OBSERVATIONS OF 48 EXTRAGALACTIC RADIO SOURCES WITH THE CAMBRIDGE 5 -KM TELESCOPE AT 5 GHz

G. G. Pooley and S. N. Henbest
(Received 1974 July 30)

SUMMARY

Abstract

The $5-\mathrm{km}$ telescope at Cambridge has been used to map 48 extragalactic radio sources at 5 GHz with an angular resolution $2^{\prime \prime} \times 2^{\prime \prime} \operatorname{cosec} \delta$. The results are presented here, together with various physical parameters derived for the sources.

I. INTRODUCTION

As part of the continuing programme of studies of extragalactic radio sources, we present here results of observations of 48 sources with the $5-\mathrm{km}$ telescope at the Mullard Radio Astronomy Observatory. The instrument has been described by Ryle (1972); it is an Earth-rotation synthesis system at present operating at 5 GHz . At this frequency it has a synthesized response $2^{\prime \prime}$ in right ascension by $2^{\prime \prime}$ $\operatorname{cosec} \delta$ in declination (measured between the half-power points). It is also used as an astrometric instrument for those sources which are not substantially resolved. The positional calibration is discussed by Ryle \& Elsmore (1973).

Some of the sources described here were observed for the astrometric programme but were found to have too large an angular size; others form part of a study of a representative sample, or were suggested by Dr H. Spinrad in connection with his optical studies. Most have angular sizes in the range $2^{\prime \prime}-30^{\prime \prime}$, and they cannot be considered a complete sample for statistical purposes.

2. THE OBSERVATIONS

The eight elements of the telescope are connected to provide 16 independent interferometer spacings, with a maximum of 4.6 km . A single $12-\mathrm{hr}$ observation is then sufficient to map a region of diameter $40^{\prime \prime} \times 40^{\prime \prime} \operatorname{cosec} \delta$. Most of the sources included in the present paper were mapped in this way; a number of the more extensive sources have been observed with two positions of the mobile aerials, giving 32 interferometer spacings and a clear field of twice the diameter.

The computation of the maps, which is carried out during the observations themselves, uses data weighted as $\exp \left(-s^{2} / s_{0}{ }^{2}\right)$, where s is the aerial spacing and s_{0} is chosen so that the weight at the maximum spacing falls to 0.3 . This grading function is chosen as a compromise between the best possible resolution and an acceptable sidelobe level; the observed response pattern is shown in Fig. i, where it can be seen that the first and second sidelobes have amplitudes of -4 and +3 per cent, and are $2^{\prime \prime}$ and $3^{\prime \prime}$ from the maximum. The parameters for sources which are only just resolved have been established by examining the 16 interferometer records directly, since the information from the largest spacings is then
used most effectively. The maps made with one $12-\mathrm{hr}$ observation have an rms noise level of about $3 \mathrm{mfu}\left(3 \times 10^{-29} \mathrm{~W} \mathrm{~Hz}^{-1} \mathrm{~m}^{-2}\right)$; for maps made with two 12 -hr observations, the noise level is about 2 mfu .

The main limitation to the operation of instruments of high resolution is the disturbance caused by atmospheric irregularities. Substantial phase variations are sometimes observed, and these are worse during summer daytime when the typical

Fig. 1. The synthesized response of the telescope in right ascension. The response in declination is similar but wider by a factor cosec δ.
scale of the irregularities is about 0.7 km (Hinder \& Ryle 197x). Larger scale features, $5-30 \mathrm{~km}$ in extent, are also found throughout the year (Hargrave \& Shaw, private communication). The principal consequence of the latter irregularities is the introduction around each source of radial sidelobes, the presence of which is usually easily recognized. Any run seriously affected in this way was repeated, and it is thought that none of the maps is in error by more than about one contour as a result of atmospheric irregularities.

Each source (with the exception of ${ }_{3} \mathrm{C} 304$ and those from the ${ }_{4} \mathrm{C}$ catalogue) has been mapped twice: once with the linearly polarized feeds parallel (E vector in p.a. 90°) and once with the feeds of the moving and fixed aerials orthogonal, to measure the linear polarization. During the polarization observations the feeds were rotated to each of four position angles, separated by 45°. The polarization observations give maps representing the Stokes' parameters Q and U, which were then combined to determine the position angle and intensity of the linear polarization. No attempt has been made to measure the circular polarization of the sources. The parallel-feed observations give maps representing $I-Q$; the observations of Q could of course be added to these to give the total intensity I but, since this involves a decrease in signal-to-noise ratio and since the polarization seldom exceeds about io per cent, this procedure has not been adopted. The remaining sources were mapped with parallel feeds only.

The maps themselves are presented in Fig. 2. Each one shows $I-Q$, and the intensity and direction of the linear polarization (E vector) where this is significant. One detail of the presentation should be noted particularly: for most of the sources, the map has been compressed by a factor $\operatorname{cosec} \delta$ in declination, a convention which makes the telescope response circular and therefore assists in the interpretation of partially resolved components. A few maps, of well-resolved sources, are not compressed in this way. Note that the position angles of the E vectors appearing on the maps are always the true position angles, not modified by the compression, and so the relationship between the source structure and the magnetic field
(Continued on p. 510)

Fig. 2. ${ }^{3}$ C 6.1. This source probably has a very weak central component. The cross marks the position of a 23^{m} object (GL).

Fig. 2. $3^{3} C$. The cross marks the position of the I^{m} variable $Q S O$ ($A K$, MTC).

Fig. 2. ${ }_{3} C$ 68.2. There is no optical identification (GL).

Fig. 2. ${ }_{3}$ C 69. There is no optical identification. Alternate contours above No. 5 in the northern component have been omitted.

Fig. 2. ${ }_{3} C 86$. The peak of polarization in the preceding component does not coincide with the maximum of total intensity. There is no optical identification.

Fig. 2. $3 C$ 86B. There is no optical identification.

Fig. 2. ${ }_{3} C$ 123. $A 2^{\mathrm{m}}$ galaxy lies near the centre of the source (L).

Fig. 2. ${ }^{3} C$ 153. The position ($A K, M T C$) of a red galaxy in a cluster is marked.

Fig. 2. ${ }_{3} C$ 171. The position (WWD) of the $1^{8 \mathrm{~m}} \cdot 5$ galaxy is marked. Sandage (1967) describes it as an N galaxy. Approximately 30 per cent of the radio flux originates in a region some $20^{\prime \prime}$ in diameter, not represented here.

Fig. 2. 3^{3} C 18 I. The variable $19^{\mathrm{m}} Q S O$ (WWD) is marked.

Fig. 2. 3C 194. The position (Wlérick et al. 1971) of a 20^{m} red object is marked.

Fig. 2. 3^{C} 196. The variable $18^{\mathrm{m}} Q S O(A K, M T C)$ is marked.

Fig. 2. 3 C 205. The $18^{\mathrm{m}} Q S O(A K, M T C)$ is marked.

Fig. 2. 3 C 207. The $18{ }^{\mathrm{m}} Q S O(W W D)$ is marked.

Fig. 2. ${ }_{3} C$ 239. This source has been identified with a 20^{m} red galaxy in a cluster, but there is no accurate optical position.

Fig. 2. 3 C 249.1. The position ($A K, M T C$) of the 16^{m} variable $Q S O$ is marked.

Fig. 2. ${ }_{3} C$ 254. The position marked (G) is that of the $18^{\mathrm{m}} Q S O$.

Downloaded from https://academic.oup.com/mnras/article/169/3/477/1015425 by guest on 24 April 2024

Fig. 2. ${ }_{3} C$ 268.4. The position (V) of the variable 18^{m} QSO may coincide with the central radio component. Burbidge et al. (1971) note that this source lies only 3^{\prime} from the galaxy NGC 4138 , but the radio structure does not suggest a real association.

Fig. 2. 3 C 277.3. The declination scale of this map is not compressed. The position (G) of the nucleus of the $15^{\mathrm{m}} \mathrm{D}_{2}$ galaxy is marked. Much of the radio source appears embedded in the optical galaxy.

Fig. 2. 3^{C} 280. The positions of two very faint $\left(\simeq \mathbf{2 2}^{m}\right)$ galaxies (KSK) are marked.

Fig. 2. ${ }_{3} C$ 288. This map is not compressed in declination. The position (V) of the nucleus of the $16^{\mathrm{m}} D_{4}$ galaxy may coincide with the central radio component. A 19 ${ }^{\mathrm{m}}$ companion galaxy appears to lie in the region of the $N p$ radio component.

Fig. 2. $3^{3} C$ 288.1. The position ($A K, M T C$) of the $18^{\mathrm{m}} Q S O$ is marked.

Fig. 2. ${ }_{3} C$ 295. The positions (G) of the $2 \mathrm{I}^{\mathrm{m}}$ galaxy at the centre of the radio source and its two nearest neighbours are marked.

Fig. 2. ${ }_{3} C$ 303. The identification is in doubt; see text.

Fig. 2. ${ }_{3} C$ 304. The position of an $18^{\mathrm{m}} c D$ galaxy (Olsen 1970) is marked. The source, also catalogued as $4 C 20.34$, is not included in the revised ${ }_{3} C$ catalogue ($S_{178}=5.4 \mathrm{fu}$).

Fig. 2. 3C 305. The position (V) of the nucleus of the peculiar galaxy discussed by Sandage (1966) is marked. The radio source is apparently embedded in the optical galaxy. There is a low brightness region surrounding the compact components.

Fig. 2. ${ }_{3} C$ 323. 1. The position (Véron ©o Véron 1973) of the 17^{m} QSO is marked. There is a faint bridge of emission joining the outer components. The redshift is $0 \cdot 264$, close to that of a nearby cluster of galaxies (Oemler et al. 1972).

Fig. 2. 3^{C} 336. The position (SVW) of the 1^{m} QSO is marked.

Fig. 2. ${ }_{3} C$ 346. The position (V) of the 1^{m} galaxy is marked.

Fig. 2. ${ }_{3} C 427.1$. There is no optical identification.

Fig. 2. ${ }^{3} C$ 434. The position (GL) of a $2 \mathrm{I}^{\mathrm{m}} N$ galaxy (Spinrad Eo Smith 1974) is shown. Two possible redshifts suggested by Spinrad \mathcal{E}° Smith are used in the table.

Fig. 2. 3^{C} 460. The position (Wlérick et al. 1971) of an $18^{\mathrm{m}} E_{5}$ galaxy is marked.

Fig. 2. 3 C 467. The identification is a $20^{\mathrm{m}} N$ galaxy (Spinrad Eo Smith 1974) whose position is not well known. The source, also catalogued as ${ }_{4} C 18.71$, is not in the revised ${ }_{3} C$ catalogue $\left(S_{178}=7 \cdot 6 \mathrm{fu}\right)$.

Fig. 2. 4 C 35.03. The 14^{m} galaxy (Olsen 1970), catalogued as VV 6-5-88 and number 191 in Zwicky's fifth list of compact galaxies is coincident with the compact radio component.

Fig. 2. $4 C$ 24.23. The position (Hazard © Argue, private communication) of the $18^{\mathrm{m}} \cdot 5$ QSO is marked.
structure must be considered carefully. The angular scale of each map is shown by the ' L ' shape in the corner, the length of whose arms is shown. The intensity scale for each map is shown by the contour interval (the flux density of an unresolved source which would produce a change of one contour on the map, indicated by ' CI '), and the scale of linear polarization is indicated by the length of the bar. All units are mfu. Further details are given in the captions; in particular, measurements of optical positions are referred to as follows:

AK	Argue \& Kenworthy (1972)
BCGP	Barbieri et al. (1972)
G	Griffin (1963)
GL	Gunn \& Longair (1975)
KSK	Kristian, Sandage \& Katem (1974)
MTC	Murray, Tucker \& Clements (1971)
SVW	Sandage, Véron \& Wyndham (1965)
L	Longair (1965)
V	Véron (r966, 1968)
WWD	Wills, Wills \& Douglas (1973)

Reference is not necessarily made here to the original identification or redshift determination.

No maps are shown for six sources: ${ }_{3} \mathrm{C} 67,3 \mathrm{C} 236,{ }_{3} \mathrm{C} 268.3,3 \mathrm{C} 277$. r , ${ }_{3} \mathrm{C} 454$. I and ${ }_{4} \mathrm{C} 25.03$. These all have angular sizes comparable with the beam of the telescope.

The data for each source are given in Table I. The sources are divided into components for the purposes of this table. The division is in many cases entirely natural, when the map shows several more or less unresolved features. In some cases it also appears reasonable to describe sources in terms of unresolved and resolved components, but the division must then be to some extent arbitrary, and the tables must of course be read in conjunction with the maps. The details are as follows:
(1), (18) Source number from the ${ }_{3} \mathrm{C}$ or ${ }_{4} \mathrm{C}$ catalogues (Edge et al. 1959; Bennett i962; Pilkington \& Scott 1965).
(2), (3) $1950 \cdot 0$ coordinates of the peaks of emission, with estimated errors. Components without a well-defined peak are given only an approximate position.
(4) The position angle of each component. Errors in these angles are typically 5° to 10°.
(5), (6) The angular extent of each component parallel and perpendicular to the position angle given in (4). A gaussian brightness distribution is assumed when the component is barely resolved.
(7) The flux density of each component at 5 GHz , with estimated error. Relatively large errors are given if the source is divided into several parts, with a consequent uncertainty in the division, or if the surface brightness is low.
The percentage polarization, with estimated error. Upper limits are given if the polarized flux is less than 20 mfu and the total flux of the component is more than 40 mfu .
(9) The position angle of the E vector of the polarized flux. For complex sources (e.g. ${ }_{3} \mathrm{C}$ 123) reference should be made to the maps.
The total angular size of the source. This is usually the separation of the outer peaks of a multiple source.
Position angle of the line joining the outer peaks.
Redshift.
Distance. For galaxies without measured redshift an absolute V magnitude of -23.2 has been assumed. In this and succeeding columns an Einstein-de Sitter model with $H=50 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$ has been assumed.
The total linear size of the source, corresponding to the angular size in column 10.
An estimate of the minimum energy in the component, assuming emission by the synchrotron process from electrons. Each component is assumed to be cylindrical in symmetry about the longest axis, and this axis is assumed to be normal to the line of sight. The formula used is that given on page 394 of Branson et al. (1971); for most sources the mean overall spectral index has been used. A spectral index (defined by $S \propto \nu^{-\alpha}$) of zero has been assumed for central components not previously observed and with no information on their spectral indices, since, in cases where the spectrum of this type of source is known, $\alpha \approx 0$.
The value of the magnetic field corresponding to the minimum energy.

Table I

6.1	00	13	$\begin{aligned} & 32.73 \\ & 34.40 \\ & 36.62 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.15 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 78 \\ & 79 \\ & 79 \end{aligned}$	$\begin{aligned} & 59 \\ & 00 \\ & 00 \end{aligned}$	$\begin{aligned} & 59.5 \\ & 10.0 \\ & 22.8 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.4 \\ & 0.1 \end{aligned}$	105 0	$<$	1.3 0.9	<	0.9 0.9	$\begin{array}{r} 420 \\ 20 \\ 540 \end{array}$	$\begin{aligned} & 40 \\ & 10 \\ & 50 \end{aligned}$
9	00	17	$\begin{aligned} & 49.71 \\ & 50.13 \end{aligned}$	$\begin{aligned} & 0.02 \\ & 0.02 \end{aligned}$	15	24	$\begin{aligned} & 19.3 \\ & 11.2 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 177 \\ & 140 \end{aligned}$		$\begin{array}{r} 8 \\ 10 \end{array}$	$<$	$\begin{aligned} & 1.6 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 110 \\ & 370 \end{aligned}$	$\begin{aligned} & 10 \\ & 50 \end{aligned}$
47	01	33	38.95	0.01	20	41	38.7	0.5	98		3.2		1.8	400	50
			39.5 40.42	0.01	20	42	37 10.6	0.5	98 0	$<$	$\begin{gathered} 10 \\ 4 \end{gathered}$	$<$	$\begin{aligned} & 6 \\ & 1 \end{aligned}$	160 80	50 10
			41.79	0.02			34.7	0.8	112		5.0		3.7	190	40
			41.5				30		117		15		11	230	40
67	02	21	18.05	0.01	27	36	37.8	0.3						1000	50
68.2	02	31	$\begin{aligned} & 24.38 \\ & 25.12 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$	31	21	$\begin{aligned} & 21.1 \\ & 01.0 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$	$\begin{array}{r} 156 \\ 0 \end{array}$	$<$	$\begin{aligned} & 2.0 \\ & 1.8 \end{aligned}$	$\begin{aligned} & < \\ & < \end{aligned}$	1.3	$\begin{array}{r} 120 \\ 80 \end{array}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$
69	02	34	17.31	0.02	58	58	29.2	0.1	0	$<$	1.1	$<$	1		30
			16.7				29		41		11		5	380	40
			18.58	0.03		58	51.9	0.2	0	$<$	1.3	$<$	1	30	10
			19.53	0.02		59	13.6	0.1	0	$<$	1.1	$<$	1	200	30
			19.3				07		13		8		2.5	350	30
86A	03	23	29.09	0.03	55	10									
			32.20	0.02			04.0	0.2	0	$<$	1	<	1	500	100
			31.6				00		55		9		4	900	200
86B	03	23	55.31	0.03	55	12	06.3	0.3	0	$<$		$<$			
			55.86	0.03			00.1	0.3		$<$	2	$<$	2	100	30
123	04	33	54.8		29	34	27		90		12		8	5600	400
			55.79	0.01			09.7	0.3	70		1.2	$<$	1.8	6600	500
			55.5				04		22		15		8.5	4800	500

$\begin{array}{lllllllllllllllllll}171 & 06 & 51 & 10.43 & 0.02 & 54 & 12 & 49.0 & 0.2 & 0 & < & 1.1 & < & 0.9 & 430 & 40 \\ & & 11.42 & 0.02 & & & 47.3 & 0.2 & 12 & 1.7 & < & 0.9 & 350 & 40\end{array}$

TABLE I-continued

Polarization			θ		z	$\begin{aligned} & \text { Dis- } \\ & \text { tance } \\ & \text { (Mpc) } \end{aligned}$	$\begin{aligned} & \text { Total } \\ & \text { size } \\ & \text { (kpc) } \end{aligned}$	$\begin{aligned} & \mathrm{U}_{\text {min }} \\ & \left(10^{56} \mathrm{erg}\right) \end{aligned}$	$\begin{aligned} & \mathrm{B}_{\mathrm{eq}} \\ & \left(10^{-5}{ }_{\mathrm{G}}\right) \end{aligned}$	5 GHz Synch. lifetime$\left(10^{4} \mathrm{yr}\right)$	Source $3 C$
\%	\pm	$\underset{\circ}{\text { p.a. }}$	"	-							
7	1	0	26.0	26		2800	206	< 240	> 15	< 13	6.1
5	1	85						< 240	$>17^{\circ}$	< $11^{\text {. }}$.	

	8 8	1	$\begin{array}{r} 122 \\ 44 \end{array}$	6.5	54	0.2771	1380	34	<	100 66	$>$	8 12	$<$	$\begin{aligned} & 30 \\ & 18 \end{aligned}$	153
$<$	4			8.9	102	0.2387	1220	42	<	30	>	12	$<$	18	171
	9	2	125						<	32	>	10	$<$	24	
				5.9	114	1.382	4220	51		2200		7		41	181
										1300	>	15	<	13	

Table I-continued

194	08	06	$\begin{aligned} & 37.74 \\ & 38.19 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$	42	$\begin{aligned} & 37 \\ & 36 \end{aligned}$	$\begin{aligned} & 02.4 \\ & 49.1 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$	$\begin{array}{r} 63 \\ 173 \end{array}$		$\begin{aligned} & 1.4 \\ & 1.7 \end{aligned}$	<	$\begin{aligned} & 1.3 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 410 \\ & 270 \end{aligned}$	40 30
196	08	09	59.28	0.02	48	22	04.9	0.2	90		1.2	<	1.3	2500	200
			59.50	0.02			09.7	0.2	128		1.2	$<$	1.2	1600	200
			59.8				08		120		2	<	1		200
204	08	33	15.37	0.03	65	24	05.0	0.2	63		1.4	$<$	1	50	10
			16.01	0.03			06.2	0.2	40		1.5	$<$	1	100	20
	pre	cedi	ng brid						85		5	$<$	1	40	20
			18.07	0.03			04.1	0.2	0	$<$	1	$<$	1	40	10
			20.97	0.03			03.1	0.2			2.0	$<$	1	130	20
	fol	lowi	g brid						79		5	<	1	40	20
205	08	35	09.80	0.01	58	04	42.9	0.1	145		2.0	<			
			10.02	0.06			51.5	0.6	0	$<$	1.1	<	1	30	10
				0.01			58.4	0.2	0		1.6	<	1	190	20
207	08	38		0.02	13	23	06.6	0.6	0	$<$	5	<	1	200	20
			01.74	0.02			05.3	0.6	0	<	5	$<$	1	510	30
			02.1				05		0		9		5	530	50
215	09	03	43.3	0.2	16	58	33.0	3	90		8		8	160	70
			44.11	0.02			16.0	1	0	<	6	<	2	20	10
			44.73	0.05			12.8	. 2	0		12		5	150	50
236	10	03	05.39	0.01	35	08	48.0	0.2						1480	30
239	10	08	38.29	0.02	46	43	06.8	0.2	45		1.5	$<$	1.1	70	10
			39.33	0.01			09.8	0.1	0	$<$	1.2	<	1	260	30
249.1	11	00	22.81	0.04	77	15	11.4	0.1	116		1.3		1.0	250	40
			23.8				11		0		3.5		2	120	40
			27.44	0.06			08.5	0.2	0	$<$	1.1	<	1	110	20
			29.72	0.04			08.3	0.1	80		1.3	<	1	160	30
			28.6				08		95		2	<	1	50	30

254	11	11	52.29	0.01	40	53	44.2	0.2	0	$<$	1.4	$<$	1.4	400	50	
			53.41	0.01			40.6	0.2	55		1.6	$<$	1.3	430	50	
263	11	37	04.99	0.03	66	04	37.2	0.2	28		1.4		1.3	60	20	
			04.5				38		95	2.7		1.8	90	20		
			09.30	0.02			27.05	0.1	0	$<$	1	$<$	1	130	20	
			11.78	0.02			21.0	0.1	0	$<$	1	$<$	1	750	70	

$\begin{array}{lllllllllll}268.3 & 12 & 03 & 54.08 & 0.02 & 64 & 30 & 18.45 & 0.1 & 1250 & 30\end{array}$

Table I-continued

Table I—continued

Source	R.A.			\pm	Dec			\pm	p.a.	Component				Flux densit				
3 C	h	m	s	5	\bigcirc	'	"	"	-	ω	$\max _{n}$		$\min _{1}$	mfu	\pm			
268.4	12	06	41.83	0.01	43	$\begin{aligned} & 55 \\ & 56 \end{aligned}$	58.2	0.1	0	$<$	1.4.	<	1.2	570	40			
			42.10	0.05			02.3	0.7						50	20			
			42.42	0.02			06.0	0.3	40		1.8	$<$	1.2	110	30			
277.1	12	50	15.19	0.01	56	50	36.5	0.1						840	20			
27\%.3	12	51	45.71	0.02	27	$\begin{aligned} & 54 \\ & 53 \end{aligned}$	$\begin{aligned} & 07.5 \\ & 58 \\ & 48.8 \\ & 35.9 \end{aligned}$	0.4	151	2.4		2.2		90	30			
			45.7						90		19		12	540	70			
			46.29	0.02				0.5	25		2.4	$<$	1.5	20	10			
			46.28	0.02				0.5	69		11		10	660	80			
280	12	54	40.78	0.01	47	36	$\begin{aligned} & 32.2 \\ & 32.0 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.3 \end{aligned}$	$\begin{array}{r} 148 \\ 0 \end{array}$	$<$	$\begin{aligned} & 1.6 \\ & 1.2 \end{aligned}$	$<$	${ }_{1}^{1.1}$	$\begin{array}{r} 1480 \\ 400 \end{array}$	15040			
			42.05	0.02														
288	13	36	38.3		39	06	$\begin{aligned} & 27.5 \\ & 22.2 \\ & 17.5 \\ & 18 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	106	10			3.5	520	60			
			38.59	0.03								30		20				
			38.79	0.03					138		3.5		2.8	180	50			
			38.4						90		11		3	310	50			
288.1	13	40	29.51	0.01	60	36	$\begin{aligned} & 48.0 \\ & 47.5 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$	$\begin{array}{r} 0 \\ 56 \end{array}$	$<$	$\begin{aligned} & 1 \\ & 1.3 \end{aligned}$		$<$	$\begin{aligned} & 1 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 270 \\ & 130 \end{aligned}$	3020		
			30.42	0.02														
295	14	09	33.27	0.01	52	26	$\begin{aligned} & 15.1 \\ & 11.7 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 0.7 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 2900 \\ & 3600 \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \end{aligned}$			
			33.58	0.01														
303	14	41	23.00	0.05	52	14	$\begin{aligned} & 21.4 \\ & 18.2 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.2 \end{aligned}$	$\begin{array}{r} 34 \\ 0 \end{array}$		$\begin{aligned} & 4.4 \\ & 1.2 \end{aligned}$	$<$	$\begin{aligned} & 1.3 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 510 \\ & 200 \end{aligned}$	4020			
			24.82	0.01														
304	14	46	32.83	0.02	20	$\begin{aligned} & 38 \\ & 38 \\ & 37 \end{aligned}$	$\begin{aligned} & 03.0 \\ & 00 \\ & 51.2 \end{aligned}$	0.6	$\begin{array}{r} 0 \\ 149 \\ 0 \end{array}$	$<$	$\begin{gathered} 2.5 \\ 13 \\ 2.5 \end{gathered}$	$<$	$\begin{aligned} & 1 \\ & 2.5 \\ & 1 \end{aligned}$	$\begin{array}{r} 160 \\ 100 \\ 60 \end{array}$	202010			
			33.0															
			33.36	0.02				0.6										
305	14	48	17.22	0.02	63	28	$\begin{aligned} & 34.9 \\ & 36 \\ & 37.3 \end{aligned}$	0.2	$\begin{array}{r} 128 \\ 128 \\ 0 \end{array}$	$\begin{aligned} & 1.9 \\ & 2.9 \\ & 1.4 \end{aligned}$		$\begin{aligned} & 1.1 \\ & 2.4 \\ & 1.3 \end{aligned}$		$\begin{array}{r} 290 \\ 80 \\ 570 \end{array}$	$\begin{aligned} & 40 \\ & 40 \\ & 60 \end{aligned}$			
			16.9															
			17.57	0.02				0.2										
323.1	15	45	30.08	0.01	21	$\begin{aligned} & 00 \\ & 01 \end{aligned}$	$\begin{aligned} & 50.3 \\ & 27.8 \\ & 54.7 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.4 \\ & 0.3 \end{aligned}$	$\begin{array}{r} 27 \\ 5 \\ 176 \end{array}$	$\begin{aligned} & 3.2 \\ & 3.6 \\ & 3.5 \end{aligned}$		$<$	$\begin{aligned} & 2.2 \\ & 1.1 \\ & 3.0 \end{aligned}$	$\begin{array}{r} 160 \\ 50 \\ 440 \end{array}$	$\begin{aligned} & 20 \\ & 10 \\ & 40 \end{aligned}$			
			31.09	0.02														
			31.82	0.02														
336	16	22	31.97	0.01	23	$\begin{aligned} & 51 \\ & 52 \\ & 52 \end{aligned}$	$\begin{aligned} & 55.1 \\ & 00 \\ & 13.5 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 78 \end{aligned}$	$\begin{aligned} & 2.3 \\ & 3.7 \\ & 1.8 \end{aligned}$		$<$	$\begin{aligned} & 1.9 \\ & 1.9 \\ & 2.3 \end{aligned}$	$\begin{array}{rr} 240 & 30 \\ 30 & 10 \\ 490 & 40 \end{array}$				
			32.2															
			32.83	0.01														

Table I—continued

Polarization			θ	p.a.	2	Dis- tance (Mpc)	Total size (kpe)	$\begin{aligned} & U_{\min } \\ & \left(10^{56} \mathrm{erg}\right) \end{aligned}$	$\begin{aligned} & \mathrm{B}_{\mathrm{eq}} \\ & \left(10^{-5} \mathrm{G}\right) \end{aligned}$	5 GHz Synch. lifetime $\left(10^{4} \mathrm{yr}\right)$		Source $3 C$
\%	\pm	$\underset{0}{\mathrm{p}_{\mathrm{o}}}$	"	-								
$\begin{array}{r} 14 \\ <\quad 21 \end{array}$	2	35	10.2	39	1.40	4250	87	< 1200	> 21	$<$	8	268.4
< 15								< 530	> 12			

2	1.26	132	0.321	1560	7.2			

277.1

$\begin{array}{r} 12 \\ 9 \end{array}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{array}{r} 40 \\ 115 \end{array}$	12.9	91	2300	95	-	$\begin{aligned} & 420 \\ & 150 \end{aligned}$		$\begin{aligned} & 16 \\ & 13 \end{aligned}$	<12 <16
< 20			11.5	151	690	34		90		3.7	110
-							<	0.5	>	3	150
< 20								26		4.1	92
30	15	105						64		3.3	130

280

288
$\begin{array}{r}7 \\ < \\ \hline\end{array}$
$6.7 \quad 94 \quad 0.961$
$3430 \quad 57$
$<400>17<11$
288.1

0.5	4.3	140	0.4614	2070	29	190	28
0.5						330	22

<9
$<$

$\begin{array}{llllllll}3.4 & 44 & 0.0416 & 240 & 3.8 & 0.8 & 11 & 21 \\ & & & & 0.9 & 4.2 & 88 \\ & & & & & & & \\ & & & 13 & 16\end{array}$

Table I-continued

Table I—continued

$\begin{array}{r} 4 \\ <\quad 8 \\ <\quad 15 \end{array}$	1	173	2.3	71		580	5.9	$\begin{array}{ll} < & 36 \\ < & 11 \end{array}$		$\begin{aligned} & 4 \\ & 3 \end{aligned}$	$\begin{aligned} & <82 \\ & <\quad 150 \end{aligned}$	346
$\begin{array}{r} 20 \\ < \\ < \\ < \\ < \\ \hline 26 \\ - \end{array}$	5	144	31.0	68	0.0917	520	71	$\begin{array}{r} 3.5 \\ 170 \\ \times \quad 0.5 \\ 7.9 \\ 140 \end{array}$	＞	$\begin{aligned} & 6.1 \\ & 1.7 \\ & 4 \\ & 3.9 \\ & 1.9 \end{aligned}$	$\begin{array}{r} 50 \\ 340 \\ <\quad 85 \\ 99 \\ 290 \end{array}$	
$\begin{array}{r} 30 \\ <40 \\ <40 \\ 12 \end{array}$	4 3	165 130	27.1	105	0.469	2100	190	$\begin{array}{r} \quad 560 \\ 12 \\ 12 \\ \quad 5000 \\ <\quad 220 \end{array}$		$\begin{aligned} & 3 \\ & 2 \\ & 1.6 \\ & 7 \end{aligned}$	$\begin{array}{r} <150 \\ < \\ \quad 290 \\ \quad 380 \\ < \end{array}$	411 宮
$\begin{aligned} & 16 \\ & 13 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{array}{r} 146 \\ 56 \end{array}$	23.1	141								$427.1{ }^{\circ}$
see	nap		50	25	0.1025	570	150	$\begin{aligned} & 800 \\ & 240 \end{aligned}$		$\begin{aligned} & 2 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 300 \\ & 580 \end{aligned}$	433 笭
$\begin{array}{r} 10 \\ <20 \end{array}$	3	120	12	81	0.767	2970	99	$\begin{aligned} & <1700 \\ & <1000 \end{aligned}$	>	$\begin{aligned} & 3 \\ & 5 \end{aligned}$	$\begin{aligned} & <150 \\ & <110 \end{aligned}$	434 客
					0.323	1570	70	$\begin{aligned} & <380 \\ & <\quad 240 \end{aligned}$	$\begin{aligned} & > \\ & > \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & <200 \\ & <150 \end{aligned}$	$434 \stackrel{\rightharpoonup}{\text { a }}$
			1.0	160								454.1
$\begin{array}{r} <6 \\ <13 \end{array}$			4.9	36	0.28	1400	26	$\begin{aligned} & <\quad 100 \\ & <\quad 71 \end{aligned}$	$>$	$\begin{array}{r} 11 \\ 7 \end{array}$	$\begin{aligned} & <\quad 21 \\ & <\quad 37 \end{aligned}$	460 O
$\begin{array}{r} <25 \\ <6 \\ <-6 \end{array}$			32	159	0.632	2600	250	$\begin{aligned} &< 310 \\ &< 260 \\ & 550 \end{aligned}$	$>$	$\begin{aligned} & 4 \\ & 8 \\ & 2.0 \end{aligned}$	$\begin{array}{r} <\quad 92 \\ <\quad 30 \\ 270 \end{array}$	467 N

25.03

0.0366	210	40	＜	0.07				35.03
				23	1.3		510	

$15231.274000130<560>7<3724.23$

Components which are unresolved in at least one dimension can be given only upper limits for the energy (15) and half-life (17) and lower limits for the magnetic field (16).

3. OPTICAL IDENTIFICATIONS

The optical fields around most of the sources in the ${ }_{3} \mathrm{C}$ catalogue have been studied in some detail, and in many cases the optical positions of the most likely identification have been measured with high accuracy. The optical positions plotted on the maps are those with the smallest estimated errors, or in some cases the means of two measurements quoting similar, small errors.

In 13 cases there are compact central radio components which unambiguously define the optical identifications. In all these cases good agreement is found between the radio components and optical nuclei. A detailed comparison of the positions may be used to test the reliability of the estimates of positional accuracy. A similar analysis was carried out for the optical sources included in the astrometric observations of Ryle \& Elsmore (1973). In the latter cases the positions were derived from the variation of measured phase between the different elements of the interferometer, giving accuracies of $\approx 0^{\prime \prime} \cdot 03$. The discrepancies in the relative optical and radio positions were therefore predominantly due either to the errors in the optical positions, or to non-coincidence of the optical and radio sources.

In the present cases, where the nuclear components usually provide only a few per cent of the total flux density, the positions were necessarily measured from the contour maps; the lower weight attached to observations at the larger baselines means that the accuracies are limited to one-tenth to one-twentieth of the beamwidth, i.e. $0^{\prime \prime} \cdot 1-0^{\prime \prime} \cdot 2$ in α and $0^{\prime \prime} \cdot 1-0^{\prime \prime} \cdot 2 \operatorname{cosec} \delta$ in δ. The accuracy is nevertheless still usually better than that of the optical positions, and a comparison of the rms differences obtained by several optical observers is given in Table II. In all cases the differences are consistent with the estimated errors in the optical and radio positions.

Gunn \& Longair (1975) show photographs of the fields of ${ }_{3} \mathrm{C} 6 \cdot 1,68 \cdot 2,123$, $427 \cdot 1,433,434,454^{\cdot 1}$ and 560 .

Table II

Authors	No. of sources	$\begin{array}{cc} \text { Rms difference (") } \\ \alpha & \delta \end{array}$	
Argue \& Kenworthy			
(AK 1972)	4	$0 \cdot 34$	0.21
Murray, Tucker \& Clements			
(MTC 197r)	4	$0 \cdot 43$	0•19
Wills, Wills \& Douglas			
(WWD 1973)	2	- 35	$0 \cdot 38$
Griffin			
(G 1963)	2	-.08	$0 \cdot 51$
Véron*			
(SVW 1965 ; V ı966, ı968; Véron \& Véron 1973)	9	0.71	0.84
Barbieri, Capaccioli, (Ganz) \& Pinto			
(BCP 1970; BCGP 1972)	6	I.09	$0 \cdot 73$
Lü \& Fredrick			
(1967)	3	I 17	$2 \cdot 79$

[^0]The present results and interferometric observations at 408 and 2695 MHz (Clark \& Miley 1969) give spectral indices between 408 MHz and 5 GHz of 0.98 ± 0.04 for the Sf and $\mathrm{I} \cdot 36 \pm 0.05$ for the Np component. The spectrum of the latter must flatten at lower frequencies or else its flux density extrapolated to 60 MHz would be greater than the total flux density of the source (Fig. 3(a)). The total spectrum shows a break at $200 \pm 50 \mathrm{MHz}$ which is probably due to this break in the spectrum of the Np component, and the parameters derived for this component are on the assumption that synchrotron losses become important at 200 MHz . The actual age of the component (assuming equipartition of energy between magnetic field and relativistic electrons) is then $6 \times 10^{5} \mathrm{yr}$.
${ }_{3} C 67$
The separation of the components ($2^{\prime \prime} \cdot 00 \pm 0^{\prime \prime} \cdot 08$) has been derived from the visibility function, assuming the source to be double. The position (V) of the $18{ }^{\mathrm{m}}$ galaxy is $\mathrm{o}^{\prime \prime} \cdot 4 \pm \mathrm{r}$ " from the radio centre. No map is shown.

3C 123
The polarized structure of this source is complex. The peak of the Np component is $5 \pm \mathrm{I}$ per cent polarized in p.a. 148°, the tail to the E has 12 ± 2 per cent polarization in p.a. 89° while the tail to the S is less than 4 per cent polarized. The polarization in the low surface brightness region of the Sf component reaches 15 ± 5 per cent in three places, each with a different p.a. ($129^{\circ}, 24^{\circ},{ }^{1} 5 I^{\circ}$). The polarized structure bears little relation to the structure of the total intensity, as has also been found in the extended, low brightness regions of Cygnus A (Hargrave \& Ryle 1974).

3C 196
The present 5 GHz results, taken with interferometric observations at 2.7 GHz (Hogg 1969; Bash 1968a) and 408 MHz (Wilkinson 1972), give a spectral index of 0.85 ± 0.08 for the preceding and 0.70 ± 0.08 for the following component. Long baseline interferometry at 1423 MHz (Wilkinson 1972) shows that there is structure smaller than $0^{\prime \prime} \cdot 4$ in each of the two major components contributing half the flux density of the source.
$3 C 207$
The total spectrum is concave above 1 GHz and the sum of the flux densities of the outer components at 5 GHz lies on the extrapolation of the low frequency spectrum (Fig. 3(b)). This implies that the unresolved central component has a flat spectrum and its contribution to the total flux density is negligible below i GHz .

This conclusion is supported by the visibility function obtained by Bash (1968b) at 2.7 GHz , which is consistent with a triple source similar to that mapped at 5 GHz , with $0.55 \pm 0.07 \mathrm{fu}$ in the central component. The spectral index of the latter between 2.7 and 5.0 GHz is then 0.1 ± 0.3.

3C 236
The separation of the components of this compact source $\left(0^{\prime \prime} \cdot 78 \pm 0^{\prime \prime} \cdot 03\right)$ has
been derived from the visibility function, assuming that the source is double. No map is shown.
$3 C 254$
The position (G) of the suggested identification, a quasar, is unusual in that it lies $\mathrm{I}^{\prime \prime} \cdot 6 \pm 0^{\prime \prime} \cdot 5$ from the following component and $122^{\prime \prime}$ from the preceding component. However, the former is unlikely to be a component of the type often found to be coincident with a quasar, not only because of the discrepancy between the radio and optical positions, but also because it is extended and does not have a

Fig. 3. The spectra of six sources discussed in the text. The total spectrum of each source is defined by the flux densities given by Kellermann \mathfrak{G} Pauliny-Toth (1973) (10.7 GHz), Kellermann et al. (1969) (5, 2.7, $1 \cdot 4 \mathrm{GHz}, 750$, 178, 38 MHz), Roger et al. (1969) and Roger et al. (1973) (22.25 MHz), and Bridle \mathcal{E} Purton (1968) (10.03 MHz). Flux densities at frequencies below 200 MHz have been normalized to the scale defined by Roger et al. (1973). Flux density of components are from: $\times, 5-\mathrm{km}$ telescope; O , Cambridge One-Mile Telescope; ^, Bash (1968a); Δ, Hogg (1969) or Clark \mathcal{E}° Hogg (1966); ■, Wilkinson (1972); \square, Wraith (1972); + , Anderson et al. (1965). Unlabelled error bars for ${ }_{3} C 9$ are from Clark \mathcal{E}^{2} Miley (1969); and for 3 C 207 are derived from observations by Bash (see text). The error bars on the flux densities from Wraith and from Wilkinson are ± 14 per cent, the rms difference in flux density between sources observed by Stannard, Wraith \mathcal{E}° Wilkinson at 408 MHz (Wilkinson 1972). The flux density of the preceding (p), following (f) and central (c) components are marked where they may be measured unambiguously. The abscissae are marked in GHz , the ordinates in fu.
flat spectrum ($\alpha_{2 \cdot 7}^{5 \cdot 0}=1 \cdot 0 \pm 0 \cdot 2$). There is also no emission $>20 \mathrm{mfu}$ from the region east of this component which might constitute a third component of the source.

The Sky Survey prints show no other possible identifications in the field, which is at high galactic latitude $\left(b=66^{\circ}\right)$.
$3 C 263$
The present results at 5 GHz , One-Mile Telescope observations at 1.4 GHz , and interferometric results at 2.7 GHz (Hogg 1969; Bash 1968a), 408 and 1423 MHz (Wilkinson 1972) give a spectral index of 0.68 ± 0.08 for the compact following component (Fig. 3(c)). There is no evidence for the concave curvature of the spectrum of this component suggested by Wilkinson.

The flux density of the preceding component at 1.4 GHz as measured by the One-Mile Telescope is $0.7 \pm 0.1 \mathrm{fu}$, giving a spectral index between 1.4 and 5 GHz of $\mathrm{I} \cdot 2 \pm 0.2$ (Fig. 3(c)).

3C 268.3
The separation of the components of this compact source ($\mathrm{I}^{\prime \prime} \cdot 28 \pm 0^{\prime \prime} \cdot 04$) has been derived from the visibility function. KSK identify this source with a $19{ }^{m}$ galaxy in a cluster, which lies $\mathrm{I}^{\prime \prime} \cdot 3 \pm \mathrm{I}^{\prime \prime}$ from the mean position given here. No map is shown.

The visibility function of this compact source $\left(\approx I^{\prime \prime} \cdot 3\right)$ is not fitted well by either a simple double or a Gaussian distribution of emission. The peak of radio emission coincides with the optical position (AK, MTC) of the 18^{m} quasar. No map is shown.

3C 280
Interferometric observations at ${ }_{151} \mathrm{MHz}$ (Wraith 1972), 408 MHz (Wraith 1972; Wilkinson 1972), 1423 MHz (Wilkinson 1972) and 2695 MHz (Bash 1968a) and the present 5 GHz results show that the two components of this source have significantly different spectral indices: 0.69 ± 0.08 for the preceding component and $\mathrm{I} \cdot 04 \pm 0.08$ for the following (Fig. 3(d)).

Scintillation measurements at $8 \mathrm{I} \cdot 5 \mathrm{MHz}$ (Readhead \& Hewish 1974) show a component of $\mathrm{I}^{\prime \prime} \cdot 0 \pm 0^{\prime \prime} \cdot 3$ half-power width, of flux density 23 ± 10 fu. The flux density of the unresolved following component at $8 \mathrm{I} \cdot 5 \mathrm{MHz}$ (extrapolated from its high frequency spectrum) is $22 \pm 4 \mathrm{fu}$, consistent with it being the scintillating component.

3C 295
The present 5 GHz results, together with interferometric observations at ${ }^{1} 59 \mathrm{MHz}$ (Anderson, Palmer \& Rowson 1962), 408 MHz and 1423 MHz (Wilkinson 1972) and 2695 (Clark \& Hogg 1966), show that the two components have similar spectral indices (≈ 0.8) between 150 MHz and 5 GHz . The total spectrum has a gradual turnover at $70 \pm 15 \mathrm{MHz}$ which is unlikely to be due to free-free absorption in our Galaxy because of the high galactic latitude of the source $\left(b=+61^{\circ}\right)$. This turnover must occur in the spectra of both components as the flux density at 50 MHz is less than the extrapolated flux density of either component (Fig. 3(a)).

The 5 km visibility function gives component sizes of $0^{\prime \prime} \cdot 7$ and $\mathrm{I}^{\prime \prime} \cdot 0$, but long baseline interferometry at 1.4 and 2.7 GHz (Donaldson et al. 1969) indicates that there is also smaller scale structure present. Taking an 'average' size of $0^{\prime \prime} \cdot 5$ for both components of the source, the equipartition field of each component is about $4 \times 10^{-4} \mathrm{G}$. In this field both components become optically thick at about 70 MHz which is in good agreement with the observed turnover frequency.

The total spectrum steepens abruptly near 1.4 GHz , where the spectral index increases from 0.7 to $1 \cdot 0$, and it becomes increasingly steep at higher frequencies. If this break is interpreted in terms of synchrotron losses the age of the components is only $10^{5} \mathrm{yr}$, not much greater than the light travel time of the components from the central galaxy ($5 \times 10^{4} \mathrm{yr}$).

3C 303
The identification of this source is in some doubt. Neither of two possible candidates, a 17^{m} galaxy measured by Véron (1966) and a 16^{m} galaxy $15^{\prime \prime}$ to the east, appears to be near the centre of the source.

The 5 GHz observations suggest that there is some low-brightness emission from this source. In addition the spectrum is concave (Fig. 3(f)) and this curvature may be caused by the relatively flat spectrum of the following component ($\alpha<0 \cdot 15$).

The polarization of the preceding component is unusually strong.

3C 433
This source has a very unusual shape, and relatively strong linear polarization (ro-35 per cent). Mackay (1969) notes that the low-brightness region to the NE extends for some $70^{\prime \prime}$, contributing 10 per cent of the flux at 1407 MHz . There appears to be no significant small-scale structure ($<2^{\prime \prime}$) either at 5 GHz , or at $8 \mathrm{r} \cdot 5 \mathrm{MHz}$ from scintillation data (Readhead \& Hewish 1974).

3C $454 . I$
The separation of the components of this compact source ($\left.\mathrm{I}^{\prime \prime} \cdot 0 \pm 0^{\prime \prime} \cdot \mathrm{I}\right)$ has been derived from the visibility function. There is no optical identification (GL). No map is shown.
$4 C 25.03$
A 17^{m} galaxy (Olsen 1970) lies $36^{\prime \prime} \mathrm{SW}$ of the radio source. There is no radio component having $S>20 \mathrm{mfu}$ within $90^{\prime \prime}$ on the other side of the galaxy, and it is unlikely that the galaxy is related to the source. The parameters for this source are derived from the visibility function and no map is shown.

5. CONCLUSIONS

These observations of extragalactic sources do not yet form a statistically complete sample, since their selection was not on a uniform basis. Further observations designed to provide well-defined samples are in progress and discussions of astrophysical results will follow in later papers.

ACKNOWLEDGMENTS

These observations were only possible through the efforts of many members of the Observatory staff, to whom we express our thanks.

SNH acknowledges the receipt of a grant from the Northern Ireland Department of Education.

Mullard Radio Astronomy Observatory, Cavendish Laboratory, Cambridge

REFERENCES

Anderson, B., Palmer, H. P. \& Rowson, B., 1962. Nature, 195, 165.
Argue, A. N. \& Kenworthy, C. M., 1972. Mon. Not. R. astr. Soc., 160, 197.
Barbieri, C., Capaccioli, M., Ganz, R. \& Pinto, G., 1972. Astr. F., 77, 444.
Barbieri, C., Capaccioli, M. \& Pinto, G., 1970. Mem. Soc. astr. Ital., 41, 459.
Bash, F. N., i968a. Astrophys. F. Suppl., 16, 373.
Bash, F. N., 1968b. Astrophys. F., 152, 375.
Bennett, A. S., 1962. Mem. R. astr. Soc., 68, 163.
Branson, N. J. B. A., Elsmore, B., Pooley, G. G. \& Ryle, M., 1972. Mon. Not. R. astr. Soc., 156, 377.
Bridle, A. H. \& Purton, C. R., 1968. Astr. F., 73, 717.
Burbidge, E. M., Burbidge, G. R., Solomon, P. M. \& Strittmatter, P. A., 197r. Astrophys. F., 170, 233.

Clark, B. G. \& Hogg, D. E., i966. Astrophys. F., I45, 2 I.
Clark, B. G. \& Miley, G. K., 1969. Astrophys. Letters, 4, 207.

Donaldson, W., Miley, G. K., Palmer, H. P. \& Smith, H., 1969. Mon. Not. R. astr. Soc., 146, 213.
Edge, D. O., Shakeshaft, J. R., McAdam, W. B., Baldwin, J. E. \& Archer, S., i959. Mem. R. astr. Soc., 68, 37.

Griffin, R. F., 1963. Astr. F., 68, 42 I.
Gunn, J. E. \& Longair, M. S., 1975. Mon. Not. R. astr. Soc., 170, 12 I.
Hargrave, P. J. \& Ryle, M., 1974. Mon. Not. R. astr. Soc., 166, 305.
Hinder, R. A. \& Ryle, M., 1971. Mon. Not. R. astr. Soc., 154, 229.
Hogg, D. E., i969. Astrophys. F., 155, 1099.
Hunstead, R. W., 1971. Mon. Not. R. astr. Soc., 152, 277.
Kapahi, V. K., Gopal-Krishna \& Joshi, M. N., 1974. Mon. Not. R. astr. Soc., 167, 299.
Kellermann, K. I. \& Pauliny-Toth, I. I. K., 1973 . Astr. $7 ., 78,828$.
Kellermann, K. I., Pauliny-Toth, I. I. K. \& Williams, P. J. S., 1969. Astrophys. F., 157, 1.
Kristian, J., Sandage, A. \& Katem, B., 1974. Astrophys. F., 191, 43.
Longair, M. S., 1965. Mon. Not. R. astr. Soc., 129, 419.
Lü, P. K. \& Fredrick, L. W., 1967. Astrophys. F. (Letters), 150, L71.
Mackay, C. D., 1969. Mon. Not. R. astr. Soc., 145, 3 I.
Murray, C. A., Tucker, R. H. \& Clements, E. D., 197ı. R. Obs. Bull., 162.
Oemler, A., Gunn, J. E. \& Oke, J. B., 1972. Astrophys F. (Letters), r76, L47.
Olsen, E. T., 1970. Astr. F., 75, 764.
Pilkington, J. D. H. \& Scott, P. F., 1965. Mem. R. astr. Soc., 69, 183.
Readhead, A. C. S. \& Hewish, A., 1974. Mem. R. astr. Soc., 78, 1.
Roger, R. S., Bridle, A. H. \& Costain, C. H., 1973. Astr. F., 78, 1030.
Roger, R. S., Costain, C. H. \& Lacey, J. D., 1969. Astr. F., 74, 366.
Ryle, M., 1972. Nature, 239, 435.
Ryle, M. \& Elsmore, B., 1973. Mon. Not. R. astr. Soc., 164, 223.
Sandage, A., 1966. Astrophys. F., 145, i.
Sandage, A., 1967. Astrophys. F. (Letters), 150, L9.
Sandage, A., Véron, P. \& Wyndham, J. D., 1965. Astrophys. F., 142, 1307.
Spinrad, H. \& Smith, H. E., 1974. In preparation.
Spinrad, H., Smith, H. E., Hunstead, R. \& Ryle, M., 1974. In preparation.
Véron, P., 1966. Astrophys. F., 144, 86ı.
Véron, P., 1968. Ann. Astrophys., 31, 483.
Véron, P. \& Véron, M. P., 1973. Astr. Astrophys., 28, 319.
Wilkinson, P. N., 1972. Mon. Not. R. astr. Soc., 160, 305.
Wills, B. J., Wills, D. \& Douglas, J. N., 1973. Astr. F., 78, 52 I.
Wlérick, G., Lelièvre, G. \& Véron, P., 1971. Astr. Astrophys., 11 I 142.
Wraith, P. K., 1972. Mon. Not. R. astr. Soc., 160, 283.

[^0]: * The position given for ${ }_{3} \mathrm{C} 47$ (SVW) has not been included since it is $6^{\prime \prime}$ from the radio position.

