentricities are 0.0+0.2
−0.0, 0.00+0.02

−0.00, 0.10+0.06
−0.10,

0.33+0.09
−0.10 and 0.02+0.30

−0.01, respectively. The semimajor-axis and M sin i of the five planets are
(0.0285 ± 0.0006 au, 1.9 ± 0.3 M⊕), (0.0406 ± 0.0009 au, 15.7 ± 0.7 M⊕), (0.073 ±
0.002 au, 5.3 ± 0.4 M⊕), (0.218 ± 0.005 au, 6.7 ± 0.8 M⊕) and (0.7 ± 0.2 au, 6.6+2.0

−2.7 M⊕),
respectively.

The analysis of the HIRES data set yielded a reliable detection of only the strongest 5.37 and
12.9 d periods. The analysis of the combined HIRES/HARPS data again only reliably detected
the 5.37 and 12.9 d periods. The detection of four planetary signals with the periods of 3.15,
5.37, 12.9 and 66.9 d was only achieved by including an additional unknown but parametrized
Gaussian error term added in quadrature to the HIRES quoted errors. The marginal distribution
for the σ of this additional error term has a well-defined peak at 1.8 ± 0.4 m s−1. It is possible
that this additional error arises from unidentified systematic effects. We did not find clear
evidence for a fifth planetary signal in the combined HIRES/HARPS data set. Based on
the available data, our analysis does not support the claimed detection of a sixth planet
Gliese 581g.

Key words: methods: statistical – methods: data analysis – techniques: radial velocities –
planetary systems.

1 IN T RO D U C T I O N

A remarkable array of new ground-based and space-based astro-
nomical tools have finally provided astronomers access to other
solar systems with over 500 planets discovered to date, starting
from the pioneering work of Campbell, Walker & Yang (1988),
Wolszczan & Frail (1992), Mayor & Queloz (1995) and Marcy
& Butler (1996). Recent interest has focused on the Gliese 581
(Gl 581) planetary system (also designated GJ 581 in the litera-
ture). It was already known to harbour three planets, including two
super-Earth planets that straddle its habitable zone: Gl 581b with a
period of 5.37 d (Bonfils et al. 2005b), Gl 581c (period of 12.9 d)
and Gl 581d (period of 82 d) (Udry et al. 2007). Armed with addi-
tional HARPS data, Mayor et al. (2009) reported the detection of an
additional planet Gl 581e with a minimum mass of 1.9 M⊕ and a
period of 3.15 d. They also corrected previous confusion about the
orbital period of Gl 581d (the outermost planet) with a 1-yr alias at
82 d. The revised period is 66.8 d and positions the semimajor-axis
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inside the habitable zone of the low-mass star. Vogt et al. (2010)
reported the analysis of the combined HIRES and HARPS data set
spanning 11 yr, claiming the detection of two additional planets,
Gl 581f and Gl 581g. Gl 581f has a period of 433 d, a minimum
mass of 7.0 M⊕ and a semimajor-axis of 0.758 au. Gl 581g has a pe-
riod of 36.6 d, a minimum mass of 3.1 M⊕ and a semimajor-axis of
0.146 au. The estimated equilibrium temperature of Gl 581g is
228 K, placing it squarely in the middle of the habitable zone of the
star. The Vogt et al. (2010) analysis assumed circular orbits for all six
planets.

The excitement generated by the exoplanetary discoveries has
spurred a significant effort to improve the statistical tools for an-
alyzing data in this field (e.g., Loredo & Chernoff 2003; Loredo
2004; Cumming 2004; Gregory 2005a,b; Ford 2005, 2006; Ford &
Gregory 2007; Cumming & Dragomir 2010). Much of this work
has highlighted a Bayesian MCMC approach as a way to better un-
derstand parameter uncertainties and degeneracies and to compute
model probabilities. Gregory (2009) and Gregory & Fischer (2010)
presented a Bayesian hybrid or fusion Markov chain Monte Carlo
(MCMC) algorithm that incorporates parallel tempering (PT), sim-
ulated annealing and a genetic crossover operation to facilitate the
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detection of a global minimum in χ 2. This enables efficient ex-
ploration of a large model parameter space starting from a random
location. When implemented with a multiplanet Kepler model,1 it is
able to identify any significant periodic signal component in the data
that satisfies Kepler’s laws and is able to function as a multiplanet
Kepler periodogram.2 In addition, the Bayesian MCMC algorithm
provides full marginal parameter distributions. The algorithm in-
cludes an innovative adaptive control system (CS) that automates
the selection of efficient parameter proposal distributions even if
the parameters are highly correlated (Gregory 2011). A recent ap-
plication of the algorithm (Gregory & Fischer 2010) confirmed the
existence of a disputed second planet (Fischer et al. 2002) in 47 Ur-
sae Majoris (47 UMa) and provided orbital constraints on a possible
additional long-period planet with a period of ∼10 000 d.

This paper reports the results of a re-analysis of the HARPS
(Mayor et al. 2009) and HIRES data (Vogt et al. 2010) for Gl 581 us-
ing the above-mentioned Bayesian multiplanet Kepler periodogram.
Section 2 provides an introduction to our Bayesian approach and de-
scribes the adaptive fusion MCMC (FMCMC) algorithm. Section 3
gives the model equations and priors. Sections 4 and 5 present the
parameter estimation and model selection results for the analysis of
the HARPS data alone. Section 6 is devoted to the analysis of the
HIRES data followed by the analysis of the combination of HIRES
and HARPS data. The final two sections are devoted to discussion
and conclusions.

2 TH E A DA P T I V E FM C M C

The adaptive fusion3 MCMC (FMCMC) is a very general Bayesian
non-linear model-fitting program. After specifying the model, Mi,
data, D, and priors, I, Bayes’ theorem dictates the target joint prob-
ability distribution for the model parameters which is given by

p(X|D,Mi, I ) = Cp(X|Mi, I ) × p(D|Mi, X, I ), (1)

where C is the normalization constant and X represents the vector
of model parameters. The first term on the right-hand side of the
equation, p(X|Mi, I ), is the prior probability distribution of X ,
prior to the consideration of the current data D. The second term,
p(D|X,Mi, I ), is called the likelihood and there is the probability
that we would have obtained the measured data D for this particular
choice of the parameter vector X , model Mi and prior information I.
At the very least, the prior information, I, must specify the class of
alternative models (hypotheses) being considered (hypothesis space
of interest), and the relationship between the models and the data
(how to compute the likelihood). In some simple cases, the log of
the likelihood is simply proportional to the familiar χ 2 statistic. For
further details of the likelihood function for this type of problems,
see Gregory (2005b).

To compute the marginals for any subset of the parameters, it is
necessary to integrate the joint probability distribution over the re-
maining parameters. For example, the marginal probability density

1 For multiple planet models, there is no analytic expression for the exact
radial velocity (RV) perturbation. In many cases, the RV perturbation can be
well modelled as the sum of multiple independent Keplerian orbits which is
what has been assumed in this paper.
2 Following on from the pioneering work on Bayesian periodograms by
Jaynes (1987) and Bretthorst (1988).
3 In earlier papers, the algorithm was referred to as a hybrid MCMC. We
subsequently learned that this term already exists in the literature in connec-
tion with a Hamiltonian version of a MCMC. In this paper, we replace the
term hybrid by fusion.

function (PDF) of the orbital period in a one-planet RV model fit is
given by

p(P |D,M1, I ) =
∫

dK

∫
dV

∫
de

∫
dχ

∫
dω

∫
ds

× p(P ,K, V , e, χ, ω, s|D,M1, I )

∝ p(P |M1, I )
∫

dK · · ·
∫

ds

× p(K,V , e, χ, ω, s|M1, I )

× p(D|M1, P ,K, V , e, χ, ω, s, I ),
(2)

where p(P, K, V , e, χ , ω, s|D, M1, I) is the target joint probability
distribution of the RV model parameters (P, K, V , e, χ , ω) and s is
an extra noise parameter which is discussed in Section 3. p(P|M1,
I) is the prior for the orbital period parameter, p(K, V , e, χ , ω, s|M1,
I) is the joint prior for the other parameters and p(D|M1, P, K, V , e,
χ , ω, s, I) is the likelihood. For a five-planet model fit, we need to
integrate over 26 parameters to obtain p(P|D, M1, I). Integration is
more difficult than maximization; however, the Bayesian solution
provides the most accurate information about the parameter errors
and correlations without the need for any additional calculations,
that is, Monte Carlo simulations. Bayesian model selection requires
integrating over all the model parameters.

In high dimensions, the principal tool for carrying out the inte-
grals is an MCMC based on the Metropolis algorithm. The greater
efficiency of an MCMC stems from its ability, after an initial burn-in
period, to generate samples in parameter space in direct proportion
to the joint target probability distribution. In contrast, straight Monte
Carlo integration randomly samples the parameter space and wastes
most of its time-sampling regions of very low probability.

MCMC algorithms avoid the requirement for completely inde-
pendent samples, by constructing a kind of random walk in the
model parameter space such that the number of samples in a partic-
ular region of this space is proportional to the target posterior density
for that region. The random walk is accomplished using a Markov
chain, whereby the new sample, X t+1, depends on the previous
sample, X t , according to a time-independent entity called the tran-
sition kernel, p(X t+1|X t ). The remarkable property of p(X t+1|X t )
is that after an initial burn-in period (which is discarded) it generates
samples of X with a probability density proportional to the desired
posterior p(X|D, M1, I ) (e.g. see chapter 12 of Gregory 2005a for
details).

The transition kernel, p(X t+1|X t ), is given by

p(X t+1|X t ) = q(X t+1|X t )α(X t , X t+1), (3)

where α(X t , X t+1) is called the acceptance probability and is given
by equation (4). This is achieved by proposing a new sample X t+1

from a proposal distribution, q(X t+1|X t ), which is easy to evaluate
and is centred on the current sample X t . The proposal distribution
can have almost any form. A common choice for q(X t+1|X t ) is a
multivariate normal (Gaussian) distribution. With such a proposal
distribution, the probability density decreases with the distance
away from the current sample. The new sample X t+1 is accepted
with a probability α(X t , X t+1) given by

α(X t , X t+1) = min

[
1,

p(X t+1|D, I )

p(X t |D, I )

q(X t |X t+1)

q(X t+1|X t )

]
, (4)

where q(X t |X t+1) = q(X t+1|X t ) for a symmetrical proposal distri-
bution. If the proposal is not accepted, then the current sample X t

is repeated.
An important feature that prevents the FMCMC from becom-

ing stuck in a local probability maximum is PT (Geyer 1991, and
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Figure 1. The first of the two schematics on the operation of the adaptive FMCMC algorithm.

re-invented by Hukushima & Nemoto 1996 under the name ex-
change Monte Carlo). Multiple MCMC chains are run in parallel.
The joint distribution for the parameters (X) of model Mi, for a
particular chain, is given by

π (X|D,Mi, I , β) ∝ p(X|Mi, I ) × p(D|X, Mi, I )β . (5)

Each MCMC chain corresponds to a different β, with the value
of β ranging from zero to 1. When the exponent β = 1, the term
on the left-hand side of the equation is the target joint probability
distribution for the model parameters, p(X|D,Mi, I ). For β � 1,
the distribution is much flatter.

In equation (5), an exponent β = 0 yields a joint density dis-
tribution equal to the prior. The reciprocal of β is analogous to a
temperature; the higher the temperature, the broader the distribution.
For parameter estimation purposes, eight chains were employed. A
representative set of β values is shown in Fig. 1. At an interval of 10
iterations, a pair of adjacent chains on the tempering ladder are cho-
sen at random and a proposal made to swap their parameter states.
A Monte Carlo acceptance rule determines the probability for the
proposed swap to occur (e.g. Gregory 2005a, equation 12.12). This
swap allows for an exchange of information across the population
of parallel simulations. In low-β (higher temperature) simulations,
radically different configurations can arise, whereas in higher β

(lower temperature) states, a configuration is given the chance to
refine itself. The lower β chains can be likened to a series of scouts
that explore the parameter terrain on different scales. The final sam-
ples are drawn from the β = 1 chain, which corresponds to the
desired target probability distribution. The choice of β values can
be checked by computing the swap acceptance rate. When they are
too far apart, the swap rate drops to very low values. In this work,
a typical swap acceptance rate of ≈30 per cent was employed but
rates in a broad range from 0.15 to 0.5 were deemed acceptable as
they did not exhibit any clear differences in performance. For a swap
acceptance rate of 30 per cent, jumps to adjacent chains will occur at

an interval of ∼230 iterations, while information from more distant
chains will diffuse much more slowly. Recently, Atchadé, Roberts
& Rosenthal (2010) have shown that under certain conditions, the
optimal swap acceptance rate is 0.234. A future goal for a FMCMC
is to extend the CS to automate the selection of an optimal set of
β values as well.

At each iteration, a single joint proposal to jump to a new location
in the parameter space is generated from independent Gaussian
proposal distributions (centred on the current parameter location),
one for each parameter. In general, the values of σ for these Gaussian
proposal distributions are different because the parameters can be
very different entities. If the values of σ are chosen too small,
successive samples will be highly correlated and will require many
iterations to obtain an equilibrium set of samples. If the values of σ

are too large, then proposed samples will very rarely be accepted.
The process of choosing a set of useful proposal values of σ when
dealing with a large number of different parameters can be very
time-consuming. In a PT MCMC, this problem is compounded
because of the need for a separate set of Gaussian proposal values
of σ for each tempering chain. This process is automated by an
innovative three-stage statistical CS (Gregory 2007b; Gregory 2009)
in which the error signal is proportional to the difference between the
current joint parameter acceptance rate and a target acceptance rate,
α (typically α ∼ 0.25). Roberts, Gelman & Gilks (1997) showed
that α exhibits a weak convergence to an asymptotic value of 0.234
as the number of parameters converges to ∞ under quite general
conditions. A schematic of the first two stages of the adaptive CS
is shown4 in Fig. 1. The third stage that handles highly correlated
parameters is described in Section 2.1.

The first stage of the CS, which involves annealing the set of
Gaussian proposal distribution values of σ , was first presented in

4 The interval between tempering swap operations is typically much smaller
than is suggested by this schematic.
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Gregory (2005a). An initial set of proposal values of σ (≈10 per
cent of the prior range for each parameter) are used for each chain.
During the major cycles of length n1 iterations (typically n1 = 1000),
the joint acceptance rate is measured based on the current proposal
values of σ and compared to a target acceptance rate. During the
minor cycles of length n2 (typically n2 = 200), each proposal value
of σ is separately perturbed to determine an approximate gradient in
the acceptance rate [i.e. determine which parameter(s) are limiting
the acceptance rate]. The values of σ are then jointly scaled by
factors (maximum change is a factor of 10) that depend on the
gradient, and on both the magnitude and sign of the error signal.
This is done for each of the parallel chains. The first stage of the
CS is turned off after the first instance that the error signal for
the β = 1 chain changes sign and is less than a threshold tol =
1.5 × √

α × n1, provided the total number of iterations is ≥minCS.
Typically, minCS is in the range 10 000 (for a one-planet fit) to
30 000 (for a fit to three or more planets). While the values of σ

are being annealed, the FMCMC is homing in on a good set of
parameter values and minCS helps to keep these two processes
more in step.

If the desired threshold, tol, is not reached within maxCS iter-
ations, then the first stage of the CS is turned off and the second
stage initiated (see below). Typically, maxCS is in the range 15 000
(for a one-planet fit) to 60 000 (for a fit to three or more planets).
After maxCS iterations, it is more efficient to employ the mathe-
matics of the second stage of the CS. Proposals to swap parameter
values between chains are allowed during major cycles but not
within minor cycles. The code used for the first two stages of the
CS is given in the MCMC-powered Kepler periodogram exam-
ple of the MATHEMATICA support material accompanying the text-
book ‘Bayesian Logical Data Analysis for the Physical Sciences’
(Gregory 2005a). The software is freely available on the Cambridge
University Press website for this book.

The annealing of the proposal values of σ occurs while the
FMCMC is homing in on any significant peaks in the target prob-
ability distribution. Concurrent with this, another aspect of the an-
nealing operation takes place whenever the Markov chain is started
from a location in parameter space that is far from the best-fitting
values. This automatically arises because all the models considered
incorporate an extra additive noise term (Gregory 2005b) whose
probability distribution is Gaussian with zero mean and with an
unknown standard deviation s. When the χ 2 of the fit is very large,
the Bayesian Markov chain automatically inflates s to include any-
thing in the data that cannot be accounted for by the model with the
current set of parameters and the known measurement errors. This
results in a smoothing out of the detailed structure in the χ 2 surface
and, as pointed out by Ford (2006), allows the Markov chain to
explore the large-scale structure in parameter space more quickly.
The chain begins to decrease the value of the extra noise as it settles
in near the best-fitting parameters. An example of this is shown in
Fig. 2 for a two-planet fit to the HARPS data as discussed in Sec-
tion 4.1. The three panels show the evolution of the log10(prior ×
likelihood), the s parameter and the two period parameters. In the
early stages, the extra noise is inflated to around 16 m s−1 and then
rapidly decays to much lower values as it homes in on a good so-
lution. This is similar to simulated annealing, but does not require
choosing a cooling scheme. In this example, the starting parameter
values were far from the best and the MCMC algorithm finds several
less probable solutions en route to a final best choice. Initially, it
homes in on the two periods of 5.37 and 66.9 d and the CS switches
off around iteration 220 000, but around iteration 500 000 it detects
a much more probable solution for the period combinations of 5.37

Figure 2. The upper panel is a plot of the log10(prior × likelihood) versus
MCMC iteration for a blind two-planet fit to the HARPS data. The middle
panel is a similar plot for the extra noise term s. Initially, s is inflated and then
rapidly decays to a much lower level as the better-fitting parameter values are
approached. The lower panel shows the values of the two unknown period
parameters versus iteration number. The two starting periods of 2.5 and 20 d
are shown on the left-hand side of the plot at a negative iteration number.

and 12.9 d. In this example, the adaptive CS switched on again
briefly following the detection of the much improved solution.

Although the first stage of the CS achieves the desired joint ac-
ceptance rate, it often happens that a subset of the proposal values
of σ are too small leading to an excessive autocorrelation in the
FMCMC iterations for these parameters. Part of the second stage of
the CS corrects for this. The goal of the second stage is to achieve
a set of proposal values of σ that equalize the FMCMC accep-
tance rates when new parameter values are proposed separately and
achieve the desired acceptance rate when they are proposed jointly.
Details of the second stage of the CS are given in Gregory (2007b).

The first stage is run only once at the beginning, but the second
stage can be executed repeatedly, whenever a significantly improved
parameter solution emerges. Frequently, the algorithm homes in on
the most significant peak within the span of the first stage of the CS
and the second stage improves the choice of proposal values of σ

based on the highest probability parameter set. Occasionally, a new
higher (by a user-specified threshold) target probability parameter
set emerges after the first two stages of the CS have completed.
The CS has the ability to detect this and automatically reactivate
the second stage. In this sense, the CS is adaptive. If this hap-
pens, the iteration corresponding to the end of the CS is reset. The
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requirement that the transition kernel be time-independent means
that q(X t+1|X t ) be time-independent, so useful FMCMC simulation
data are obtained only after the CS is switched off.

The adaptive capability of the CS can be appreciated from an
examination of Fig. 1. The upper left-hand portion of the figure
depicts the FMCMC iterations from the eight parallel chains, each
corresponding to a different tempering level β as indicated on the
extreme left-hand side. One of the outputs obtained from each chain
at every iteration (shown at the upper extreme right-hand side) is
the log prior + log likelihood. This information is continuously fed
into the CS which constantly updates the most probable parameter
combination, regardless of which chain the parameter set occurred
in. This is passed to the ‘peak parameter set’ block of the CS. Its
job is to decide if a significantly more probable parameter set has
emerged since the last execution of the second stage of the CS. If
so, then the second stage of the CS is re-run using the new more
probable parameter set which is the basic adaptive feature of the
existing CS.

The CS also includes a genetic algorithm block which is shown
in the bottom right-hand side of Fig. 1. The current parameter
set can be treated as a set of genes. In the present version, one
gene consists of the parameter set that specifies one orbit. On this
basis, a three-planet model has three genes. At any iteration, there
exist within the CS the most probable parameter set to date, Xmax,
and the current most probable parameter set of the eight chains,
Xcur. At regular intervals (user specified), each gene from Xcur is
swapped for the corresponding gene in Xmax. If either substitution
leads to a higher probability, then it is retained and Xmax updated.
The effectiveness of this operation can be tested by comparing
the number of times the gene crossover operation gives rise to a
new value of Xmax with the number of new Xmax arising from the
normal PT FMCMC iterations. The gene crossover operations prove
to be very effective and give rise to new Xmax values approximately
three times more often. Of course, most of these swaps lead to

very minor changes in probability but occasionally big jumps are
created.

Gene swaps from Xcur2, the parameters of the second most prob-
able current chain, to Xmax can also be utilized. This gives rise to
new values of Xmax at a rate approximately half that of swaps from
Xcur to Xmax. Crossover operations at a random point in the entire
parameter set did not prove as effective except in the single-planet
case where there is only one gene. Further experimentation with
this concept is ongoing.

2.1 Highly correlated parameters

The part of the algorithm described above (Fig. 1) is most efficient
when working with model parameters that are independent of or
transformed to new independent parameters. New parameter values
are jointly proposed based on independent Gaussian proposal dis-
tributions (‘I’ scheme), one for each parameter. Initially, only this
‘I’ proposal system is used and it is clear that if there are strong
correlations between any parameters, then the values of σ of the
independent Gaussian proposals will need to be very small for any
proposal to be accepted and consequently convergence will be very
slow. However, the accepted ‘I’ proposals will generally cluster
along the correlation path. In the optional third stage of the CS
shown in Fig. 3, every second accepted ‘I’ proposal is appended to
a correlated sample buffer. Only the 300 most recent additions to the
buffer are retained. A ‘C’ proposal is generated from the difference
between a pair of randomly selected samples drawn from the cor-
related sample buffer, after multiplication by a constant. The value
of this constant is computed automatically by another CS module
which ensures that the ‘C’ proposal acceptance rate is close to 25
per cent. With very little computational overhead, the ‘C’ proposals
provide the scale and direction for efficient jumps in a correlated
parameter space.

Figure 3. Schematic outlining the operation of the third stage of the adaptive FMCMC algorithm that handles correlated parameters.

C© 2011 The Author, MNRAS 415, 2523–2545
Monthly Notices of the Royal Astronomical Society C© 2011 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/415/3/2523/1049824 by guest on 10 April 2024



2528 P. C. Gregory

The final proposal distribution is a random selection of ‘I’ and ‘C’
proposals such that each is employed 50 per cent of the time. The
overhead to generate the ‘C’ proposals is minimal. The combination
ensures that the whole parameter space can be reached and that the
FMCMC chain is aperiodic. The PT feature operates as before to
avoid becoming trapped in a local probability maximum.

Because the ‘C’ proposals reflect the parameter correlations, large
jumps are possible allowing for much more efficient movement in
parameter space than can be achieved by the ‘I’ proposals alone.
Once the first two stages of the CS have been turned off, the third
stage continues until a minimum of an additional 300 accepted
‘I’ proposals have been added to the buffer and the ‘C’ proposal
acceptance rate is within the range ≥0.22 and ≤0.28. At this point,
further additions to the buffer are terminated and this sets a lower
bound on the burn-in period.

Full details on the operation and testing of the combined ‘I’ and
‘C’ proposal scheme are given in Gregory (2011).

3 MO D E L S A N D P R I O R S

In this section, we describe the model-fitting equations and the
selection of priors for the model parameters. We have investigated
the Gl 581 data using models ranging from one to six planets. For
a one-planet model, the predicted RV is given by

v(ti) = V + K[cos{θ (ti + χP ) + ω} + e cos ω], (6)

which involves the following six unknown parameters:

V = a constant velocity;
K = velocity semiamplitude;
P = the orbital period;
e = the orbital eccentricity;
ω = the longitude of periastron;
χ = the fraction of an orbit, prior to the start of data taking, that

periastron occurred at. Thus, χP = the number of days prior to ti =
0 that the star was at periastron, for an orbital period of P days;

θ (ti + χP) = the true anomaly, the angle of the star in its orbit
relative to periastron at time ti.

We utilize this form of the equation because we obtain the depen-
dence of θ on ti by solving the conservation of angular momentum
equation

dθ

dt
− 2π[1 + e cos θ (ti + χP )]2

P (1 − e2)3/2
= 0. (7)

Our algorithm is implemented in MATHEMATICA and it proves faster
for MATHEMATICA to solve this differential equation than to solve
the equations relating the true anomaly to the mean anomaly via the
eccentric anomaly. MATHEMATICA generates an accurate interpolating
function between t and θ so the differential equation does not need
to be solved separately for each ti. Evaluating the interpolating
function for each ti is very fast compared to solving the differential
equation. Details on how equation (7) is implemented are given in
the Appendix A.

The model RV accuracy is limited by the accuracy of this inter-
polating function which varies with the eccentricity, e. As shown
in Appendix A, for e = 0 to 0.8 the maximum model RV error, ex-
pressed as a fraction of the K parameter, is ≤2.2 × 10−5. The situa-
tion degrades progressively for larger values of e but is still ≤2.8 ×
10−3 for e = 0.98, rising to ≤1.2 × 10−2 for e = 0.99. Even for
e = 0.99 the fractional error is <105 over most of the interpolation
range, only rising above this towards the very end of the range.

As described in more detail in Gregory (2007a), we employed a
re-parametrization of χ and ω to improve the MCMC convergence
speed motivated by the work of Ford (2006). The two new parame-
ters are ψ = 2πχ + ω and φ = 2πχ − ω. The parameter ψ is well
determined for all eccentricities. Although φ is not well determined
for low eccentricities, it is at least orthogonal to the ψ parameter.
We use a uniform prior for ψ in the interval 0 to 4π and a uniform
prior for φ in the interval −2π to +2π. This insures that a prior
that is wraparound continuous in (χ , ω) maps into a wraparound
continuous distribution in (ψ , φ). To account for the Jacobian of this
re-parametrization, it is necessary to multiply the Bayesian integrals
by a factor of (4π)−nplan, where nplan = the number of planets in the
model. Also, by utilizing the orthogonal combination (ψ , φ), it was
not necessary to make use of the ‘C’ proposal scheme outlined in
Section 2.1 which typically saves about 25 per cent of the execution
time.

In a Bayesian analysis, we need to specify a suitable prior for each
parameter. These are tabulated in Table 1. For the current problem,
the prior given in equation (5) is the product of the individual
parameter priors. Detailed arguments for the choice of each prior
are given in Gregory (2007a).

Gregory (2007a) discussed two different strategies to search for
the orbital frequency parameter space for a multiplanet model: (i)
an upper bound on f 1 ≤ f 2 ≤ ··· ≤ fn is utilized to maintain the
identity of the frequencies; and (ii) all fi are allowed to roam over the
entire frequency range and the parameters re-labelled afterwards.
Case (ii) was found to be significantly more successful at converging
on the highest posterior probability peak in fewer iterations during
repeated blind frequency searches. In addition, case (ii) more easily
permits the identification of two planets in 1:1 resonant orbits. We
adopted approach (ii) in the current analysis.

All the models considered in this paper incorporate an extra noise
parameter, s, that can allow for any additional noise beyond the
known measurement uncertainties.5 We assume the noise variance
is finite and adopt a Gaussian distribution with a variance s2. Thus,
the combination of the known errors and extra noise has a Gaussian
distribution with variance = σ 2

i + s2, where σ i is the standard devia-
tion of the known noise for the ith data point. For example, suppose
the star actually has two planets and the model assumes only one is
present. As regards the single-planet model, the velocity variations
induced by the unknown second planet act like an additional un-
known noise term. Other factors like star-spots and chromospheric
activity can also contribute to this extra velocity noise term which is
often referred to as stellar jitter. Several researchers have attempted
to estimate the stellar jitter for individual stars based on statistical
correlations with observables (e.g. Saar & Donahue 1997; Saar,
Butler & Marcy 1998; Wright 2005). In general, nature is more
complicated than our model and known noise terms. Marginalizing
s has the desirable effect of treating anything in the data that cannot
be explained by the model and known measurement errors as noise,
leading to conservative estimates of orbital parameters (see sections
9.2.3 and 9.2.4 of Gregory 2005a for a tutorial demonstration of this
point). If there is no extra noise, then the posterior probability dis-
tribution for s will peak at s = 0. The upper limit on s was set equal

5 In the absence of detailed knowledge of the sampling distribution for the
extra noise, we pick a Gaussian because for any given finite noise variance,
it is the distribution with the largest uncertainty as measured by the entropy,
that is, the maximum entropy distribution (Jaynes 1957; Gregory 2005a,
section 8.7.4).
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Bayesian re-analysis of Gliese 581 2529

Table 1. Prior parameter probability distributions.

Parameter Prior Lower bound Upper bound

Orbital frequency p(ln f1, ln f2, · · · ln fn|Mn, I ) = n!
[ln(fH /fL)]n 1/1.1 d 1/1000 yr

(n = number of planets)

Velocity Ki Modified Jeffreys priora 0 (K0 = 1) Kmax

(
Pmin
Pi

)1/3
1√

1−e2
i

(m s−1)
(K+K0)−1

ln

[
1+ Kmax

K0

(
Pmin
Pi

)1/3 1√
1−e2

i

] Kmax = 2129

V (m s−1) Uniform −Kmax Kmax

Eccentricity ei (a) Uniform 0 1
(b) Eccentricity noise bias correction filter 0 0.99

Orbit fraction χ Uniform 0 1

Longitude of periastron ωi Uniform 0 2π

Extra noise s (m s−1) (s+s0)−1

ln
(

1+ smax
s0

) 0 (s0 = 1) Kmax

aSince the prior lower limits for K and s include zero, we used a modified Jeffreys prior of the form

p(X|M, I ) = 1

X + X0

1

ln

(
1 + Xmax

X0

) (8)

For X � X0, p(X|M, I) behaves like a uniform prior and for X � X0 it behaves like a Jeffreys prior. The ln(1 + Xmax
X0

)
term in the denominator ensures that the prior is normalized in the interval 0 to Xmax.

to Kmax. We employed a modified Jeffreys prior for s with a knee,
s0 = 1 m s−1.

We used two different choices of priors for eccentricity, a uniform
prior and eccentricity noise bias correction filter that is described in
the next section.

3.1 Eccentricity bias

In Gregory & Fischer (2010), the velocities of model fit residuals
were randomized in multiple trials and processed using a one-planet
version of the FMCMC Kepler periodogram. In this situation, pe-
riodogram probability peaks are purely the result of the effective
noise. The orbits corresponding to these noise-induced periodogram
peaks exhibited a well-defined statistical bias6 towards high eccen-
tricity. They offered the following explanation for this effect. To
mimic a circular velocity orbit, the noise points need to be corre-
lated over a larger fraction of the orbit than they do to mimic a highly
eccentric orbit. For this reason, it is more likely that noise will give
rise to spurious highly eccentric orbits than low-eccentricity orbits.

Gregory & Fischer (2010) characterized this eccentricity bias
and designed a correction filter that can be used as an alternate
prior for eccentricity to enhance the detection of planetary orbits of
low or moderate eccentricity. On the basis of our understanding of
the mechanism underlying the eccentricity bias, we expect the ec-
centricity prior filter to be generally applicable to searches for low-
amplitude orbital signals in precision RV data sets. The PDF for this
filter is shown by the solid black curve in Fig. 4 and is given by

PDF(e) = 1.3889 − 1.5212e2 + 0.53944e3

− 1.6605(e − 0.24821)8. (9)

6 The bias found using multiple sets of randomized residuals from a five-
planet fit to 55 Cancri combined Lick and Keck data agreed closely with
the bias found for multiple sets of randomized residuals from both two- and
three-planet fits to 47 UMa Lick data.

Figure 4. The best-fitting polynomial (thin black curve) to the reciprocal of
the mean of the eccentricity bias determined by Gregory & Fischer (2010).
After normalization, this yields the eccentricity noise bias correction filter
(lower solid black curve).

In a related study, Shen & Turner (2009) explored least-χ 2 Kep-
lerian fits to synthetic RV data sets. They found that the best-fitting
eccentricities for a low signal-to-noise ratio, K/σ ≤ 3, and a moder-
ate number of observations, Nobs ≤ 60, were systematically biased
to higher values, leading to the suppression of the number of nearly
circular orbits. More recently, Zakamska, Pan & Ford (2011) found
that eccentricities of planets on nearly-circular orbits are prefer-
entially overestimated, with a typical bias of one to two times the
median eccentricity uncertainty in a survey, for example, 0.04 in the
Butler et al. catalogue (Butler et al. 2006). When performing a popu-
lation analysis, they recommend using the mode of the marginalized
posterior eccentricity distribution to minimize potential biases.

In the analysis of the Gl 581 data, we used the eccentricity noise
bias correction filter as the eccentricity prior on fits of all the models,
with occasional runs using a uniform eccentricity prior to test the
robustness of our conclusions.
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2530 P. C. Gregory

Figure 5. Panel (a) shows the HARPS observations of Gl 581. Panel (b)
shows a blow-up of the mean five-planet model fit compared to the data and
panel (c) shows the residuals.

4 A NA LY S I S O F TH E H A R P S DATA

The HARPS data (Mayor et al. 2009) were retrieved electronically.7

A mean velocity of −9.208 0205 km s−1 was subtracted and the
remainder converted to units of m s−1. Panel (a) of Fig. 5 shows
the HARPS observations of Gl 581. Panel (b) shows a blow-up of a
portion of the mean five-planet model fit compared to the data, and
panel (c) shows the residuals. The zero reference time is the mean
time of the HARPS observations which corresponds to a Julian Day
number = 245 4186.6178.

4.1 Two-planet model

The results of our two-planet Kepler periodogram analysis of these
data are shown in Figs 2 and 6. The upper panel of Fig. 2 shows a
plot of the log10(prior × likelihood) versus FMCMC iteration for a
two-planet fit of the HARPS data. The lower panel shows the values
of the two unknown period parameters versus iteration number. The
two starting periods of 2.5 and 20 d are shown on the left-hand
side of the plot at a negative iteration number. The larger of the two
period parameters finds both the 67 and 12.9 d periods, but the latter
has a much larger log10(prior × likelihood) value. The median value
of the extra noise parameter s = 2.37 m s−1.

7 http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/507/487

Figure 6. A plot of the two unknown period parameters versus a normal-
ized value of log10(prior × likelihood) for the two-planet FMCMC Kepler
periodogram of the HARPS data.

Fig. 6 shows a plot of a sample of the FMCMC two period pa-
rameters versus a normalized value of log10(prior × likelihood),
that is, a two-planet periodogram. Only values within 18 decades
of the maximum log10(prior × likelihood) are plotted but without
regards to whether the values occurred before or after burn-in. The
two prominent periods are 5.37 and 12.9 d. The second period pa-
rameter exhibited many other peaks, but these were all at least eight
decades less probable.

4.2 Three-planet model

The results of our three-planet Kepler periodogram analysis are
shown in Figs 7–10. The upper panel of Fig. 7 shows a plot of the
log10(prior × likelihood) versus FMCMC iteration for a three-planet
fit of the HARPS data. The lower panel shows the FMCMC values
of the three unknown period parameters versus iteration number.
The three starting periods of 2.5, 20 and 100 d are shown on the

Figure 7. The upper panel is a plot of log10(prior × likelihood) versus iter-
ation for the three-planet FMCMC Kepler periodogram of the HARPS data.
The lower panel shows the values of the three unknown period parameters
versus iteration number. The three starting periods of 2.5, 20 and 100 d are
shown on the left-hand side of the plot at a negative iteration number.
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Bayesian re-analysis of Gliese 581 2531

Figure 8. A plot of the three period parameter values versus a normalized
value of log10(prior × likelihood) for the three-planet FMCMC Kepler
periodogram of the HARPS data.

Figure 9. A plot of eccentricity versus period for the three-planet FMCMC
Kepler periodogram of the HARPS data.

Figure 10. A plot of a subset of the FMCMC parameter marginal distribu-
tions for a three-planet fit of the HARPS data.

left-hand side of the plot at a negative iteration number. The burn-in
period for this run was 0.13 × 106 iterations.

Fig. 8 shows a plot of a sample of the FMCMC three period
parameters versus a normalized version of log10(prior × likelihood),
that is, a three-planet periodogram. Only values within five decades
of the maximum log10(prior × likelihood) are plotted but without
regards to whether the values occurred before or after burn-in. Three
prominent periods were clearly detected: 5.37, 12.9 and 66.9 d. The
third period parameter exhibited four other peaks, but these were all

more than two decades less probable. The most probable of these
has a period of ∼413 d. The spectral peak at 82 d coincides with
a 1-yr alias (1/67 − 1/365 ∼ 1/82) of the dominant 67 d period.
For more on RV aliases, see Dawson & Fabrycky (2010). The 59-d
peak is close but not coincident with the other 1-yr alias (1/67 +
1/365 ∼ 1/57).

Fig. 9 shows a plot of eccentricity versus period for a sample of
the FMCMC parameter samples for the three-planet model. There
is clearly a large uncertainty in the eccentricity of the 67 d period
which extends down to low eccentricities. The 413 d period peak
exhibits very large eccentricity values. Gregory & Fischer (2010)
showed that it is more likely that noise will give rise to spurious
highly eccentric orbits than low-eccentricity orbits. To mimic a cir-
cular velocity orbit, the noise points need to be correlated over a
larger fraction of the orbit than they do to mimic a highly eccentric
orbit. Even though we are using the noise-induced eccentricity prior
proposed in Gregory & Fischer (2010), we still observe a prepon-
derance of high-eccentricity orbital solutions in the low-K-value
regime.

Fig. 10 shows a plot of a subset of the FMCMC parameter
marginal distributions for the three-planet fit of the HARPS data
after filtering out the post-burn-in FMCMC iterations that corre-
spond to the three dominant period peaks at 5.37, 12.9 and 66.9 d.
The bottom panel shows the marginal for the unknown standard
deviation, s, of the additive Gaussian extra noise term which has a
median value of 1.93 m s−1. The Bayesian analysis automatically in-
flates s to account for anything in the data that the model and quoted
measurement errors cannot account for including stellar jitter.

The three-planet model was also run using a flat uniform eccen-
tricity to compare with the results obtained with the noise-induced
eccentricity prior. Fig. 11 shows a comparison of the eccentricity
marginals for the noise-induced prior (solid black curve) and the
uniform prior (grey dashed curve).

4.3 Four-planet model

A one-planet fit to the residuals of the three-planet fit above yielded
a dominant Keplerian orbit with a period of 3.15 d. The results of
our four-planet Kepler periodogram analysis are shown in Figs 12
and 13. All four period parameters were free to roam within a search
range extending from 1.1 d to 10 times the data duration. Another
run that extended the period search range down to 0.5 d yielded the
same four periods. The median value of the extra noise parameter
s = 1.36 m s−1.

4.4 Five-planet model

The results of a five-planet Kepler periodogram analysis of the
HARPS data are shown in Figs 14–16. The starting period for the
fifth period was set to 300 d and the most probable period was found
to be ∼400 d. The best set of parameters from the four-planet fit
were used as start parameters. The fifth period parameter shows
three peaks but the 400 d period is almost 1000 times stronger than
the other two. We filtered the five-planet MCMC results to only
include the fifth period values from the 400-d peak region and used
the Gelman & Rubin (1992) statistic to test for convergence. In a PT
MCMC, new widely separated parameter values are passed up the
line to the β = 1 simulation and are occasionally accepted. Roughly,
every 100 iterations, the β = 1 simulation accepts a swap proposal
from its neighbouring simulation. The final β = 1 simulation is
thus an average of a very large number of independent β = 1
simulations. We divided the β = 1 iterations into 10 equal time-
intervals and intercompared the 10 different essentially independent
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2532 P. C. Gregory

Figure 11. The eccentricity marginals for (a) the noise-induced eccentricity
prior (solid black curve) and (b) the uniform prior (grey dashed curve).

average distributions for each parameter using a Gelman–Rubin
test. For the five-planet model results, the Gelman–Rubin statistic
was ≤1.01.

Fig. 16 shows a plot of a subset of the FMCMC parameter
marginal distributions for the five-planet fit of the HARPS data
after filtering out the post-burn-in FMCMC iterations that cor-
respond to the five dominant period peaks at 3.15, 5.37, 12.9,
66.9 and 400 d. The median value of the extra noise parameter
s = 1.16 m s−1.

4.5 Six-planet model

We also carried out a six-planet Kepler periodogram analysis of the
HARPS data and the results are shown in Figs 17–20. The best set
of parameters from the five-planet fit were used as start parameters
and the starting period for the sixth period was set to 36 d. The
most probable sixth period found was 34.4 d. A 34.4 d period also
appeared as a secondary peak in the five-planet fit and is evident in
Fig. 14. Fig. 19 shows a plot of eccentricity versus period for the
five-planet FMCMC Kepler periodogram.

Fig. 20 shows a plot of a subset of the FMCMC parameter
marginal distributions for the six-planet fit of the HARPS data
after filtering out the post-burn-in FMCMC iterations that corre-

Figure 12. The upper panel is a plot of log10(prior × likelihood) versus iter-
ation for the four-planet FMCMC Kepler periodogram of the HARPS data.
The lower panel shows the values of the four unknown period parameters
versus iteration number.

Figure 13. A plot of a subset of the FMCMC parameter marginal distribu-
tions for a four-planet fit of the HARPS data.

spond to the six dominant period peaks at 3.15, 5.37, 12.9, 34.4,
66.9 and 400 d. The median value of the extra noise parameter s =
1.00 m s−1. There is considerable agreement with the four- and five-
planet marginals shown earlier which leads us to conclude that the
66.9-d orbit is significantly eccentric with an e ≈ 0.34. There is an
indication that e ≈ 0.12 for the 12.9-d orbit. If the 34.4-d orbit is
real, then it would also appear to have a significant eccentricity of
0.49+0.22

−0.17.
Phase plots for the six-planet model are shown in Fig. 21. The top

left-hand panel shows the data and model fit versus 3.15 d orbital
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Bayesian re-analysis of Gliese 581 2533

Figure 14. A plot of the five period parameter values versus a normalized
value of log10[prior × likelihood] for the five-planet FMCMC Kepler peri-
odogram of the HARPS data. The fifth period parameter points are shown
in grey.

Figure 15. A plot of eccentricity versus period for the five-planet FMCMC
Kepler periodogram of the HARPS data. The fifth period parameter points
are shown in grey.

phase after removing the effects of the five other orbital periods. To
construct this phase plot, we first filter out the post-burn-in FMCMC
iterations that correspond to the six dominant period peaks at 3.15,
5.37, 12.9, 34.4, 66.9 and 400 d. The FMCMC output for each
of these iterations is a vector of the six-planet orbital parameter
set plus V . To compute the 3.15-d phase plot data, we subtract
the mean velocity curve for the other five planets plus V from
the measured set of velocities. This is done by taking a sample of
typically 200 FMCMC iterations and for each iteration we compute
the predicted velocity points for that realization of the five-planet
plus V parameter set. We then construct the average of these model
prediction data sets and subtract that from the data points. These
residuals for the set of observation times are converted to residuals
versus phase using the mode of the marginal distribution for the
3.15 d period parameter. An orbital phase model velocity fit is then
computed at 100 phase points for each realization of the 3.15-d
planet parameter set obtained in the same sample of 200 iterations
as above. At each of these 100 phase points, we construct the mean
model velocity fit and mean ± 1 standard deviation. The upper and
lower solid curves in Fig. 21 are the mean FMCMC model fit ±1
standard deviations. Thus, 68.3 per cent of the FMCMC model fits
fall between these two curves.

The other panels correspond to a phase plot for the other five
periods. In each panel, the quoted period is the mode of the marginal
distribution. It is clear that for the 3.15, 5.37, 12.9 and 66.9 d periods
the separation of the fit curves is small compared to the amplitude.
For the 395 d period phase plot, the wide range of possible orbits
that can fit between the upper and lower curves is reflected by the
broad extent of the marginal distributions of the parameters.

Figure 16. A plot of a subset of the FMCMC parameter marginal distribu-
tions for a five-planet fit of the HARPS data.

Figure 17. The upper panel is a plot of log10(prior × likelihood) versus
iteration for the FMCMC six-planet fit of the HARPS data. The lower panel
shows the values of the six unknown period parameters versus iteration
number. The six starting periods are shown on the left-hand side of the plot
at a negative iteration number.

5 MODEL SELECTI ON FOR HARPS A NA LY S IS

One of the great strengths of the Bayesian analysis is the built-in
Occam’s razor. More complicated models contain larger numbers
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2534 P. C. Gregory

Figure 18. A plot of the six period parameter values versus a normalized
value of log10(prior × likelihood) for the six-planet FMCMC Kepler peri-
odogram of the HARPS data. The fifth period parameter points are shown
in dark grey and the sixth in light grey.

Figure 19. A plot of eccentricity versus period for the six-planet FMCMC
Kepler periodogram of the HARPS data.

of parameters and thus incur a larger Occam penalty, which is
automatically incorporated in a Bayesian model selection analysis
in a quantitative fashion (see e.g. Gregory 2005a). The analysis
yields the relative probability of each of the models explored.

To compare the posterior probability of the ith planet model to
that of the four-planet model, we need to evaluate the odds ratio,
Oi4 = p(Mi|D, I)/p(M4|D, I), the ratio of the posterior probability
of model Mi to model M4. Application of Bayes’ theorem leads to

Oi4 = p(Mi |I )

p(M4|I )

p(D|Mi, I )

p(D|M4, I )
≡ p(Mi |I )

p(M4|I )
Bi4, (10)

where the first factor is the prior odds ratio and the second factor is
called Bayes’ factor, Bi4. Bayes’ factor is the ratio of the marginal
(global) likelihoods of the models. The marginal likelihood for
model Mi is given by

p(D|Mi, I ) =
∫

dXp(X|Mi, I ) × p(D|X, Mi, I ). (11)

Thus, Bayesian model selection relies on the ratio of marginal like-
lihoods, not maximum likelihoods. The marginal likelihood is the
weighted average of the conditional likelihood, weighted by the
prior probability distribution of the model parameters and s. This
procedure is referred to as marginalization.

The marginal likelihood can be expressed as the product of the
maximum likelihood and the Occam penalty (see Gregory 2005a).
Bayes’ factor will favour the more complicated model only if the
maximum-likelihood ratio is large enough to overcome this penalty.
In the simple case of a single parameter with a uniform prior of width

Figure 20. A plot of a subset of the FMCMC parameter marginal distribu-
tions for a six-planet fit to the HARPS data.

Figure 21. Phase plots for the six-planet model fit to the HARPS data. The
top left-hand panel shows the data and model fit versus 3.15 d orbital phase
after removing the effects of the five other orbital periods. The upper and
lower curves are the mean FMCMC model fit ±1 standard deviation. The
other five panels correspond to the phase plot for the other five periods.

�X, and a centrally peaked likelihood function with characteristic
width δX, the Occam factor is ≈δX/�X. If the data are useful,
then generally δX � �X. For a model with m parameters, each
parameter will contribute a term to the overall Occam penalty. The
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Bayesian re-analysis of Gliese 581 2535

Figure 22. The left-hand panel shows the contribution of the individual nested intervals to the NRMC marginal likelihood for the three-planet model. The
right-hand panel shows the integral of these contributions versus the parameter volume of the credible region.

Occam penalty depends not only on the number of parameters,
but also on the prior range of each parameter (prior to the current
data set, D), as symbolized in this simplified discussion by �X.
If two models have some parameters in common, then the prior
ranges for these parameters will cancel in the calculation of Bayes’
factor. To make good use of Bayesian model selection, we need to
fully specify priors that are independent of the current data D. The
sensitivity of the marginal likelihood to the prior range depends on
the shape of the prior and is much greater for a uniform prior than
a Jeffreys prior (see e.g. Gregory 2005a). In most instances, we are
not particularly interested in the Occam factor itself, but only in
the relative probabilities of the competing models as expressed by
Bayes’ factors. Because the Occam factor arises automatically in the
marginalization procedure, its effect will be present in any model
selection calculation. Note that no Occam factors arise in parameter
estimation problems. Parameter estimation can be viewed as model
selection where the competing models have the same complexity
so the Occam penalties are identical and cancel out.

The MCMC algorithm produces samples which are in proportion
to the posterior probability distribution which is fine for parameter
estimation, but one needs the proportionality constant for estimating
the model marginal likelihood. Clyde et al. (2007) reviewed the state
of techniques for model selection from a statistical perspective, and
Ford & Gregory (2006) have evaluated the performance of a variety
of marginal likelihood estimators in the exoplanet context.

Estimating the marginal likelihood is a very big challenge for
models with large numbers of parameters, for example, our six-
planet model has 32 parameters. In this work, we employ the nested
restricted MC (NRMC) method described in Gregory & Fischer
(2010) to estimate the marginal likelihoods. MC integration can be
very inefficient in exploring the whole prior parameter range be-
cause it randomly samples the whole volume. The fraction of the
prior volume of parameter space containing significant probability
rapidly declines as the number of dimensions increases. For exam-
ple, if the fractional volume with significant probability is 0.1 in
one dimension, then in 32 dimensions the fraction might be of the
order of 10−32. In RMC integration, this is much less of a problem
because the volume of the parameter space sampled is greatly re-
stricted to a region delineated by the outer borders of the marginal
distributions of the parameters for the particular model.

In NRMC integration, multiple boundaries are constructed based
on credible regions ranging from 30 to ≥99 per cent, as needed. We
are then able to compute the contribution to the total integral from
each nested interval and sum these contributions. For example, for
the interval between the 30 and 60 per cent credible regions, we

generate random parameter samples within the 60 per cent region
and reject any sample that falls within the 30 per cent region. Using
the remaining samples, we can compute the contribution to the
NRMC integral from that interval.

The left-hand panel of Fig. 22 shows the contributions from the
individual intervals for five repeats of the NRMC evaluation for
the three-planet model. The right-hand panel shows the summa-
tion of the individual contributions versus the volume of the cred-
ible region. The credible region listed as 9995 per cent is defined
as follows. Let XU99 and XL99 correspond to the upper and lower
boundaries of the 99 per cent credible region, respectively, for any
of the parameters. Similarly, let XU95 and XL95 are the upper and
lower boundaries of the 95 per cent credible region for the param-
eter. Then, XU9995 = XU99 + (XU99 − XU95) and XL9995 = XL99 +
(XL99 − XL95). Similarly, XU9984 = XU99 + (XU99 − XU84).

The NRMC method is expected to underestimate the marginal
likelihood in higher dimensions and this underestimate is expected
to become worse the larger the number of model parameters be-
comes, that is, increasing number of planets (Gregory 2007c). When
we conclude, as we do, that the NRMC-computed odds in favour of
the five-planet model compared with the four-planet model is ∼102

we mean that the true odds is ≥102. Thus, the NRMC method is con-
servative. One indication of the break-down of the NRMC method
is the increased spread in the results for repeated evaluations.

We can readily convert Bayes’ factors to a Bayesian false alarm
probability (FAP) which we define in equation (12). For example,
in the context of claiming the detection of m planets, FAPm is the
probability that there are actually fewer than m planets, that is, m −
1 or less.

FAPm =
m−1∑
i=0

(probability of i planets). (12)

If we assume a priori (absence of the data) that all models under
consideration are equally likely, then the probability each model is
related to Bayes’ factors by

p(Mi | D, I ) = Bi4∑N
j=0 Bj4

, (13)

where N is the maximum number of planets in the hypothesis space
under consideration, and of course B44 = 1. For the purpose of
computing FAPm, we set N = m. Substituting Bayes’ factors, given
in Table 2, into equation (12) gives

FAP5 = (B04 + B14 + B24 + B34 + B44)∑5
j=0 Bj4

≈ 10−2. (14)
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2536 P. C. Gregory

Table 2. Marginal likelihood estimates, Bayes’ factors relative to model 4 and FAPs. The last two columns list the MAP estimate of the extra noise
parameter, s, and the rms residual.

Model Periods Marginal likelihood Bayes’ factor nominal FAP s rms residual
(d) (m s−1) (m s−1)

M0 6.10 × 10−197 2.0 × 10−59 9.8

M1 (5.37) (4.221 ± 0.003) × 10−155 1.4 × 10−17 1.4 × 10−42 3.5 3.6

M2 (5.37, 12.9) (1.94 ± 0.01) × 10−145 6.5 × 10−8 2.2 × 10−10 2.4 2.6

M3 (5.37, 12.9, 66.9) (3.0+0.7
−0.5) × 10−142 10−4 6.5 × 10−4 1.9 2.2

M4 (3.15, 5.37, 12.9, 66.9) (3.0+1.1
−0.6) × 10−138 1.0 10−4 1.4 1.7

M5 (3.15, 5.37, 12.9, 66.9, 399) (3.0×2.1
×0.65) × 10−136 102 0.01 1.2 1.5

M6 (3.15, 5.37, 12.9, 34.4, 66.9, 399) (6.7×2.4
×1/3) × 10−141 2.2 × 10−3 0.999 978 1.0 1.4

Table 3. Five-planet model parameter estimates from HARPS analysis. The value immediately
below in parentheses is the MAP estimate.

Parameter planet 1 planet 2 planet 3 planet 4 planet 5

P (d) 3.1498+.0005
−.0005 5.3687+.0002

−.0002 12.927+.006
−.004 66.85+0.15

−0.16 399+14
−16

(3.149 77) (5.368 66) (12.9316) (66.747) (387.6)

K (m s−1) 1.85+0.24
−0.22 12.53+0.23

−0.22 3.18+0.22
−0.24 2.43+0.31

−0.31 1.3+0.4
−0.5

(1.93) (12.39) (3.40) (2.75) (1.62)

e 0.0+0.2
−0.0 0.00+0.02

−0.00 0.10+0.06
−0.10 0.33+0.09

−0.10 0.02+0.30
−0.01

(0.197) (0.022) (0.155) (0.38) (0.79)

ω (◦) 133+81
−75 40+98

−82 234+43
−43 334+25

−23 281+77
−100

(140) (−1) (234) (326) (310)

a (au) 0.0285+.0006
−.0006 0.0406+.0009

−.0009 0.0730+.0016
−.0016 0.218+.005

−.005 0.72+0.24
−0.24

(0.0285) (0.406) (0.730) (0.218) (0.71)

M sin i (ME) 1.91+0.26
−0.25 15.7+0.7

−0.7 5.29+0.43
−0.43 6.7+0.8

−0.8 6.6+2.0
−2.7

(1.984) (15.50) (5.63) (7.38) (5.14)

Periastron passage 4182.6+0.6
−0.7 4182+1.4

−1.2 4168.9+1.6
−1.4 4137+3.5

−3.8 3803+82
−114

(JD −245 0000) (4184) (4186) (4184) (4134) (3828)

For the five-planet model, we obtain a low FAP ≈ 10−2. The
Bayesian FAPs for one-, two-, three-, four-, five- and six-planet
models are given in the fourth column of Table 2.

Table 2 gives the NMRC marginal likelihood estimates, Bayes’
factors and FAPs for zero-, one-, two-, three-, four-, five- and six-
planet models which are designated M0, . . . , M6. The last two
columns list the maximum a posteriori (MAP) estimate of the extra
noise parameter, s, and the rms residual. For each model, the NRMC
calculation was repeated five times and the quoted errors give the
spread in the results, not the standard deviation. Bayes’ factors that
appear in the third column are all calculated relative to model 4.

A summary of the five-planet model parameters and their un-
certainties are given in Table 3. The quoted value is the median of
the marginal probability distribution for the parameter in question
(except eccentricity which uses the mode), and the error bars iden-
tify the boundaries of the 68.3 per cent credible region.8 The value
immediately below in parentheses is the MAP estimate, the value at
the maximum of the joint posterior probability distribution. It is not

8 In practice, the probability density for any parameter is represented by a
finite list of values, pi, representing the probability in discrete intervals δX.
A simple way to compute the 68.3 per cent credible region, in the case of a
marginal with a single peak, is to sort the pi values in descending order and
then sum the values until they approximate 68.3 per cent, keeping track of
the upper and lower boundaries of this region as the summation proceeds.

uncommon for the MAP estimate to fall close to the borders of the
credible region. In one case, the eccentricity of the fifth planet, the
MAP estimate falls well outside the 68.3 per cent credible region
which is one reason why we prefer to quote median or mode values
as well. The semimajor-axis and M sin i values are derived from
the model parameters, assuming a stellar mass of 0.31 ± 0.02 M�
(Delfosse et al. 2000). The quoted errors on the semimajor-axis and
M sin i include the uncertainty in the stellar mass.

Although the NRMC estimate of Bayes’ factor for the six-planet
model is much lower than for either the four- or the five-planet
models, we can still infer the orbital parameters of the most prob-
able additional planetary signal in the six-planet fit. The period =
34.4 ± 0.1 d, the eccentricity = 0.49+0.22

−0.17, and the semimajor-axis
and M sin i are 0.140 ± 0.003 au and 2.3+0.8

−0.7 M⊕, respectively.

6 A NA LY S I S O F TH E H I R E S DATA A N D
C O M B I NAT I O N O F H I R E S A N D H A R P S DATA

In this section, we present results on fits to the HIRES data alone
and the combination of HIRES and HARPS data. Panel (a) of
Fig. 23 shows the combined HIRES (grey points) and HARPS
(black points) data for Gl 581. Panel (b) shows a blow-up of a
portion of the mean four-planet model fit compared to the data
and panel (c) shows the residuals. The same reference time was
used for the combined data set as for the HARPS only data. The
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Bayesian re-analysis of Gliese 581 2537

Figure 23. Panel (a) shows the combined HIRES (grey points) and HARPS
(black points) data set for Gl 581. Panel (b) shows a blow-up of the mean
four-planet model fit compared to the data and panel (c) shows the residuals.

HIRES data (Vogt et al. 2010) consisted of 122 velocity measure-
ments spanning a range of 11 yr and with quoted errors ranging
from 0.53 to 4.82 m s−1. Fig. 24 shows a comparison of the velocity
differences (HIRES−HARPS) for the nearest pairs of samples ver-
sus the sample time-difference. A cluster of 10 points with sample
time-differences between 0.2 and 0.3 s is indicated by the ellipse.
Since these time-differences are small compared with the shortest
known orbital period of 3.15 d, they provide an indication of the

Figure 24. A comparison of the velocity differences (HIRES−HARPS) for
the nearest pairs of samples with the sample time-difference.

velocity offset between the two data sets after the removal of the
HARPS mean velocity of −9.208 0205 km s−1. The mean velocity
difference for these 10 samples is 1.8 m s−1.

The standard deviation of the velocity differences for these 10
pairs is 2.37 m s−1. For comparison, the mean value of the quoted
errors for each pair added in quadrature was 1.94 m s−1.

6.1 Two-planet fit to HIRES data

The results of our two-planet Kepler periodogram analysis are
shown in Figs 25–27. The upper panel of Fig. 25 shows a plot
of the log10(prior × likelihood) versus FMCMC iteration for a two-
planet fit of the HIRES data. The lower panel shows the values of
the two unknown period parameters versus iteration number. The
two starting periods of 5.37 and 12.9 d are shown on the left-hand
side of the plot at a negative iteration number. The median value
of the extra noise parameter s = 2.69 m s−1 compared to 2.37 m
s−1 for the HARPS two-planet fit. Fig. 26 shows the two-planet

Figure 25. The upper panel is a plot of log10(prior × likelihood) versus
iteration for a sample of the FMCMC two-planet fit of the HIRES data.
The lower panel shows values of the two unknown period parameters versus
iteration number. The two starting periods of 5.37 and 12.9 d are shown on
the left-hand side of the plot at a negative iteration number.

Figure 26. A plot of the two period parameter values versus a normalized
value of log10(prior × likelihood), the two-planet Kepler periodogram of
the HIRES data.
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2538 P. C. Gregory

Figure 27. A plot of eccentricity versus period for the two-planet FMCMC
fit of the HIRES data.

Kepler periodogram. Only values within five decades of the max-
imum log10(prior × likelihood) are plotted but without regards to
whether the values occurred before or after burn-in. Two prominent
periods were clearly detected: 5.37 and 12.9 d. The second period
parameter exhibited two other peaks but these were significantly
less probable. The most probable of these has a period of ∼9 d.

Fig. 27 shows a plot of eccentricity versus period for a sample
of the FMCMC parameters for the two-planet model. The dom-
inant 5.37- and 12.9-d peaks and the weaker 9-d peak allow for
low-eccentricity orbits. The peak around 300 d has a high value of
eccentricity typical of noise.

6.2 Three-planet fit to HIRES data

Two three-planet runs were carried out on the HIRES-only data
starting with the best periods (5.37, 12.9 and 66.9 d) found from the
HARPS analysis, but only the 5.37 d period (largest amplitude) was
successfully detected. The best of these two runs (Fig. 28) detected

Figure 28. The upper panel is a plot of log10(prior × likelihood) versus
iteration for a sample of the FMCMC three-planet fit of the HIRES data.
The lower panel shows the values of the three unknown period parameters
versus iteration number. The starting periods of 5.37, 12.9 and 66.9 d are
shown on the left-hand side of the plot at a negative iteration number.

three dominant periods of 5.37, 8.99 and ∼300 d. A much weaker
peak was found at a period of 12.9 d. The HIRES fit extra noise
parameter was s = 2.2 m s−1 compared to the HARPS three-planet
fit where s = 1.7 m s−1. Fig. 29 shows a plot of the three-planet Ke-
pler periodogram. Only values within five decades of the maximum
log10(prior × likelihood) are plotted but without regards to whether
the values occurred before or after burn-in. Three prominent periods
were clearly detected: 5.37, 9 and 300 d. The second period param-
eter (shown in grey) exhibited a second much less probable peak at
12.9 d and the third period parameter (black) exhibited many weak
peaks.

Fig. 30 shows a plot of eccentricity versus period for a sample of
the FMCMC parameters for the three-planet model. The 5.37- and
9-d peaks exhibit low-eccentricity orbits. The peak around 300 d
has a high value of eccentricity.

Fig. 31 shows a blow-up of the above eccentricity versus period
plot in the vicinity of the 300-d peak which is dominated by two
high-eccentricity features typical of noise. We conclude that there
is no clear evidence for a third period in the HIRES data alone
and suspect that the presence of the strong high-eccentricity 300-d
complex may contribute to the dominance of the 9 d period over the
12.9 d period found in the two-planet fit.

For both the two- and three-planet fits, the extra noise param-
eter is larger for the HIRES data than for the HARPS data. One
possibility is that the quoted HIRES errors have been systemati-
cally underestimated which we can model by an extra Gaussian
noise term added in quadrature to the quoted HIRES errors with
σ = dsHIRES. We can obtain a crude estimate of dsHIRES from the

Figure 29. A plot of the three period parameter values versus a normalized
value of log10(prior × likelihood), the three-planet Kepler periodogram of
the HIRES data.

Figure 30. A plot of eccentricity versus period for the three-planet FMCMC
fit of the HIRES data.
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Bayesian re-analysis of Gliese 581 2539

Figure 31. A blow-up of the above eccentricity versus period plot in the
vicinity of the 300-d peak.

HIRES and HARPS s parameter values for the two-planet case
where both analyses yielded the same two periods. The result is
dsHIRES = √

2.692 − 2.372 = 1.3 m s−1. This suggests that in the
analysis of the combined data set, we should include an extra Gaus-
sian noise term added in quadrature to the quoted HIRES errors
with σ , labelled dsHIRES, as an additional unknown parameter.

6.3 Two-planet fit to the combined HIRES/HARPS data

Based on the above results, we decided to use the following noise
model for the jth data point for the combined HIRES/HARPS two-
planet analysis:

σjHARPS =
√

σ 2
jquoted

+ s2, (15)

σjHIRES =
√

σ 2
jquoted

+ ds2
HIRES + s2. (16)

The best two-planet orbital parameters were employed as start coor-
dinates for the combined HIRES/HARPS analysis. We also incor-
porated an additional unknown parameter dc to allow for a possible
difference in the constant velocity offsets of the HIRES and HARPS
data. Based on our analysis of Fig. 24, our best estimate of dc ≈
1.8 m s−1. We assumed a Gaussian prior9 with zero mean and σ =
3 m s−1.

The two-planet FMCMC fit of the HIRES/HARPS data con-
firmed the 5.37 and 12.9 d periods. Fig. 32 shows a plot of a subset
of the FMCMC parameter marginal distributions for the two-planet
fit of the data after filtering out the post-burn-in FMCMC itera-
tions that correspond to the two dominant period peaks at 5.37 and
12.9 d. The bottom row shows the marginals for dc, dsHARPS and s.
The maximum a posteriori and median values found for dc are 1.65
and 1.67 m s−1, respectively, that is, very close to the crude estimate
of 1.8 m s−1 made earlier.

The upper panel of Fig. 33 shows the marginal distribution for
the unknown dsHIRES parameter in the two-planet FMCMC fit of
the combined HIRES/HARPS data. The black curve in the lower
panel shows the marginal distribution for the common extra noise
parameter s in the HIRES/HARPS fit. The light grey curve is the

9 Strictly speaking, the Bayesian choice of the prior for the offset velocity
should be independent of the data. As a check, we carried out a two-planet
fit to the combined HIRES/HARPS data using a Gaussian prior with a much
larger σ = 1 km s−1. No significant difference was detected.

Figure 32. A plot of a subset of the FMCMC parameter marginal distribu-
tions for a two-planet fit of the combined HIRES/HARPS data.

Figure 33. The upper panel shows the marginal distribution for the un-
known dsHIRES parameter in the two-planet FMCMC fit of the combined
HIRES/HARPS data. The black curve in the lower panel shows the marginal
distribution for the common extra noise parameter s in the HIRES/HARPS
fit. The light-grey curve is the same quantity for the two-planet HARPS-only
fit.

same quantity for the two-planet HARPS-only fit. Clearly there is
very good agreement between the two s parameter estimates.

6.4 Three-planet fit to the combined HIRES/HARPS data

For the three-planet combined analysis, we employed the same
noise model as used in Section 6.3. Again the best three-planet
orbital parameters from the HARPS analysis were employed as
start coordinates for the combined HIRES/HARPS analysis. All
three period parameters were free to roam within a search range
extending from 1.1 d to 10 times the data duration.

Fig. 34 shows a plot of a sample of the FMCMC three-planet
periodogram. Only values within five decades of the maximum
log10(prior × likelihood) are plotted but without regards to whether
the values occurred before or after burn-in. Three prominent peri-
ods were clearly detected: 5.37, 12.9 and 66.9 d. The third period
parameter exhibited other peaks but these were significantly less
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2540 P. C. Gregory

Figure 34. A plot of the three period parameter values versus a normalized
value of log10(prior × likelihood) for the three-planet FMCMC Kepler fit
of the combined HIRES/HARPS data.

probable, the one at 82 d is consistent with being a 1-yr alias of the
66.9 d period.

Fig. 35 shows a plot of eccentricity versus period for a sample of
the FMCMC parameters for the three-planet model. The dominant
5.37-, 12.9- and 66.9-d peaks allow for low-eccentricity orbits.

Fig. 36 shows a plot of a subset of the FMCMC parameter
marginal distributions for the three-planet fit of the data after filter-
ing out the post-burn-in FMCMC iterations that correspond to the
three dominant period peaks at 5.37, 12.9 and 66.9 d. The bottom
row shows the marginals for dc, dsHIRES and s. dsHIRES is more accu-
rately defined than in the two-planet analysis. The maximum a pos-

Figure 35. A plot of eccentricity versus period for the three-planet FMCMC
fit of the combined HIRES/HARPS data.

Figure 36. A plot of a subset of the FMCMC parameter marginal distribu-
tions for a three-planet fit of the combined HIRES/HARPS data.

Figure 37. A plot of a subset of the FMCMC parameter marginal distribu-
tions for a four-planet fit of the combined HIRES/HARPS data.

teriori and median values found for dsHIRES are 1.67 and 1.55 m s−1,
respectively.

6.5 Four-planet fit to the combined HIRES/HARPS data

The best four-planet orbital parameters from the HARPS-only
analysis were employed as start coordinates for the combined
HIRES/HARPS analysis. As before we incorporated the same noise
model as used in Section 6.3 and the unknown parameter dc to al-
low for a possible difference in the constant velocity offsets of the
HIRES and HARPS data.

The four-planet Kepler periodogram found the four starting peri-
ods of 3.15, 5.37, 12.9 and 66.9 d and no other peaks. Fig. 37 shows
the marginal a posteriori densities of a subset of the parameters.

The overall span of the HIRES data is 11 yr, while the HARPS
data interval is only 4.3 yr. Perhaps the effective stellar jitter is sig-
nificantly larger on the 11-yr span and this contributes to the dsHIRES

term. To investigate this, we constructed a new joint HIRES/HARPS
data set which only included the 79 HIRES measurements that oc-
curred within the span of the HARPS data.

Table 4 shows a comparison of the estimates of the dc, dsHIRES and
s parameters from the two-, three-, and four-planet fits to the full and
partial joint HIRES/HARPS data sets. The parameter value listed is

Table 4. Bayesian estimates of the parameters dc, dsHIRES and s from the
two-, three- and four-planet fits to the full and partial joint HIRES/HARPS
data sets. The value immediately below in parentheses is the MAP estimate.

Parameter Two-planet Three-planet Four-planet Four-planet
full data full data full data partial data

dc 1.67+0.40
−0.35 1.54+0.35

−0.36 1.45+0.32
−0.31 1.99+0.36

−0.36
(m s−1) (1.64) (1.63) (1.53) (1.5)

dsHIRES 1.15+1.05
−0.35 1.55+0.58

−0.47 1.84+0.35
−0.33 1.76+0.45

−0.39
(m s−1) (0.75) (1.67) (1.85) (1.70)

s 2.39+0.25
−0.11 2.0+0.2

−0.2 1.45+.17
−.17 1.39+.15

−.18
(m s−1) (2.32) (1.83) (1.34) (1.33)
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Bayesian re-analysis of Gliese 581 2541

Figure 38. A histogram of the r1j
values compared to a suitably normalized

Gaussian with zero mean and standard deviation = 1.

the median of the marginal probability distribution for the parameter
in question and the error bars identify the boundaries of the 68.3 per
cent credible region. The value immediately below in parentheses is
the MAP estimate, the value at the maximum of the joint posterior
probability distribution. It is clear from the table that the four-planet
fit to the partial joint data set yielded distributions for dsHIRES and s
that are very similar to those obtained using the full joint data set.
As expected, the extra noise parameter s decreases as the number
of planets increase. The estimates of the offset parameter, dc, and
the HIRES extra noise parameter, dsHIRES, agree within the quoted
uncertainties and these uncertainties are smallest for the four-planet
model fit.

We carried out an analysis of the four-planet normalized fit resid-
uals (r1j

) to the full joint data set. We define r1j
as

r1j
= 1

ni

ni∑
i=1

residualij√
error2

j + ds2
HIRESi

+ s2
i

, (17)

where j is an index for the combined HIRES/HARPS data set and ni

is the number of post-burn-in FMCMC equilibrium samples used in
computing the mean value of residuals/(effective noise σ ) for each
measurement (typically we use ni ∼ 200). The effective noise σ is
given by

effective noise σ =
√

error2
j + ds2

HIRESi
+ s2

i , (18)

which is the quadrature sum of the quoted error, dsHIRESi
, and the

extra noise term, si. Of course, dsHIRESi
only contributes to the

effective noise σ of the HIRES data values.
Fig. 38 shows a histogram of the r1j

values compared to a suitably
normalized Gaussian with zero mean and standard deviation = 1.
Within the uncertainties, r1j

is consistent with a Gaussian distribu-
tion. The reduced χ 2 of r1j

is given as

χ 2
1 = 1

nt − np

nt∑
j=1

r2
1j

= 1.008, (19)

where nt = the total number of combined HIRES/HARPS data
points and np = 24 is the number of fit parameters.

The four-period phase plots are shown in Fig. 39. The top left-
hand panel shows the data and model fit versus 3.15 d orbital phase
after removing the effects of the three other orbital periods. The
upper and lower solid curves are the mean FMCMC model fit ±1
standard deviation. The HIRES data points are shown in grey and the
error bars are the quoted errors added in quadrature with our median

Figure 39. Phase plots for the four most probable periods derived from the combined HIRES/HARPS data. The top left-hand panel shows the data and model
fit versus 3.15 d orbital phase after removing the effects of the five other orbital periods. The upper and lower curves are the mean FMCMC model fit ±1
standard deviation. The other three panels correspond to a phase plot for the other three periods. The HARPS data points are shown in black and the HIRES
data points are shown in grey.
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2542 P. C. Gregory

Figure 40. A plot of the period parameter versus a normalized value of
log10(prior × likelihood) for the one-planet FMCMC Kepler fit to the HIRES
residuals after removing the 3.15-, 5.37- and 12.9-d orbits.

estimate of dsHIRESi
= 1.84 m s−1. The other panels correspond to

the phase plot for the other three periods. Examination of the 66.9 d
period phase plot indicates that the HIRES data do not lend much
support to the 66.9 d period. In fact, around a phase of 0.8, there
are a series of ∼11 points that exhibit a systematic trend away from
the mean light curve. To examine this further, we carried out a
one-planet FMCMC fit to the HIRES residuals after subtracting off
the 3.15, 5.37 and 12.9 d mean orbits. Fig. 40 shows the one-planet
Kepler periodogram of these residuals. Three prominent peaks are
present at 26.3, 65.6 and 73 d along with many minor peaks. The
thin solid vertical lines highlight these peaks. The strongest peak
has a period of 73 d which explains the absence of good support for
a 66.9 d period in Fig. 39.

6.6 Five-planet fit to the combined HIRES/HARPS data

Figs 41 and 42 show the results of a five-planet fit to the com-
bined HIRES/HARPS data set. The evidence for a ∼400 d period
is more confused than the HARPS-only results shown in Figs 14
and 15. The combined HIRES/HARPS results show a dominant
high-eccentricity peak with a period of 472 d. Again, weak high-
eccentricity peaks are a common characteristic of noise.

7 D ISCUSSION

Our analysis of the combined HIRES/HARPS data set argues
strongly that the HIRES errors have been systematically underesti-
mated. If we model this by the additive extra noise term dsHIRES, as in
equation (20), we conclude that dsHIRES = 1.84+0.35

−0.33. An alternative

Figure 41. A plot of the five period parameters versus a normalized value
of log10(prior × likelihood) for the five-planet FMCMC Kepler fit to the
combined HIRE/SHARPS data.

Figure 42. A plot of eccentricity versus period for the five-planet FMCMC
fit to the combined HIRE/SHARPS data.

possibility that we can test is that the HIRES data are systematically
too low by a common factor. To check this out, we again carried
out the four-planet analysis of the combined HIRES/HARPS data
using the following noise model:

σHIRESj
=

√
(bHIRES × σquotedj

)2 + s2. (20)

We assumed a uniform prior for the unknown parameter bHIRES in
the range 0.5–4.0. The results were qualitatively very similar to
the results obtained with the dsHIRES noise term. Following similar
calculations to those outlined in Section 6.5, we computed the re-
duced χ 2 of the residuals divided by the total effective noise σ and
obtained a value of 1.009, indistinguishable from the reduced χ 2

obtained using the dsHIRES parameter. Fig. 48 shows the marginal
probability distributions for the bHIRES and s parameters. The dashed
curve in the lower panel is the marginal for s from the four-planet
fit to the HARPS-only data. Employing the bHIRES parametrization
results in a significantly larger estimate in the s term than was re-
quired by the HARPS-only analysis or the dsHIRES parametrization
of the combined HIRES/HARPS data.

Although the two different parametrizations of the HIRES extra
noise lead to similar values of the reduced χ 2, we can gain additional
insight into which parametrization is better from a more microscopic
exploration by binning the four-planet fit residuals/(effective noise)
and examining the χ 2 values of the individual bins. If we add two
χ 2 random variables, one of which has ν1 degrees of freedom and
the other has ν2 degrees of freedom, then their sum will be χ 2 with
ν1 + ν2 degrees of freedom (see e.g. Gregory 2005a). Similarly, we
can take the quantity r1j

of equation (19) which is χ 2 with (nt − np)
degrees of freedom and divide the r1j

values into k bins. Suppose the
kth bin has nkr1j

values, then χ 2 of these values will be given by

χ 2
k = 1

(nk/nt) × (nt − np)

nk∑
j=1

r2
1j

, (21)

which is χ 2 with (nk/nt) × (nt − np) degrees of freedom.
Fig. 44 shows a plot of the χ 2 statistic versus the original quoted

errors that have been binned into 0.5 m s−1 bins for the four-planet fit
to the combined HIRES/HARPS data using the dsHIRES parametriza-
tion. Fig. 45 shows a similar plot for the bHIRES parametrization.
Ideally, the χ 2 distribution would be flat with a value of 1.0. It is
clear that the dsHIRES parametrization achieves a flatter distribution
than the bHIRES parametrization. Further the noise model involving
dsHIRES leads to a jitter noise estimate s which is much closer to the
value expected from the HARPS-only four-planet analysis.

Our HARPS-only analysis provides evidence for five planetary
signals while incorporating the HIRES data seems to degrade the
evidence for both the 66.9 and ∼400 d periods even when we allow

C© 2011 The Author, MNRAS 415, 2523–2545
Monthly Notices of the Royal Astronomical Society C© 2011 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/415/3/2523/1049824 by guest on 10 April 2024



Bayesian re-analysis of Gliese 581 2543

Figure 43. A plot of the marginal probability distributions for the
bHIRES and s parameters for a four-planet FMCMC fit to the combined
HIRE/SHARPS data using the noise model of equation (20). The dashed
curve in the lower panel is the marginal for s from the four-planet fit to the
HARPS only data.

Figure 44. A plot of the χ2
k statistic from equation (21) versus binned values

of the quoted errors for the four-planet fit of the combined HIRES/HARPS
data using the dsHIRES parametrization. The solid and dashed histograms
show the binned HIRES data and binned HARPS data, respectively.

for an extra HIRES noise term of the order of 1.8 m s−1. We suspect
this extra noise term may arise from as-yet-unidentified systematics
which may be the reason for the degradation in the quality of fits
beyond three planets. Alternatively, could unidentified HARPS sys-
tematics be responsible for the extra periods evident in their lower
noise data?

8 C O N C L U S I O N S

A Bayesian re-analysis of published HARPS and HIRES precision
RV data for Gl 581 was carried out with a multiplanet Kepler peri-
odogram (from one to six planets) based on our FMCMC algorithm.
In all cases, the analysis included an unknown parametrized stel-

Figure 45. A plot of the χ2
k statistic from equation (21) versus binned values

of the quoted errors for the four-planet fit of the combined HIRES/HARPS
data using the bHIRES parametrization. The solid and dashed histograms
show the binned HIRES data and binned HARPS data, respectively.

lar jitter noise term. For the HARPS data set, the most probable
number of planetary signals detected is 5. The Bayesian FAP for
the five-planet model is 0.01. The five periods include the 3.15,
5.37, 12.9 and 66.9 d periods reported previously plus a 399+14

−16 d
period. The orbits of four out of the five planets are consistent
with low-eccentricity orbits, the exception being the 66.9-d or-
bit where e = 0.33+0.09

−0.10. The semimajor-axis and M sin i of the
five planets are (0.0285 ± 0.0006 au, 1.91+0.26

−0.25 M⊕), (0.0406 ±
0.0009 au, 15.7+0.7

−0.7 M⊕), (0.0730 ± 0.0016 au, 5.29 ± 0.43 M⊕),
(0.218 ± 0.005 au, 6.7 ± 0.8 M⊕) and (0.72 ± 0.24 au, 6.6+2.0

−2.7 M⊕),
respectively.

In light of the Vogt et al. (2010) report of a sixth companion with
a period of 36.6 d, we carried out a six-planet fit to the HARPS
data which detected multiple period possibilities. The strongest of
these, with a period = 34.4 ± 0.1 d and eccentricity of 0.49+0.22

−0.17, had
a peak log10(prior × likelihood) 100 times larger than the others.
The inferred semimajor-axis and M sin i are 0.140 ± 0.003 au
and 2.3+0.8

−0.7 M⊕, respectively. The Bayesian FAP for the six-planet
model is extremely large, 0.999 978, so we are unable to support
any claim for a sixth companion on the basis of the current data.

The analysis of the HIRES data set yielded a reliable detection
of only the strongest 5.37 and 12.9 d periods. The analysis of the
combined HIRES/HARPS data again only reliably detected the
5.37 and 12.9 d periods. Detection of four planetary signals with
the periods of 3.15, 5.37, 12.9, and 66.9 d was only achieved by
including an additional unknown but parametrized Gaussian error
term added in quadrature to the HIRES quoted errors. The marginal
probability density of σ for this additional HIRES Gaussian noise
term has a well-defined peak at 1.84+0.35

−0.33 m s−1. Phase plots indicate
that incorporating the HIRES data seems to degrade the evidence
for the 66.9 and ∼400 d periods even when we allow for the extra
HIRES noise term. We suspect this extra noise term may arise
from unidentified systematics which may be the reason for the
degradation in the quality of fits beyond three planets. Alternatively,
could unidentified HARPS systematics be responsible for the extra
periods evident in their lower noise data? Independent experimental
confirmation of the HARPS low-noise-level results would be very
desirable.
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Atchadé Y. F., Roberts G. O., Rosenthal J. S., 2010, Stat. Comput.
(doi:10.1007/s11222-010-9192-1)

Bonfils X., Forveille T., Delfosse X. et al., 2005, A&A, 443, L15
Bretthorst G. L., 1988, Bayesian Spectrum Analysis and Parameter Estima-

tion. Springer-Verlag, New York
Butler R. P. et al., 2006, ApJ, 646, 505
Campbell B., Walker G. A. H., Yang S., 1988, ApJ, 331, 902
Clyde M. A., Berger J. O., Bullard F., Ford E. B., Jeffreys W. H., Luo R.,

Paulo R., Loredo T., 2007, in Babu G. J., Feigelson E. D., eds, ASP
Conf. Ser. Vol. 371, Statistical Challenges in Modern Astronomy IV.
Astron. Soc. Pac., San Francisco, p. 224

Cumming A., 2004, MNRAS, 354, 1165
Cumming A., Dragomir D., 2010, MNRAS, 401, 1029
Dawson R. I., Fabrycky D. C., 2010, ApJ, 722, 937
Delfosse X., Forveille T., Segransan D. Beuzit J.-L., Udry S., Perrier C.,

Mayor M., 2000, A&A, 364, 217
Fischer, D. A., Marcy G. W., Butler R. P., Laughlin G. L., Vogt S. S., 2002,

ApJ, 564, 1028
Ford E. B., 2005, AJ, 129, 1706
Ford E. B., 2006, ApJ, 620, 481
Ford E. B., Gregory P. C., 2006, in Babu G. J., Feigelson E. D., eds, ASP

Conf. Ser. Vol. 371, Statistical Challenges in Modern Astronomy IV.
Astron. Soc. Pac., San Francisco, p. 189

Gelman A., Rubin D. B., 1992, Stat. Sci., 7, 457
Geyer C. J., 1991, in Keramidas E. M., ed., Computing Science and Statis-

tics: Proceedings of the 23rd Symposium on the Interface. Interface
Foundation, Fairfax Station, p. 156

Gregory P. C., 2005a, Bayesian Logical Data Analysis for the Physical Sci-
ences: A Comparative Approach with Mathematica Support. Cambridge
Univ. Press, Cambridge

Gregory P. C., 2005b, ApJ, 631, 1198
Gregory P. C., 2007a, MNRAS, 374, 1321
Gregory P. C., 2007b, in Knuth K. H., Caticha A., Center J. L., Giffin

A., Rodrı́guez C. C., eds, AIP Conf. Ser. Vol. 954, Bayesian Inference
and Maximum Entropy Methods in Science and Engineering. Am. Inst.
Phys., New York, p. 307

Gregory P. C., 2007c, MNRAS, 381, 1607
Gregory P. C., 2009, JSM Proceedings. American Statistical Association,

Denver (arXiv:0902.2014v1 [astro-ph.EP])
Gregory P. C., 2011, MNRAS, 410, 94
Gregory P. C., Fischer D. A., 2010, MNRAS, 403, 731
Hukushima K., Nemoto K., 1996, J. Phys. Soc. Japan, 65, 1604
Jaynes E. T., 1957, in Erickson G. J., Smith C. R., eds, Stanford University

Microwave Laboratory Report 421, Reprinted in ‘Maximum Entropy
and Bayesian Methods in Science and Engineering’, (1988). Kluwer,
Dordrecht, p. 1

Jaynes E. T., 1987, in Smith C. R., Erickson G. L., eds, Maximum Entropy
and Bayesian Spectral Analysis and Estimation Problems. D. Reidel,
Dordrecht, p. 1

Loredo T. L. and Chernoff D., 2003, in Feigelson E. D., Babu G. J., eds,
Statistical Challenges in Modern Astronomy III. Springer-Verlag, New
York, p. 57

Loredo T., 2004, in Erickson G. J., Zhai Y., eds, AIP Conf. Ser. Vol. 707,
Bayesian Inference and Maximum Entropy Methods in Science and
Engineering. Am. Inst. Phys., New York, p. 330

Marcy G. W., Butler R. P., 1996, ApJ, 464, L147
Mayor M., Queloz D., 1995, Nat, 378, 355
Mayor M. et al., 2009, A&A, 507, 487
Roberts G. O., Gelman A., Gilks W. R., 1997, Ann. Appl. Probab., 7,

110
Saar S. H., Donahue R. A., 1997, ApJ, 485, 319
Saar S. H., Butler R. P., Marcy G. W., 1998, ApJ, 498, L153
Shen Y., Turner E. L., 2009, ApJ, 685, 553
Udry S. et al., 2007, A&A, 469, L43
Vogt S. S., Butler R. P., Rivera E. J., Haghighipour N., Henry G. W.,

Williamson M. H., 2010, ApJ, 723, 954

Wolszczan A., Frail D., 1992, Nat, 355, 145
Wright J. T., 2005, PASP, 117, 657
Zakamska N. L., Pan M., Ford E. B., 2011, MNRAS, 410, 1895

A P P E N D I X A : AC C U R AC Y O F MATHEMATICA

M O D E L R A D I A L V E L O C I T I E S

As explained in Section 3, we convert the observation times, ti, to
orbital angles, θ i, by solving the conservation of angular momen-
tum equation. As it stands, equation (7) runs into problems when
the period P is small because MATHEMATICA’s NDSolve produces
an interpolation function that spans the entire time-range. If there
are many cycles, then a very large number of iteration steps are
required and the procedure slows to a crawl. To avoid this, we first
convert ti to qi, the corresponding fraction of one orbit, using the
equation

qi = mod[ti/P + χ, 1], (A1)

where again χ = the fraction of an orbit, prior to the start of data
taking, that periastron occurred at. The relationship between qi and
θ i is given by

dθ

dq
− 2π[1 + e cos θ (q)]2

(1 − e2)3/2
= 0. (A2)

Note that the relationship between θ and q depends only on the
eccentricity parameter, e.

MATHEMATICA generates an accurate interpolating function be-
tween q and θ so the differential equation does not need to be
solved separately for each qi. The solution of the differential equa-
tion is the largest component in the timing budget. Evaluating the
interpolating function for each qi is very fast compared to solving
the differential equation, so the algorithm should be able to han-
dle much larger samples of RV data than those currently available
without a significant increase in computational time. For example,
an increase in the sample size from 35 to 220 resulted in only an
18 per cent increase in execution time. Of course, for a large enough
sample size the interpolation operation will begin to dominate and
after that the execution time will scale with the number of data
points.

We now address the question of the accuracy of the model RVs
which are limited by the accuracy of the MATHEMATICA interpolating
function. This was accomplished as follows:

(1) Divide the interval θ = 0 to 2π into n = 107 equal parts
labelled θ j. Let θ acc represents this set of accurate θ j values.

(2) Evaluate the corresponding accurate RVacc/K values, model
RVs divided by K, where RVacc/K = [cos (θ acc + ω) + e cos ω].

(3) Convert the θ j values to qj values by computing the orbital
area swept out between each pair of θ j values. According to Ke-
pler’s Law of Areas, dqj is proportional to that area increment. The
computed total area swept out in the interval θ = 0 to 2π was found
to agree with theory to better than 1 part in 1011.

(4) Convert the computed qj values into a set of interpolated θ

values (θ int) using MATHEMATICA’s solution of equation (A2).
(5) Compute the corresponding set of interpolated RVint/K =

[cos (θ int + ω) + e cos ω].
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Figure A1. The top three panels show plots of the log10 of the absolute
magnitude of the model RV error as a fraction of the K value versus q, the
fraction of the orbital period, for three different values of eccentricity. The
bottom panel shows the log10 of the maximum value of the above fractional
RV error versus eccentricity.

(6) Compute 1
K

(RVint − RVacc), the RV error as a fraction of K:

1

K
(RVint − RVacc) = cos (θint + ω) − cos (θacc + ω)

= cos ω(cos θint − cos θacc)

− sin ω(sin θint − sin θacc). (A3)

Let θ0 = (θint + θacc)

2
and δθ = (θint − θacc), (A4)

then

1

K
(RVint − RVacc) = −2 sin

δθ

2
sin θ0 cos ω

−2 sin
δθ

2
cos θ0 sin ω

= −2 sin
δθ

2
sin (θ0 + ω)

≈ −δθ sin (θ0 + ω). (A5)

For any θ 0, the fractional model RV error has a maximum positive
or negative value for sin (θ 0 + ω) = ±1. Fig. A1 shows plots of
the log10 of the absolute magnitude of the fractional error versus
q for three different values of eccentricity. The figure assumes a
worst case value for |sin (θ 0 + ω)| = 1. More realistically, these
errors should be reduced by a factor of 2/π which is the expectation
value of |sin (θ 0 + ω)|. Even for e = 0.99, the fractional error is
<10−5 over most of the q range, only rising above this towards the
very end of the interpolation interval. The bottom panel shows the
maximum value of the fractional error versus eccentricity. Based on
this analysis, the maximum error in the MATHEMATICA-derived model
RVs, expressed as a fraction of the K parameter, is ≤2.2 × 10−5 for
e values in the range 0–0.8. The situation degrades progressively
for larger values of e but is still ≤2.8 × 10−3 for e = 0.98, rising to
1.2 × 10−2 for e = 0.99.
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