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ABSTRACT
The observed masses of the most massive stars do not surpass about 150 M�. This may either
be a fundamental upper mass limit which is defined by the physics of massive stars and/or their
formation, or it may simply reflect the increasing sparsity of such very massive stars, so that
the observation of even higher mass stars becomes unlikely in the Galaxy and the Magellanic
Clouds. It is shown here that if the stellar initial mass function (IMF) is a power law with a
Salpeter exponent (α = 2.35) for massive stars then the richest very young cluster R136 seen in
the Large Magellanic Cloud (LMC) should contain stars with masses larger than 750 M�. If,
however, the IMF is formulated by consistently incorporating a fundamental upper mass limit
then the observed upper mass limit is arrived at readily even if the IMF is invariant. An explicit
down-turn or cut-off of the IMF near 150 M� is not required: our formulation of the problem
contains this implicitly. We are therefore led to conclude that a fundamental maximum stellar
mass near 150 M� exists, unless the true IMF has α > 2.8.

Key words: stars: early-type – stars: formation – stars: luminosity function, mass function –
galaxies: star clusters – galaxies: stellar content.

1 I N T RO D U C T I O N

The existence of a finite stellar upper mass limit has long been
debated in the literature (Elmegreen 2000; Massey 1998, references
therein). Observational evidence for such a limit is scarce because
stars more massive than 60–80 M� are very rare. While stellar
formation models lead to a mass limit of approximately 100 M�
imposed by feedback on a spherical accretion envelope (Kahn 1974;
Wolfire & Cassinelli 1986, 1987), theoretical work on the formation
of massive stars through disc-accretion with high accretion rates,
which allows thermal radiation to escape pole-wards (e.g. Nakano
1989; Jijina & Adams 1996), calls the existence of such a limit
into question. Some massive stars may also form by the coagulation
of intermediate-mass proto-stars in very dense cores of emerging
embedded clusters driven by core contraction due to the very rapid
accretion of gas with low specific angular momentum, thus again
avoiding the theoretical feedback-induced mass limit (Bonnell, Bate
& Zinnecker 1998; Stahler, Palla & Ho 2000).

In his review, Massey (1998) points out that it is difficult to infer
the masses of very massive stars because stars heavier than 100 M�
do not have their maximum luminosity in the optical bands, and are
therefore not easily distinguished on the basis of photometry from
stars with somewhat lower masses. Using combined photometric
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and spectroscopic methods, Massey & Hunter (1998) find stars with
masses ranging up to m = 140 M� (or even 155 M� depending on
the stellar models used) in the rich (about 105 stars) and very young
(1–3 Myr) R136 cluster in the Large Magellanic Cloud, and that
the initial mass function (IMF) has a Salpeter exponent (α = 2.35)
for 3 � m/ M� � 100. Given this IMF, Massey (1998) emphasizes
that the observed most massive star mass of around 150 M� is
simply a result of the extreme rarity of even more massive stars,
rather than a reflection of a fundamental maximum stellar mass:
the observed numbers of very massive stars are consistent with the
numbers expected from sampling from the IMF and the number of
stars in a cluster.

In order to re-address this last point, we take an approach similar
to that taken by Elmegreen (2000), but we rely on a different math-
ematical formulation. The idea is to quantify the expected mass of
the most massive star, mmax, as a function of the stellar mass, Mecl,
in an embedded cluster, and to show that very rich clusters predict
an mmax that is significantly larger than the observed most massive
star. Thus we adopt the observed IMF and demonstrate that the ob-
served cut-off mass is significantly below the maximum stellar mass
that would be expected in rich clusters if there were no fundamental
upper mass limit. The implication is thus that there must exist a
fundamental upper mass limit, mmax∗, such that mmax � mmax∗ for
all Mecl. Using simple equations concerning the IMF, and noting
that most if not all stars are born in stellar clusters (Lada & Lada
2003) with a universal IMF, we show that the solutions of these
equations predict a very different high mass spectrum for a finite or
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Figure 1. The ‘logarithmic’ IMF [ξ L(m) = ξ (m) m ln 10] over logarithmic
stellar mass above 80 M� for three different cases. The solid line shows
an unlimited Salpeter IMF, the dotted line a Salpeter IMF truncated at
150 M�, and the dashed line a Salpeter IMF limited at 150 M� = mmax∗ in
the way described in Section 2. All three cases are normalized to the same
area over 0.01 � m/ M� < ∞.

infinite fundamental upper stellar mass, mmax∗, as demonstrated in
Fig. 1.

Section 2 introduces the equations and the analytical and numeri-
cal methods used to solve them, while the results are given in Section
3. The implications are discussed in Section 4.

2 M E T H O D

For our calculations we use a four-component power-law IMF:
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(1)

with exponents

α0 = +0.30, 0.01 � m/M� � 0.08,

α1 = +1.30, 0.08 � m/M� � 0.50,

α2 = +2.30, 0.50 � m/M� � 1.00,

α3 = +2.35, 1.00 � m/M�, (2)

where dN = ξ (m) dm is the number of stars in the mass interval m
to m + dm. The exponents α i represent the Galactic field (or stan-
dard) IMF (Kroupa 2001, 2002). The advantages of such a multi-part
power-law description are the easy integrability and, more impor-
tantly, the fact that any given part of the IMF can be changed readily
without affecting the other parts. For example, the stellar luminos-
ity function for late-type stars poses significant constraints on the
IMF below m � 1 M� (Kroupa, Tout & Gilmore 1993; Reid, Gizis
& Hawley 2002; Kroupa 2002) which therefore must remain unaf-
fected when changing the IMF for massive stars. The observed IMF

Figure 2. Number of stars (logarithmic) above mass m for R136 for different
mass estimates (dotted line: MR136 = 2.5 × 105 M�; dashed line: MR136

= 5 × 104 M�, Selman et al. 1999). The vertical solid line marks m =
150 M�.

is today understood to be an invariant Salpeter power law above a
few M�, being independent of the cluster density and metallicity
for metallicities Z � 0.002 (Massey 1998).

The basic assumption underlying our approach is that stars in
every cluster follow this same universal IMF.

2.1 Number of stars

The number of stars above a mass m is

N =
∫ mmax∗

m

ξ (m) dm, (3)

where the normalization constant k (equation 1) is given by the
stellar mass of the cluster,

Mecl =
∫ mmax

mlow

mξ (m) dm. (4)

Here we use the cluster mass in stars prior to gas blow-out and thus
prior to any losses to the stellar population due to cluster expansion
(Kroupa & Boily 2002).

In Fig. 2 it is shown that a significant number of stars with masses
m > 150 M� should be present in R136 (10 stars for MR136 = 5 ×
104 M� and 40 stars for MR136 = 2.5 × 105 M�) if no fundamental
upper mass limit exists (mmax∗ = ∞) and if the IMF is a Salpeter
power law above about 1 M�. None, however, are observed. This
sets the problem for which we seek a solution by considering a finite
mmax∗.

2.2 The limited case

First we examine the case for which a finite upper mass limit for
stars exists. Here two upper mass limits have to be differentiated:
the fundamental maximum mass a star can have under any circum-
stances, mmax∗, and the ‘local’ upper mass limit mmax � mmax∗ for
stars in a cluster with a stellar mass Mecl. The mass of the heaviest
star in a cluster, mmax, follows from stating that there is exactly one
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such star in the cluster:

1 =
∫ mmax∗

mmax

ξ (m) dm. (5)

Note that Elmegreen (2000) uses mmax∗ = ∞ in his formulation of
the problem. After inserting equation (2) the integral can be solved,
giving (α i 
= 1)

1 = k
[(mH
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1

](
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as long as mmax > m1. For m0 � mmax < m1 we would have
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(7)

and so on. For the numerical results obtained in this work mmax∗ =
150 M� is assumed.

In order to solve this equation with two unknowns, k and mmax,
we need an additional equation. This is provided by the mass in
embedded-cluster stars (equation 4). With the use of ξ (m) (equation
1), equation (4) leads to (α i 
= 2)
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]
(8)

for mmax > m1 and with mlow set to 0.01 M� throughout this paper.
For m0 � mmax < m1 equation (8) would be truncated at an earlier
term, and so on.

Finally, inserting equation (6), after a short transformation, into
(8) gives Mecl as a function of mmax. This must now be solved for
mmax in dependence of Mecl. This is done by finding the roots of this
result after subtracting Mecl. Fig. 3 shows the solution for a power
law with α3 = 2.35 and mmax∗ = 150 M� as a dashed line.

2.3 The unlimited case

In the case of mmax∗ = ∞, equations (4) and (8) remain as they are
while (5) and (6) change to

1 =
∫ ∞

mmax

ξ (m)dm (9)

and (as long as mmax > m1 and α3 > 1)

1 = −k
[(mH
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)α1
(m0

m1

)α2

mα3
1

](
m1−α3

max

1 − α3

)
, (10)

respectively. As only the normalization factor k deduced from (10)
changes, equation (8) stays the same, and inserting (10) into (8)
gives Mecl in dependence of mmax for the unlimited case.

Fig. 3 shows that the solution for unlimited stellar masses (dotted
line) has a much faster rise than for the limited case. If there were no
fundamental upper mass limit for stars then a Salpeter IMF would
predict stars with much larger masses (mmax > 200 M�) for clusters
with Mecl > 104.5 M� than are observed to be present. This is also
found to be the case by Elmegreen (2000).

Figure 3. Dependence of the stellar upper mass limit, mmax, on the cluster
mass for a limited (mmax∗ = 150 M�: dashed line) and an unlimited (mmax∗
= ∞: dotted line) fundamental upper stellar mass and α3 = 2.35.

3 R E S U LT S

The results of solving mmax(Mecl) for a grid of cluster masses ranging
from Mecl = 5 M� (Taurus–Auriga-like stellar groups) to 107 M�
(very massive stellar super clusters) are plotted in Figs 4 and 5.

Fig. 4 shows the variation of the maximum possible mass for a star,
mmax, as a function of the cluster mass, Mecl. In the unlimited case
(long-dashed line), a linear relation (in double logarithmic units) is
seen. Two vertical lines indicate the observational mass interval for
R136 in the Large Magellanic Cloud (Selman et al. 1999). Without
a fundamental upper mass limit, R136, for which Massey & Hunter
(1998) measure a Salpeter power-law IMF for m> few M�, should
have stars with m > 750 M�, whereas no stars with m > 150 M� are
seen. Similar values are found from statistical sampling of the IMF

Figure 4. Double logarithmic plot of the maximal stellar mass versus clus-
ter mass. Shown are three cases: finite total upper mass limit of mmax∗ =
150 M� (dotted line); mmax∗ = 1000 M� (short-dashed line); and no limit,
mmax∗ = ∞ (long-dashed line). The vertical lines mark the empirical mass
interval for R136 in the LMC.
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Figure 5. Maximal stellar mass versus cluster mass (logarithmic). Results
are shown for different exponents (α3) above 1 M� and for the limited
(mmax∗ = 150 M�) and unlimited cases. The vertical lines mark the empir-
ical mass interval for R136 in the LMC.

Figure 6. The mass limits (mmax) as a function of the IMF exponent α3

(above 1 M�) in the limited case (mmax∗ = 150 M�) and the unlimited case
(mmax∗ = ∞) for the two mass limits of R136 shown in Figs 4 and 5.

(Elmegreen 2000). For mmax∗ = 150 M� (dotted line), on the other
hand, the cluster has an upper limit of 140–150 M�, in agreement
with the observational limit.

The influence of the high-mass exponent α3 on the mmax(Mecl)
relation is shown in Fig. 5. Plotted are graphs for limited (150 M�)
and unlimited cases, each for α3 = 2.35 (Salpeter), 2.70 and 3.00.
Exponents α3 > 2.8 lead to a mmax(Mecl) relation that allows upper
masses in R136 of around 150 M�, even for the unlimited case
(mmax∗ = ∞). Fig. 6 shows that in the case of R136 and for α3 >

2.8 no distinction can be made between mmax∗ = 150 M� and ∞,
given the uncertainty in Mecl.

Because massive stars are very rare, the IMF exponent is of-
ten based on limited statistics and usually valid only for stars with
m � 40 M�. We therefore also consider the possibility that the IMF

Figure 7. The power-law exponent α needed to produce a high-mass limit
of 150 M� for R 136 (solid line: MR136 = 2.5 × 105 M� and dotted line:
MR136 = 5 × 104 M�) when the IMF is Salpeter up to a certain mass limit
mborder.

slope is Salpeter to a certain limit (e.g. 40 M�) but then turns down
sharply. For this purpose we set m1 = mborder in equation (1) with
α2 = 2.35 (0.5 M� –mborder), and find that αm>mborder = α3 such that
equation (9) is fulfilled for mmax = 150 M�. The result is plotted in
Fig. 7.

From Fig. 7 it is evident that, in order to reproduce the observed
limit of about 150 M� for R136 from a formally unlimited mass-
scale and a down-turn mass (mborder) of, say, 40 M�, the exponent
has to change to αm>mborder = 3.6 (for MR136 = 5 × 104 M�) or
4.5 (MR136 = 2.5 × 105 M�). Such a down-turn near 40 M� is
not seen in those populations that do contain more massive stars
(e.g. R136 contains about 40 O3 stars, Massey & Hunter 1998), and
we therefore consider mmax∗ ≈ 150 M� as being the more realis-
tic possibility. Note though that the existence of mmax∗ leads to a
sharp decline of the IMF near 120 M�, which leads to a similar
effect to an increase of αm>mborder near this mass (Fig. 1). However,
our formulation needs one additional parameter (mmax∗) to account
for this down-turn of the IMF implicitly, while modelling an ex-
plicit down-turn would need two additional parameters (mborder and
αm>mborder ).

For massive stars the multiplicity proportion is typically very
high, with most O stars having more than one companion (e.g. Zin-
necker 2003; Kroupa 2003), possibly implying that the true under-
lying binary-corrected IMF has α3 � 2.7 (Weidner & Kroupa, in
preparation; Sagar & Richtler 1991). If this is the case then mmax∗
cannot be constrained given the available stellar samples because the
Local Group does not contain sufficiently massive, young clusters.

4 D I S C U S S I O N A N D C O N C L U S I O N S

Using a fairly simple formalism based on current knowledge of
the IMF we have shown that the mere existence of a fundamental
upper mass limit implies that the highest mass a star can have in a
massive cluster is different from the case without such a limit. For
low-mass clusters (Mecl < 103 M�) the differences of the solutions
are negligible (Fig. 4), but in the regime of the so-called ‘stellar
super-clusters’ (Mecl > 104 M�) they become very large. Without

C© 2004 RAS, MNRAS 348, 187–191

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/348/1/187/1412349 by guest on 13 M
arch 2024



Maximum stellar mass 191

such a limit, clusters such as R136 in the LMC would have stars
with m > 750 M�.

Elmegreen (2000) presents a random sampling model for star
formation from the IMF which is similar to our model. However,
Elmegreen assumes a Salpeter power-law IMF above 0.5 M� and
no specific stellar mass limit. In order to reduce the number of high-
mass stars above ∼130 M� he assumes an exponential decline for
the probability to form a star after a turbulent crossing time. The
results of the Elmegreen (2000) model are summarized by him as
follows: ‘There is a problem getting both the Salpeter function out
to ∼130 M� in dense clusters and at the same time not getting any
∼300 M� stars at all in a whole galaxy.’

He discusses the following six explanations for this problem.

(i) Stars more massive than ∼150 M� exist but have not been
found yet.

(ii) A self-limitation in the star formation process prohibits stars
above a certain limit.

(iii) Super-massive stars exist but evolve so quickly that they do
not leave their primordial clouds – making them observable only as
ultra-luminous infrared sources.

(iv) A limit for the cloud size for coherent star formation is as-
sumed.

(v) The star-forming clouds are destroyed after a star of a certain
(maximum) mass forms.

(vi) The IMF is not universal, but different for various star-
forming regions.

Case (i) can be excluded here because of the number of super-
massive stars expected, for example in R136. Concerning case (iii),
no such sources have been found to our knowledge. Cases (ii), (iv)
and (v) lead to a physical upper limit consistent with this work.
From the point of view of this work it is not possible to differentiate
between them. Finally, as several observations of various clusters
show a universal Salpeter IMF up to ∼120 M� (e.g. Massey &
Hunter 1998; Selman et al. 1999; Smith & Gallagher 2001) case
(vi) appears unlikely. Elmegreen thus sees the finite upper mass
limit as a cut-off to the unlimited solution.

In contrast, we introduce the fundamental upper mass limit con-
sistently into the formulation of the problem, and by combining this
with the use of a realistic IMF we are able to show strong deviations
of the solutions beyond a simple cut-off. The formulation presented
here has the advantage of explaining the observations with the sim-
ple assumption that all stars form with the same universal IMF.

AC K N OW L E D G M E N T S

This work has been funded by DFG grants KR1635/3 and
KR1635/4.

R E F E R E N C E S

Bonnell I. A., Bate M. R., Zinnecker H., 1998, MNRAS, 298, 93
Elmegreen B. G., 2000, ApJ, 539, 342
Jijina J., Adams F. C., 1996, ApJ, 462, 874
Kahn F. D., 1974, A&A, 37, 149
Kroupa P., 2001, MNRAS, 322, 231
Kroupa P., 2002, Sci, 295, 82
Kroupa P., 2003, NewA Rev., in press (astro-ph/0309598)
Kroupa P., Boily C. M., 2002, MNRAS, 336, 1188
Kroupa P., Tout C. A., Gilmore G., 1993, MNRAS, 262, 545
Lada C. J., Lada E. A., 2003, ARA&A, 41, 57
Massey P., 1998, in Gilmore G., Howell D., eds, ASP Conf. Ser. Vol. 142,

The Stellar Initial Mass Function. Astron. Soc. Pac., San Francisco,
p. 17

Massey P., Hunter D. A., 1998, ApJ, 493, 180
Nakano T., 1989, ApJ, 345, 464
Reid I. N., Gizis J. E., Hawley S. L., 2002, AJ, 124, 2721
Sagar R., Richtler T., 1991, A&A, 250, 324
Selman F., Melnick J., Bosch G., Terlevich R., 1999, A&A, 347, 532
Smith L. J., Gallagher J. S. III, 2001, MNRAS, 326, 1027
Stahler S. W., Palla F., Ho P. T. P., 2000, Protostars and Planets IV. Univ.

Tucson Press, Arizona, p. 327
Wolfire M. G., Cassinelli J. P., 1986, ApJ, 310, 207
Wolfire M. G., Cassinelli J. P., 1987, ApJ, 319, 850
Zinnecker H., 2003, IAU Symp. 212, in press (astro-ph/0301078)

This paper has been typeset from a TEX/LATEX file prepared by the author.

C© 2004 RAS, MNRAS 348, 187–191

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/348/1/187/1412349 by guest on 13 M
arch 2024


