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Collapse of a radiating star revisited
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Summary. Some further results are obtained concerning the model of a collapsing
star studied by de Oliveira ef al. We study this model without imposing any
particular initial static configuration.

1 Introduction

One of us (Santos 1985) studied the junction conditions of a collapsing spherically symmetric non-
adiabatic fluid which produces a pure radiation field. The collapsing fluid is isotropic with
dissipation under a radial heat flow. The interior spacetime where the fluid is described is
assumed shear-free and the exterior spacetime is given by Vaidya’s (1953) metric which repre-
sents the radial flow of a pure radiation field.

A particular solution of this model has been proposed by de Oliveira, Santos & Kolassis (1985)
and de Oliveira et al. (1986). It describes an initial static configuration which has been considered
to be the Schwarzschild interior solution evolving until the horizon is formed. Bonnor (1987)
studied the arrow of time for that solution.

In this paper we study again this same solution but without imposing any particular initial static
configuration. It is shown that some of the properties of this model depend only upon its initial
mass and the initial radius of the fluid distribution.

2 Vaidya’s metric

Vaidya’s (1953) metric

2
ds?=— (1— mf(v)> dv?=2dv dr+ 7 (d6>+sin?6 dg?), (1)

with coordinates x°=w, x! =7, x2= 6, x3= ¢ represents an outgoing pure radiation filled region
exterior to a gravitating spherical body. The quantity m(v) is interpreted as the Newtonian mass
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of the body measured by an observer at infinity. If m is constant then by the introduction of the
time coordinate t=r+v+2m In|r—2m | (Eddington 1924; Finkelstein 1958) the metric (1) is cast
into a form where at once one recognizes the Schwarzschild line element. The energy—momen-
tum tensor associated with equation (1) and describing the pure radiation field is

2
kTp=— L3S, @)

where k is the gravitational constant and

dm
L=—-— 3
™ G)
is interpreted as the total luminosity perceived by an observer at infinity (Lindquist, Schwartz &
Misner 1965). This suggests that the only physically acceptable situations are those for which
m(v) is a non-increasing function of the retarded time v, i.e.
dm
— <0. 4
dv : (4)
This is also compatible with the fact that the body loses energy due to the outgoing radiation. The
magnitude of the vector

d
m=8i-2 == 4, )

normal to the hypersurface r=2m(v) is

n,n*=4 %rs_ . (6)
It follows that for physically tenable situations where condition (4) is satisfied this hypersurface is
always spacelike while in the limiting case dm/dv =0 it becomes null. Because of this in every
situation concerning the collapse or the expansion of a radiating body the hypersurface r =2m(v)
lies in the interior metric region where Vaidya’s metric no longer holds (Lindquist et al. 1965).

By assuming that m(v) does not vanish for a finite v and because it is positive and non-
increasing with respect to v, at v = + © we must have dm=<dv = 0. It follows that the hypersurface
r=2m(+ =) is mull. It is interesting also to note that from equation (3) the luminosity at v =+
vanishes, L(+ ©) =0. We can easily explain this by showing that at v = + o the radiation emitted
by the body suffers an infinite redshift with respect to an observer at rest at infinity (Lindquist et
al. 1965; de Oliveira et al. 1985, 1986). In fact, r=2m(+ =) constitutes the future apparent
horizon of the external observer. Due to the existence of the outgoing radiation this hypersurface
cannot describe a black hole horizon. To study the history of the body after v=+ it is
imperative that one finds an analytic extension of the Vaidya metric analogous to the analytic
extension found by Kruskal (1960) for the Schwarzschild spacetime. Some progress in this
direction has already been made (Israel 1967; Waugh & Lake 1986).

3 Model of a collapsing and radiating star

We consider as in the paper by de Oliveira ez al. (1985) a spherical body which actsin its exterior as
the source of a Vaidya spacetime described by equation (1), and generates in its interior a
spherically symmetric spacetime whose line element in isotropic coordinates reads

ds?*=— AX(r, t) dt*+ B*(r, £)[dr?+r*(d6*+sin?6 d¢?)], @)
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where A and B are assumed to be positive. The energy—momentum tensor of the interior is
supposed to be that of a non-viscous shear-free fluid with heat conduction
Tap=(1+Dp) WaWp+Dgup+qsws+qaw,, @

where 4 is the energy density of the fluid, p its isotropic pressure, w* its
radial heat flux vector which has to satisfy, ¢,
be comoving, that is

four-velocity and ¢° the
w®=0. The coordinate system (¢, r, 6, @) is taken to

1
= — §§. 9
w 49 )
and thus
q“=q0of. (10)
The Einstein field equations Raﬂ—%Rgaﬂ=kTaﬁ yield u, p and q as functions of the metric
components
B\? 1[_B" (B'\* 4B
ku=3(—| -=|2—= (= +-—1, 11
“ (AB) BZ[ B <B> rB] (D
1((B'\> 2B" A'B 247 1[.B [B\? AB
kp=—I{—=) +=—+2— =4+ | _ = 2=+ =] —2==], (12)
B*| \B r-B AB rA A’ B \B AB
2 [(B\ _A'B
kg=—1=] —2=— =], 13
1= 4B [(B) A B] (13)
plus an equation with respect to A and B due to the isotropy of the pressure
A/ BI ' AI BI 2 1 A/ BI A/ 2
<—+—) —<——+—> ——<—+—> +2<—) =0. (14)
A B A B r\A B A
Here, the dot and the prime stand respectively for differentiation with respect to ¢ and r.
The metrics (1) and (7) can be matched on the spherical hypersurface = defined by
r=rs=const., (15)

and the junction conditions then yield the following system of equations valid on £ (Santos 1985)
(rB)Z = [?2’

(16)
p:=(qB)s, (17)
remy=| 5 (1-2) 5+ L (13
r =|={1-— - ,

7o)l A r )" A s
r3 . 3
m(v) = [Z_AZ B’-r’B'——B Z:L (19)
From equations (12), (13) and (16)—(19) one can easily obtain the following relations:
A2

) =4 — - 20
v {rB+A(1+ r(B/B)]L ’ 20)
dm k A?
= __% 2g2 21
dv 2 <p ’ 02 )2 X (21)
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The former gives the functional dependence between the retarded time v and the time ¢, while the
last one shows that the mass function M (v) which is determined from the interior metric through
equation (19), fulfils condition (4) if and only if the pressure on Z is non-negative.

Let us now consider solutions of the Einstein field equations for the interior metric of the form

A=A(r) (22)
B=By(0) 0 *)

where f(?) is positive. Then from equation (14) it follows that A, and B, are solutions of the
equation

AI BI ! AI BI 2 1 AI BI Al 2
(o) () 4 (a3
A() BO AO _BO r Ag B() A(]
describing a static perfect fluid whose energy density u, and pressure p, are given by
1 B{\' [Bi\? 4 B
kpy=— — [2(—9> +<—°> +——°], (25)
B(z) B() BO r BO
1 [ /B§\? AgBy 2(Ay By
kpo=— (—0) +2——“—°+—<—°+—°> : (26)
B3| \B, AgBy r\A, By

This static perfect fluid solution matches with the exterior Schwarzschild spacetime and in this
case its pressure p, vanishes for some value of r. We suppose that this happens for r=ry

(P0)==0. 27)
With the help of equations (22), (23), (25) and (26) equations (11)-(13) can be written

k ——1-<k +i'2> 28

H= g\ Ro A%f ; (28)

k —l[k L 2ff +£2 29
= | kP A%(ff+f)], (29)
__ 24 f

kq= B (30)

By substitution of equations (29) and (30) into (17) and by taking equation (27) into account we
find

2ff+f2*—2af =0, (31)
where the constant
AI
a= (—“) (32)
By/s

is positive because the static solution (A,, Bo) matches with the Schwarzschild exterior metric.
The first integral of equation (31) is

f=—2a<%—1). (33)

By remembering that py is non-negative and by using equations (27), (29) and (31) we arrive at the
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important conclusion that the only possible motion of the system is contraction

f@®=o. (34)
Furthermore, from equation (33) and because f(f) is positive we have
0<f(r)<b?. 35)

Now, the integration of equation (33) yields

t=§[§f+be+b2 In <1—‘g>], (36)

where the constant of integration which should enter in equation (36) has been eliminated by
means of the transformation ¢ — ¢+ const. We observe that the function f(¢) decreases mono-
tonically from the value b? at t= — o to zero at ¢ =0 where a physical singularity is reached.

It follows that the collapse begins at t = — o from a static perfect fluid sphere, described by the
interior solution (A,, b>B,), whose energy density and pressure are given by equations (25) and
(26) provided that the right-hand members of these equations are multiplied by a factor b=2. From
now on, for convenience we absorb the factor b2 into B,(r) by setting

b=1. (37)

In this way the initial energy density and pressure of the sphere are given by equations (25) and
(26), its initial mass by

( zB'+’3B‘32> (39)
my=—|\r ,
0 0 2B, /s

and its initial radius by
To=(rBo)s. (39)

For t= — = the exterior spacetime becomes the Schwarzschild spacetime and by considering the
junction conditions we have Ay =m/r§s(1+ mq/2rez)? and Bog = (1+ mq/2rs)?, which allows us
to express equation (32) in terms of the initial quantities m, and 7, by using equation (39),

=2 (40)

To obtain the explicit dependence between the retarded time v and the time / we must integrate
equation (20). For this we write it in the form

o_(45) 1 i
df \rBy)s f(f+h)’
where
A() ,
h= [?Eé (rBy) L . (42)

This constant with the help of equations (26), (27), (32) and (39), and (40) can also be written in
the form

L (1-2) @

which shows that 4 is positive, otherwise the radius of the static sphere would be less than the
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Schwarzschild radius. Now, the integral of equation (41) is
2mg\ 3 if
v=n= (22) (52 ). (44
Fo mg

where #( ) represents the functional relation defined by (36). From equation (41) and by
using (33) we can see that the function v(f) is monotonically decreasing with respect to f, and
therefore monotonically increasing with respect to ¢, in the range (2m,/7)*<f(t)<1. From
equation (44) we see that v=—o at f=1 (or t=—) and v=+® at f(ty) = (2m,/ry)* where
the time #y is given according to equation (36) by

m 73 2m
tH=2f0<1+—0)+—01n <1———°). (45)
To my Fo

The relation between ¢, f, f and v is summarized qualitatively in Table 1.

Table 1.

t o A7 ty 7 0
ZECINEETET R
If 1 2:” ~ 0
v — +o

The luminosity L can be calculated from equations (3), (21), (29), (31) and (39)-(41)

L=—m0[f0<1—2yﬁ)>_1f‘+1]2f, (46)

0

and the mass m from equations (19), (33), (38), (40), (42) and (43)

e ) (-0) )

By using equations (43) and (47) we can see that at =1y, or equivalently at v=+, the
hypersurface Z satisfies the condition ry =2my where my =m(ty) =2mj/r, and therefore it is
null. From equation (46) we notice also that at t=1fy we have L=0. We conclude that the
hypersurface

4m}
rg=2my=—— (48)
%o

constitutes the future event horizon of a distant observer. Clearly, the Vaidya metric (1) cannot
describe the exterior spacetime manifold for r<2m and for this an analytical extension of this
metric is needed.

It is interesting to point out that for the family of solutions (22) and (23) the time for the
formation of the horizon (45), as well as its mass and radius (48) do not depend upon the structure
of the initial static perfect fluid configuration but only upon its initial radius 7, and initial mass m,.
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The differentiation of the luminosity L given by equation (46) with respect to f becomes

dL 2mg\ "1 . 2mg)\
;fr=—m0[fg<1—T—0) f+1] [3T0<1—T>f+lj|. (49)

Hence from equations (46) and (49) we can conclude that the luminosity starts increasing from
Ly=0 at the initial time f =0 and attains its maximum at

4
L= — =0 (1—2—’@). (50)

We can summarize the above results in Table 2.

Table 2.

dL
df

The energy density x4 and the isotropic pressure p have to increase towards the centre of the
fluid distribution in order to be physically reasonable. Differentiating equations (28) and (29)
with respect to r and utilizing (31), (33) and (37), we obtain

’ ' 1 A (1 - ‘/f)2
ku =k,u0f—2—24a21z(3')——f—3——, (51)
)y L Ay 1-1f)
kp' = kpoﬁ - 8a22(-3] fs_/z (52)
From equations (30), (33) and (37) we have
4aAq (1—-
_4adi A-if) (53)
A(Z)B(Z] f7/2

and since we need g>0 then we must have 4 ;>0. Hence from equations (51) and (52) if 4y<0 and
po<0 are satisfied for the static distribution, then the fluid evolves satisfying the physical
conditions x’ <0 and p'<0.

It has been proved recently (Kolassis, Santos & Tsoubelis 1987) that the energy conditions are
fulfilled if the conditions 4 —3p=0 together with 4’ <0 and p’<O0 are satisfied. From equations

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System

¥202 Iudy €2 uo3senb Aq 61 L 2LG6/L LOL/P/LEZ/EI01UB/SBIUW/WOD dNo dlWepeoe//:sd)y woly papeojumod


http://adsabs.harvard.edu/abs/1988MNRAS.231.1011D

z31. Tq1D;

FTOBBIVNRAS,”

1018 A. K. G. de Oliveira, C. A. Kolassis and N. O. Santos
(28), (29), (31), (33) and (37) we can write
12a? 1
ku—3kp=|kuy—3kp;+——F| —, 54
Il P ( Ho Po A3 ) 72 (54)
where

A-JHA-2f)
f .

The function F(f) starts at F=0 when /f=1 and decreases to a minimum F= -} at /f=%
The metric A, decreases to the origin of the distribution, A3>0. Hence we can be assured that
u—3p=0is satisfied by the fluid throughout collapse if the initial static configuration satisfies

F(f)= (55)

kuo—3kpo= 3 (56)
Ho PO/A%(r=0)-
Lastly we observe that the total mass loss of the system for 1> f(£)>(2m,/7)? is
2
Am_=m0—~mH=m0<1——?>, (57)
0

which again we point out, depends only upon its initial configuration. After fi; = (2m,/7,)? the
total mass of the system starts to increase and we obtain that

Am+=m(f=0)—mH=m0<2L:—0>2(1—-2—@)‘1, (58)

0 To
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