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V440 Per: the longest-period overtone Cepheid
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1Astronomical Observatory of Adam Mickiewicz University, ul. Słoneczna 36, PL 60-286 Poznań, Poland
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ABSTRACT
V440 Per is a Population I Cepheid with a period of 7.57 d and low-amplitude, almost sinusoidal
light and radial velocity curves. With no reliable data on the first harmonic, its pulsation mode
identification remained controversial. We obtained a radial velocity curve of V440 Per with
our new high-precision and high-throughput Poznań Spectroscopic Telescope. Our data reach
an accuracy of 130 m s−1 per individual measurement and yield a secure detection of the first
harmonic with an amplitude of A2 = 140 ± 15 m s−1. The velocity Fourier phase φ21 of V440
Per is inconsistent at the 7.25σ level with those of fundamental-mode Cepheids, implying that
the star must be an overtone Cepheid, as originally proposed by Kienzle et al. Thus, V440 Per
becomes the longest-period Cepheid with securely established overtone pulsations. We show
that a convective non-linear pulsation hydrocode can reproduce the Fourier parameters of
V440 Per very well. The requirement to match the observed properties of V440 Per constrains
the free parameters of the dynamical convection model used in the pulsation calculations, in
particular the radiative loss parameter.

Key words: hydrodynamics – methods: data analysis – techniques: spectroscopic – stars:
individual: V440 Per – stars: oscillations – Cepheids.

1 IN T RO D U C T I O N

The Population I sinusoidal or s-Cepheids are a small group of
Cepheids pulsating in the first radial overtone. In the Galaxy, where
individual Cepheid distances are usually not accurately known,
the s-Cepheids are discriminated from the fundamental-mode pul-
sators by the Fourier decomposition of their light curves (Antonello,
Poretti & Reduzzi 1990). The method works well only for variables
with periods below 5 d. Fortunately, it can be extended to longer
periods with the help of the radial velocity curves, as was shown by
Kienzle et al. (1999). Studies of longer-period overtone Cepheids
are of great interest. The velocity Fourier parameters of s-Cepheids
display a very characteristic progression with period, which is at-
tributed to the 2:1 resonance at P = 4.2–4.6 d between the first
and fourth overtones (Kienzle et al. 1999; Feuchtinger, Buchler &
Kolláth 2000). Unfortunately, any detailed modelling of this pro-
gression and pinpointing of the resonance position is hampered
by a scarcity of s-Cepheids with P > 5.5 d, with MY Pup being
the only secure identification. One more candidate, V440 Per (P =
7.57 d), has been identified by Kienzle et al. (1999). They noted that
the velocity Fourier phase φ21 places this Cepheid away from the
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fundamental-mode sequence and possibly on to the first-overtone
sequence. On this basis, Kienzle et al. (1999) proposed that V440
Per is an overtone pulsator. This hypothesis was further supported
by determination of the phase lag between the light curve and the ra-
dial velocity curve, ��1 = φ

Vr
1 −φ

mag
1 , which also placed V440 Per

away from the fundamental sequence (Ogłoza, Moskalik & Kanbur
2000). However, V440 Per is a small-amplitude, nearly sinusoidal
variable. Even the best radial velocity data then available (Burki
& Benz 1982) yielded large errors of the first-harmonic Fourier
parameters; the measurement error of the phase lag ��1 was also
large. This, and inconsistency with their hydrodynamic pulsation
models, led Szabó, Buchler & Bartee (2007) to dispute the mode
identification of V440 Per. They noted that the membership of this
Cepheid in the fundamental-mode sequence could not be rejected
at the 3σ confidence level. They argued that V440 Per is not an
overtone pulsator, but rather a fundamental-mode Cepheid of very
low amplitude.

In the present paper we report the results of an extensive campaign
of observations of V440 Per with the Poznań Spectroscopic Tele-
scope, lasting almost a year and aimed at obtaining high-quality
data suitable for detailed diagnostics and comparison with non-
linear models. In Section 2 we describe our instrument and obser-
vations. In Section 3 we discuss the quality of our radial veloci-
ties and derive the Fourier parameters of V440 Per. A comparison
with the Fourier parameters of other Galactic Cepheids and the
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identification of the pulsation mode of V440 Per is discussed in
Section 4. In Section 5 we perform a detailed comparison of V440
Per with non-linear overtone Cepheid models. Our conclusions are
summarized in Section 6.

2 O B S E RVAT I O N S A N D DATA R E D U C T I O N

Our observations were obtained with the new Poznań Spectroscopic
Telescope (PST) of Adam Mickiewicz University. Its full descrip-
tion is not published yet, hence we devote some space here to an
instrument description and data-quality evaluation.

2.1 Poznań Spectroscopic Telescope

The PST is located in Poland at the Borowiec station, 20 km south
from Poznań city, at a meagre elevation of 123 m above sea level.
The PST consists of parallel twin 0.4-m Newton telescopes of the
f ratio 4.5, fixed on a single parallactic fork mount. An acquisition
box at the Newton focus of each telescope holds the tip of the fibre
feeding our spectrograph, the thorium/argon (Th/Ar) calibration
lamp and the autoguider camera SBIG ST-7.

Via a fibre the telescope feeds an Echelle spectrograph, a clone
of the MUlti SIte COntinuous Spectroscopy (MUSICOS) design
(Baudrand & Bohm 1992), red arm only. Our spectra are recorded
with the low-noise Andor DZ436 camera fitted with a 2k × 2k E2V
42–40 back-illuminated CCD chip, cooled with Peltier cells. About
60 orders are recorded, covering a spectral range of 4480–9250 Å at
the inverse resolution of λ/δλ = 35 000. The spectrograph is located
in a thermo-isolated enclosure in the telescope dome. The sliding-
roof dome, the telescope and its spectrograph all operate under full
computer control. A full description of our instrumentation will be
published elsewhere. Our system is operated interactively from the
terminal. Such an operation mode does not compromise our data
quality but requires an excessive workload. A substantial software
effort is needed to achieve fully robotic operation.

2.2 Data pipeline

Routine CCD reductions up to spectra extraction, wavelength cal-
ibration and velocity measurement are performed using IRAF tasks
combined into our reduction pipeline. Velocities are measured by
cross-correlation, using the IRAF FXCOR task. The internal error es-
timates from FXCOR, of the order of a few km s−1, relate to the
line width and not to the actual measurement precision. They may
serve for weighting purposes, however. So far, we have employed
no standard star calibrations and our velocities are measured solely
with respect to the Th/Ar lamp. For short-span observations such
a primitive procedure still yields root-mean-square (RMS) residu-
als in the 100–200 m s−1 range, for stars brighter than 11 mag. As
demonstrated in Section 3, for intensively observed, strictly peri-
odic stars any long-term effects of a floating instrumental zero-point
may be removed with some assurance, again yielding RMS residu-
als smaller than 150 m s−1, over a one-year span of data.

2.3 Observations

In total 158 radial velocity measurements of V440 Per were obtained
with the PST from 2007 August 15 to 2008 July 03. To reach a
signal-to-noise ratio of 70 we exposed spectra for 10–15 min and up
to several spectra were obtained per night. The observed velocities
are listed in Table 1, which is published in full in online version of
this article. Phase-folded data with fitted Fourier series (Section 3)

Table 1. PST radial velocities of V440 Per. This is a sample
of the full table, which is available in the online version of
the paper (see Supporting Information).

MJD �vr
(a) �vr,corr

(b)

54327.0490 −0.61 −0.52
54332.0517 3.04 3.14
54332.0683 2.96 3.06

· · ·
54649.0009 2.28 2.12
54650.9302 2.75 2.57
54650.9419 2.76 2.58

(a) Zero-shifted by about −26.3 ± 0.2 km s−1.
(b) Corrected for instrumental effects (see text).

Figure 1. Radial velocities of V440 Per versus phase. First- and second-
order Fourier fits are plotted with dashed and solid lines, respectively. The
error bar indicates the ±1 standard deviation of residuals. The velocities
are corrected for small instrumental effects (see text). The zero-point is
arbitrary.

are displayed in Fig. 1. In Fig. 2 we plot residuals of the first-order
and second-order fits versus pulsation phase and time. Inspection of
the plots demonstrates that our coverage was reasonably uniform,
both in time and in frequency. From the residuals we estimate the
standard error of our individual measurements as 130 m s−1.

3 FO U R I E R PA R A M E T E R S

The plot of the phase-folded radial velocities reveals near-sinusoidal
variations with a peak-to-peak amplitude of 5 km s−1. Some data
consistency checks are due prior to drawing any final conclusions.
Cepheid phases and frequencies are known to vary slightly. Ad-
ditionally, the instrument stability over nine months needs check-
ing. A preliminary non-linear least-squares fit of our data with a
Fourier series of three harmonic terms (third-order fit) yielded no
significant second harmonics of the main frequency or the period
derivative term. Our fitted frequency of 0.13206 ± 0.00001 c/d is
less accurate, yet consistent within the errors with the frequency de-
rived by combining our data with the earlier measurements of Burki
& Benz (1982), Arellano Ferro (1984) and Gorynya et al. (1992,
1996, 1998). Comparison of the data shows that the weighted zero-
point shift of our velocities with respect to the previous authors is
−26.3 ± 0.2 km s−1.
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2196 R. Baranowski et al.

Figure 2. Upper panel: residuals of the first-order Fourier fit of V440 Per
radial velocities (dashed line in Fig. 1) versus phase. The first harmonic
is very small (A2 = 140 ± 15 m s−1), yet clearly visible. Lower panel:
residuals of the second-order Fourier fit versus time.

Table 2. Fourier parameters of the V440 Per radial
velocity curve.

Name Value Error Unit

T0 54498.783 0.008 MJD
P 7.5721 0.0006 d
A1 2.480 0.015 km s−1

A2 0.140 0.015 km s−1

R21 0.056 0.006 1
φ21 2.759 0.117 rad

The RMS deviation from the Fourier fit of all our data was
164 m s−1, well in excess of the value of 135 m s−1 obtained for
the first part of the data set. Worse, inspection of the residuals
plotted against time sometimes revealed a non-Gaussian, bimodal
distribution. The origin of both effects seems to be instrumental. To
confirm that, we expanded our Fourier model by including two lin-
ear terms proportional to the time interval from the mid-epoch and
to the hour angle of the star at the moment of observation. The fitted
values of these instrumental correction coefficients were significant
at 6σ and 5σ levels, respectively. From the overall covariance matrix
we find a maximum absolute value of the correlation coefficients
of 0.30, consistent with little interference between different fitted
terms. These instrumental corrections reached up to ±100 m s−1.
At this stage, we have no explanation for these corrections.

Our final second-order Fourier fit, supplemented with the instru-
mental correction terms, yielded a RMS deviation of 130 m s−1,
consistent with that obtained from the short-span observations. The
values of the Fourier parameters of the V440 Per radial velocity
curve are listed in Table 2 (for exact formulae defining the Fourier
parameters and their errors see Appendix A).

4 PULSATION MODE O F V 440 PER

The pulsation mode of a Cepheid can be established by measuring
the Fourier phase φ21 of its light curve (Antonello et al. 1990) or
radial velocity curve (Kienzle et al. 1999). This Fourier parameter
does not depend on the pulsation amplitude of the star and for each
mode it follows a different, tightly defined progression with the

Figure 3. Fourier phase φ21 versus pulsation period for Cepheid radial ve-
locity curves. Fundamental-mode Cepheids are marked with asterisks, ex-
cept for low-amplitude ones (A1 < 10 km s−1) which are marked with open
triangles. Overtone Cepheids are denoted by filled circles. Observational
data points are taken from Kienzle et al. (1999) and Moskalik, Gorynya &
Samus (2009). The straight line indicates the best fit to the segment of the
fundamental-mode progression. V440 Per is marked with an open circle.

pulsation period. For periods at which the two φ21 progressions are
well separated, a secure mode identification can be achieved.

In Fig. 3 we plot the velocity φ21 of short-period Galactic
Cepheids against their pulsation period P. Fundamental-mode pul-
sators and overtone pulsators are displayed with different symbols.
V440 Per is plotted with an open circle. It is immediately obvious
that it is located far apart from the fundamental-mode progression.
This notion can be expressed using a quantitative basis. We selected
a sample of 23 fundamental-mode Cepheids with periods P in the
range P 0 ± 1.1 d, where P 0 = 7.5721 d is the period of V440 Per.
To this sample we fitted a straight line φ21(P ) = a(P − P 0) +
b. With this procedure, we find that at the period of V440 Per the
expected φ21 of the fundamental-mode Cepheid is 3.628 rad, with
the average scatter of individual values of σ 0 = 0.026 rad. This
estimate of the intrinsic scatter is conservative, as the nominal φ21

measurement errors would account for at least half of it. The φ21

value measured for V440 Per is 2.759 rad, with an error of σ 1 =
0.117 rad. The probability distribution of the φ21 offset, �, is ob-
tained by convolution of two normal distributions, N (0, σ 0) and
N (�, σ 1). It may be demonstrated that the result is another normal
distribution N (�,

√
σ 2

0 + σ 2
1 ), essentially by virtue of the law of

error combination. By substituting � = 3.628 − 2.759 = 0.869 rad,
we find that the observed velocity φ21 of V440 Per deviates from the
fundamental-mode sequence by 7.25σ . Thus, from purely observa-
tional evidence we conclude that V440 Per does not pulsate in the
fundamental mode. Consequently, it must be an overtone Cepheid.

The argument presented above depends critically on the assump-
tion that the velocity φ21 (at a given period) does not depend on
the pulsation amplitude, which is lower for V440 Per than for
the fundamental-mode Cepheids used as comparison. Such an as-
sumption is well supported by numerical computations (Buchler,
Moskalik & Kovács 1990; Smolec & Moskalik 2008); nevertheless
it should be verified with available data. In Fig. 4 we plot residuals
from the mean fundamental mode P –φ21 relation versus amplitude
A1. In this case the mean relation is defined as the parabola fitted
to all fundamental-mode Cepheids displayed in Fig. 3. For A1 in
the range 10–17 km s−1 there is no correlation of φ21 residuals with
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Figure 4. Residuals from the mean fundamental-mode P –φ21 relation ver-
sus pulsation amplitude A1. Observational data points are taken from Kienzle
et al. (1999) and Moskalik et al. (2009). Symbols are the same as in Fig. 3.

pulsation amplitude. For A1 < 10 km s−1 there is weak evidence of
a φ21 increase. As the data are very scarce, we are not convinced that
this increase is significant. If it were real, however, it would only
strengthen our conclusion that V440 Per deviates strongly from the
fundamental-mode sequence.

5 MO D E L L I N G O F V 4 4 0 P E R

Classification of V440 Per as a first-overtone pulsator, discussed
in the previous section, is based solely on the morphological prop-
erties of Cepheid velocity curves. This mode identification can be
strengthened by comparing the velocity curve of V440 Per with
those of hydrodynamical Cepheid models. Such a comparison was
first performed by Kienzle et al. (1999), who used the unpublished
radiative models of Schaller & Buchler (private communication).
They showed that the theoretical progression of velocity φ21 sup-
ported the overtone classification of V440 Per. However, their con-
clusion was somewhat weakened by a large error in the φ21 then
available for this star.

In the present section, we confirm and extend the results of
Kienzle et al. (1999). It is easy to show that the velocity curve
of V440 Per is incompatible with fundamental-mode Cepheid mod-
els. Indeed, all published models display a velocity φ21 higher
than 3.0 rad at all periods and higher than 3.5 rad at the pe-
riod of V440 Per (Buchler, Moskalik & Kovács 1990; Moskalik,
Buchler & Marom 1992; Smolec & Moskalik 2008). This holds
true for both the convective models and the older radiative models.
The computed velocity φ21 is very robust and shows no sensitivity
to the treatment of convection, choice of opacities or details of the
numerical code. Most importantly, it is insensitive to the pulsation
amplitude (cf. figs 8, 11 of Smolec & Moskalik 2008). Clearly, the
only chance to match the observed velocity curve of V440 Per is to
search for an appropriate overtone model.

With this goal in mind, we computed several sequences of
convective-overtone Cepheid models. We show that V440 Per fits
the theoretical φ21 progression of first-overtone Cepheids and that
its velocity Fourier parameters can be accurately reproduced with
hydrodynamical computations.

Modelling such a long-period overtone pulsator is not an easy
task. Satisfactory models have to reproduce Fourier parameters and
the long period of this variable. The current hydrocodes used for

Table 3. Convective parameters of the pulsation models discussed in this
paper. αs, αc, αd, αp and γ r are given in units of standard values (see Smolec
& Moskalik 2008). In the last column we give a linear upper limit for the
first-overtone period (P max).

Set α αm αs αc αd αp αt γ r P max

(d)

A 1.5 0.1 1.0 1.0 1.0 0.0 0.00 0.0 8.1
B 1.5 0.5 1.0 1.0 1.0 0.0 0.00 1.0 8.6
C 1.5 0.1 1.0 1.0 1.0 1.0 0.01 0.0 13.5

modelling of radial pulsations adopt time-dependent convection
models (e.g. Stellingwerf 1982; Kuhfuß 1986). These models intro-
duce several dimensionless parameters, which should be adjusted
to match the observational constraints. V440 Per with its exception-
ally long period offers an opportunity to impose interesting limits
on the free parameters of the convection treatment.

In our computations we use the convective hydrocode of Smolec
& Moskalik (2008). The code adopts the Kuhfuß (1986) dynam-
ical convection model reformulated for use in stellar pulsation
calculations. The Kuhfuß model is physically well motivated and
self-consistent. It contains eight scaling parameters, a summary of
which, together with a detailed description of the model equations,
is provided by Smolec & Moskalik (2008). The values of the param-
eters used in the present paper are given in Table 3. All our Cepheid
models are constructed in the way described in Smolec & Moskalik
(2008). In all computations we use Galactic chemical composition
(X = 0.70, Z = 0.02) and OPAL opacities (Iglesias & Rogers 1996)
computed with the Grevesse & Noels (1993) mixture. We use the
mass–luminosity (M–L) relation derived from Schaller et al. (1992)
evolutionary tracks [log(L/L�) = 3.56 log(M/M�) + 0.79].

5.1 Pulsation period of V440 Per

Theoretical instability strips (IS) computed with the linear pulsa-
tion code for set A of the convective parameters are presented in
Fig. 5. Instability strips for the first overtone and for the funda-
mental mode are enclosed with thick and thin lines, respectively.
The dotted lines correspond to constant values of the first-overtone
period, as indicated in the figure.

The first-overtone IS does not extend toward an arbitrarily high
luminosity. The linear computations yield an upper limit for the
first-overtone pulsation period, reaching ∼8.1 d in Fig. 5 (see also
Table 3). This limit depends mostly on the adopted convective pa-
rameters, but also on the M–L relation and the metallicity. However,
to find a model that satisfies the V440 Per period constraint it is not
enough to assure an appropriate linear period limit (P > 7.5 d). This
is because the maximum overtone period at full-amplitude pulsation
is determined by non-linear effects.

Between the linear blue edges of the first overtone and the funda-
mental mode and below their crossing point, first-overtone pulsation
is the only possibility. As one can see in Fig. 5, such a region is
very narrow. A significant part of the overtone IS lies inside the
fundamental-mode IS. For higher luminosity and overtone periods
longer than 6 d, the instability strips of both modes entirely overlap.

In the region in which both modes are linearly unstable, the final
pulsation state is determined by non-linear effects (modal selection).
Full-amplitude pulsation in one of the modes usually suffices to
saturate the instability. In principle, a double-mode pulsation is also
possible, but it is very unlikely at the long overtone periods that
are of interest in this paper (no double-mode pulsator with such a
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Figure 5. Theoretical instability strips for the convective parameters of
set A.

long overtone period is known in either the Galaxy or the Magellanic
Clouds: see Soszyński et al. 2008; Moskalik & Kołaczkowski 2008).
Therefore, construction of models matching the period of V440 Per
requires both linear and non-linear computations and can be used
to constrain the parameters of the convection model we use.

It is hard to constrain all eight parameters entering the model.
As was shown by Yecko, Kolláth & Buchler (1998), different com-
binations of the convective α parameters may yield essentially the
same results. Therefore we decided to freeze four parameters for
which standard values are in use. In all studied sets of the convective
parameters (Table 3), the mixing length is set to α = 1.5 and for
αs, αc and αd we use the standard values (see Smolec & Moskalik
2008 for details). Set A represents the simplest convection model,
without turbulent pressure, turbulent flux or radiative losses. These
effects are turned on in set B (radiative losses) and in set C (turbu-
lent pressure and turbulent flux). One of the crucial factors of the
convection model is eddy–viscous damping, the strength of which
is determined by the αm parameter. The lower the eddy–viscous
damping (the lower αm), the more linearly unstable the models
become and, consequently, the higher their pulsation amplitudes.

The most interesting outcome of the linear computations is the
period limits, P max, given in the last column of Table 3. At the
linear theory level, all sets of convective parameters listed in the
table can satisfy the V440 Per period constraint. This was assured
by adjusting the eddy–viscous damping parameter, αm. In the case
of sets A and C (no radiative losses), low values of αm are required.

For each parameter set we computed a sequence of non-linear
models, running parallel to the first-overtone blue edge, at a con-
stant distance �T . In this section we use �T = 75 K. This choice is
arbitrary, but we believe that such models should reproduce most of
the observed first-overtone variables. The static models were initial-
ized in the first-overtone mode (as described in Smolec & Moskalik
2008) and their time evolution was followed until the final pulsa-
tion state was reached. The computed radial velocity curves were
then decomposed into Fourier series. In Fig. 6 we plot amplitude
A1 versus pulsation period for three sequences of models. The most
satisfactory results are obtained for set B of the convective param-

Figure 6. Fourier amplitude A1 for three sequences of overtone Cepheid
models. Model amplitudes are scaled by a constant projection factor of 1.4.
Except for V440 Per, observational data points are taken from Kienzle et al.
(1999) and Moskalik, Gorynya & Samus (in preparation).

eters. The pulsation amplitudes for this sequence are moderate and
they match the observations well (this conclusion will be strength-
ened in Section 5.2). Also, for this sequence we obtain the overtone
models with the longest periods. Sequences computed with the pa-
rameter sets A and C extend to periods not exceeding 6 d. All more
massive models (i.e. with longer overtone periods) switched into
the fundamental-mode pulsation and therefore are not plotted in the
figure. The amplitudes of the models computed with the parameter
sets A and C are larger. This is due to the adopted low value of
eddy–viscous damping, needed to obtain a high enough limit for
the linear overtone period. Any further decrease of αm does not
help. Although P max increases, models switch into the fundamental
mode at periods well below the 7.57 d required to match V440 Per.
Additionally, at short periods the amplitudes of the first-overtone
models become unacceptably high. We conclude that inclusion of
radiative losses is necessary to reproduce the long overtone period
of V440 Per. As we will demonstrate in Section 5.2, with set B of
the convective parameters we can also reproduce the Fourier pa-
rameters of V440 Per, as well as the overall progression of Fourier
parameters for all observed overtone Cepheids.

Our conclusion is consistent with the results of Szabó et al.
(2007). For convection with radiative losses,1 their models extend
toward high overtone periods (parameter set A of Szabó et al. 2007).
Without radiative losses (set B of Szabó et al. 2007) and with much
higher eddy–viscous dissipation than in our set A, their longest
overtone periods fall below 3 d. Comparing our models with the
overtone Cepheid models of Feuchtinger et al. (2000) we note some
inconsistency. Feuchtinger et al. (2000) obtain long overtone peri-
ods for all sets of convective parameters considered in their paper.
Their results are inconsistent with the results of Szabó et al. (2007)
(set A of Feuchtinger et al. 2000 and set B of Szabó et al. 2007
are identical, but their linear results are significantly different) as
well as with our results. We trace this discrepancy to a different
evaluation of the superadiabatic gradient, Y = ∇ − ∇a, in our com-
putations and in the Vienna code used by Feuchtinger et al. (2000).
In the Vienna code, the radiative pressure contribution is neglected
in the computation of ∇a (Feuchtinger 1999). This leads to higher
values of ∇a (≈0.4 far from partial ionization regions, see figs 3
and 4 of Wuchterl & Feuchtinger 1998) and lower values of the
superadiabatic gradient. Consequently, in their models convection

1 Note, however, that in the Florida–Budapest hydrocode used by Szabó et al.
(2007), radiative losses are modelled in a different way (see also Smolec &
Moskalik 2008).
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V440 Per: the overtone Cepheid 2199

Figure 7. Fourier parameters of Cepheid radial velocity curves. Model
sequences are computed at constant distances from the first-overtone blue
edge, as indicated in the figure. Except for V440 Per, observational data
points are taken from Kienzle et al. (1999) and Moskalik et al. (2009). Error
bars for most of the amplitudes are smaller than the symbol size and are not
plotted.

is less pronounced and the models are more unstable. In fact, we
were able to reproduce their linear results when we neglected the
contribution of radiation in the evaluation of ∇a.

5.2 Fourier parameters of V440 Per

In this section we focus our attention on set B of the convective pa-
rameters. As demonstrated in the previous section, this parameter
set allows us to reproduce long overtone periods and the observed
pulsation amplitudes. In Fig. 7 we compare the velocity Fourier
parameters of Galactic overtone Cepheids with those of the hydro-
dynamical models computed with the parameters of set B. Four
sequences of models are displayed in the plot, run at different
distances from the first-overtone blue edge (�T = 25, 75, 125,
175 K). The overall observed progression of Fourier parameters is
well reproduced with our models. For φ21, we notice that the model
sequences are shifted toward somewhat shorter periods. This can
be easily explained. The characteristic progression of velocity φ21

with period is caused by the 2:1 resonance between the first over-
tone and the fourth overtone (Kienzle et al. 1999; Feuchtinger et al.
2000). The centre of this resonance is located at P = 4.2–4.6 d. The
exact location of the resonance in hydrodynamic models depends
mostly on the chosen mass–luminosity relation. This relation was
not adjusted in our calculations to match the observed resonance
progression.2 As shown in Fig. 5, the resonance centre (dashed line)
crosses the centre of the first-overtone IS for periods shorter than

2 Adjustment of the M–L relation to satisfy the resonance constraint is not
an easy task. Both the slope and the zero-point of the adopted M–L relation
affect location of the resonance and the shape of the φ21 progression. In a
forthcoming publication (Smolec & Moskalik, in preparation) we address
this problem in detail.

4 d, which explains the horizontal shift in Fig. 7. Taking into account
this shift, amplitudes, amplitude ratios and Fourier phases agree sat-
isfactorily with observations, although at short periods theoretical
φ21 values are slightly too high. Considering V440 Per, we see a
very good agreement with the model sequence closest to the blue
edge of the overtone instability strip (�T = 25 K). An exact match
can be easily obtained for a model sequence located slightly closer
to the blue edge. We note that the progression of the overtone φ21 at
long periods is insensitive to the choice of �T . The models predict
slightly higher φ21 than actually observed in V440 Per, but the two
values are consistent within the error bar.

6 C O N C L U S I O N S

Using our new Poznań Spectroscopic Telescope we obtained 158
high-precision radial velocity observations of a low-amplitude
Cepheid V440 Per. We constructed the pulsation velocity curve
of V440 Per and we were able to reliably detect its first harmonic,
with an amplitude of only 140 ± 15 m s−1. The measured Fourier
phase φ21 = 2.76 ± 0.12 rad differs from the values observed in
fundamental-mode Cepheids of a similar period by 7.25σ . Thus,
we demonstrated on purely morphological grounds that V440 Per
does not pulsate in the fundamental mode. This settles the dispute
between Szabó et al. (2007) and Kienzle et al. (1999) and allows
us to classify V440 Per as an overtone pulsator, the one with the
longest period identified so far (P = 7.57 d).

Our results demonstrate that with suitable care, our inexpensive
instrument, featuring a MUSICOS Echelle spectrograph and a small
robotic telescope, can achieve a stability and precision surpassed
only in extrasolar planet searches. Note that we employed neither an
iodine cell nor environment control, yet our observations prove that
secure mode identification is feasible even for very-low-amplitude
Galactic Cepheids.

The overtone pulsation of V440 Per has interesting theoretical
consequences. To investigate them we employed our convective
linear and non-linear pulsation codes (Smolec & Moskalik 2008).
The first-overtone linear models are already constrained by the
value of the pulsation period at the centre of the 2ω1 = ω4 res-
onance (Kienzle et al. 1999; Feuchtinger et al. 2000). The very
existence of V440 Per imposes additional constraints. Namely, to
excite the first overtone linearly and then to obtain a non-linear
full-amplitude overtone pulsation of such a long period, one has
to fine-tune the dynamical convection model used in the pulsation
calculations. Our numerical experiments demonstrate that in con-
vective energy transport radiative losses must be properly accounted
for to maintain consistency with the observations. With this effect
taken into account, non-linear overtone Cepheid models not only
reproduce the exceptionally long period of V440 Per, but also repro-
duce neatly all Fourier parameters of its pulsation velocity curve.
No such agreement can be achieved with models pulsating in the
fundamental mode. These results from hydrodynamical modelling
provide additional support for our empirical classification of V440
Per as a first-overtone pulsator.
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APPENDIX A : FOURIER COEFFICIENTS
A N D T H E I R E R RO R S

It seems useful to collect in one place all the relevant formulae for
Fourier coefficients of velocity v(t) and their errors σ . Defining
Fourier series in the following way:

v(t) − a0 =
N∑

n=1

An sin(nωt + φn)

=
N∑

n=1

(an cos nωt + bn sin nωt) (A1)

where N is the order of the fit, we obtain

An =
√

a2
n + b2

n and Rn1 ≡ An

A1
, (A2)

tan φn = an

bn

and φn1 ≡ φn − nφ1. (A3)

From variations of these equations we find

δAn = anδan + bnδbn

An

, (A4)

δRn1 = Rn1

(
anδan + bnδbn

A2
n

− a1δa1 + b1δb1

A2
1

)
, (A5)

δφn = bnδan − anδbn

A2
n

, (A6)

δφn1 = bnδan − anδbn

A2
n

− n
b1δa1 − a1δb1

A2
1

, (A7)

where the right-hand sides are scalar products of the vector (δan,
δbn, δa1, δb1) ≡ δF and the corresponding derivatives (∂/∂an,
∂/∂bn, ∂/∂a1, ∂/∂b1) ≡ L[·]. For example, δφn1 = L[φn1] · δF
and the third component of vector L[φn1] is ∂φn1/∂a1 = −nb1/A

2
1.

By the law of error propagation, the variance of φn1 is

σ 2
φn1

≡ Var[φn1] = L[φn1] × Cov[an, bn, a1, b1] × L[φn1]T, (A8)

where Cov[·] denotes the covariance matrix of raw Fourier coeffi-
cients (equation A1), × denotes matrix multiplication and super-
script T indicates the matrix transpose. Analogous expressions hold
for other coefficients. The complete linearized transformation ma-
trix M is obtained by substitution of the L vectors corresponding to
equations (A4)–(A7) as its rows. The full covariance matrix of all
Fourier coefficients is seldom needed in practice. It may be obtained
from equation (A8) by substitution of M for L.

SUPPORTI NG INFORMATI ON

Additional Supporting Information may be found in the online ver-
sion of this article:

Table 1. PST radial velocities of V440 Per.

Please note: Wiley–Blackwell are not responsible for the content or
functionality of any supporting information supplied by the authors.
Any queries (other than missing material) should be directed to the
corresponding author for the article.
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